
CS 110
Computer Architecture

Lecture 3: Introduction to C II

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Admin

• TA Office hours:
– In piazza -> resources -> staff

https://piazza.com/shanghaitech.edu.cn/spring2020/cs110/staff

– Times are posted there
– Contact TA in qq group during his OH

2

https://piazza.com/shanghaitech.edu.cn/spring2020/cs110/staff

Admin

• Labs
– Start on Monday – and Tuesday
– TA will make a qq group for your lab
– Send your TA your group via email

subject: [CA group]
– During lab time:
• Make a zoom meeting with your lab partner
• Post zoom meeting id in your lab qq group
• TA will join you at some time!

3

Admin

• HW 1 is due tomorrow!
– So far 188 students submitted – out of 207!

• HW 2 is due Thursday, March 12
– Start early!

4

Admin

• Zoom: You can raise your hand:

• Use to indicate that
you want to ask a
question.

• Can also ask questions in chat!

5

Admin

• TAs will give short (about 10 minutes) sessions
in Chinese in every lecture.

• This replaces TA discussions for now.

6

Review

• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is more overhead for
the programmer.

• “C gives you a lot of extra rope but be careful not to
hang yourself with it!”

8

What is printed?
32bit machine.

1. 4 int
2. 4 pointer
3. 4 array (pointer)
4. 1 char

5. 8 double
6. 4 float
7. 11 string with 0-terminator
8. 10 string w/o 0-terminator

9. 4 pointer (to char/ string)
10. 12 string w/o 0-terminator
11. 1 invalid! undefined!
12. 4 pointer to function

13. 4 array (pointer)
14. 4 size_t
15. 4 size_t
16. 4 pointer

C Memory Management
• How does the C compiler determine where to

put all the variables in machine’s memory?
• How to create dynamically sized objects?
• To simplify discussion, we assume one

program runs at a time, with access to all of
memory.

• Later, we’ll discuss virtual memory, which lets
multiple programs all run at same time, each
thinking they own all of memory.

9

C Memory
Management

• Program’s address space
contains 4 regions:
– stack: local variables inside

functions, grows downward
– heap: space requested for

dynamic data via malloc();
resizes dynamically, grows
upward

– static data: variables declared
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified.

– code: loaded when program
starts, does not change

code

static data

heap

stack~ FFFF FFFFhex

~ 0000 0000hex

1010

Memory Address
(32 bits assumed here)

Where are Variables Allocated?

• If declared outside a function,
allocated in “static” storage

• If declared inside function,
allocated on the “stack”
and freed when function
returns
– main() is treated like

a function

int myGlobal;
main() {
int myTemp;

}

11

The Stack
• Every time a function is called, a new frame

is allocated on the stack
• Stack frame includes:

– Return address (who called me?)
– Arguments
– Space for local variables

• Stack frames contiguous
blocks of memory; stack pointer
indicates start of stack frame

• When function ends, stack frame is tossed
off the stack; frees memory for future stack
frames

• We’ll cover details later for RISC-V processor fooD frame

fooB frame

fooC frame

fooA frame

Stack Pointer
12

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { fooD(); }

Stack Animation

• Last In, First Out (LIFO) data structure
main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}void d (int p)
{
}

stack

Stack PointerStack
grows
down

13

Managing the Heap

C supports five functions for heap management:

• malloc() allocate a block of uninitialized memory
• calloc() allocate a block of zeroed memory
• free() free previously allocated block of memory
• realloc() change size of previously allocated block

• careful – it might move!

14

Malloc()
• void *malloc(size_t n):

– Allocate a block of uninitialized memory
– NOTE: Subsequent calls might not yield blocks in contiguous addresses
– n is an integer, indicating size of allocated memory block in bytes
– size_t is an unsigned integer type big enough to “count” memory bytes
– sizeof returns size of given type in bytes, produces more portable code
– Returns void* pointer to block; NULL return indicates no more memory
– Think of pointer as a handle that describes the allocated block of memory;

Additional control information stored in the heap around the allocated
block!

• Examples:
int *ip;
ip = (int *) malloc(sizeof(int));

typedef struct { … } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

15

“Cast” operation, changes type of a variable.
Here changes (void *) to (int *)

Managing the Heap
• void free(void *p):

– Releases memory allocated by malloc()
– p is pointer containing the address originally returned by malloc()

int *ip;
ip = (int *) malloc(sizeof(int));
...
free((void*) ip); /* Can you free(ip) after ip++ ? */

typedef struct {… } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

...
free((void *) tp);

– When insufficient free memory, malloc() returns NULL pointer; Check for it!
if ((ip = (int *) malloc(sizeof(int))) == NULL){

printf(“\nMemory is FULL\n”);
exit(1); /* Crash and burn! */

}
– When you free memory, you must be sure that you pass the original address

returned from malloc() to free(); Otherwise, system exception (or worse)!

16

Using Dynamic Memory
typedef struct node {

int key;
struct node *left;
struct node *right;

} Node;

Node *root = 0;

Node *create_node(int key, Node *left, Node *right)
{

Node *np;
if ((np = (Node*) malloc(sizeof(Node))) == NULL)
{ printf("Memory exhausted!\n"); exit(1); }
else
{ np->key = key;

np->left = left;
np->right = right;
return np;

}
}

void insert(int key, Node **tree)
{

if ((*tree) == NULL)
{ (*tree) = create_node(key, NULL, NULL); return; }

if (key <= (*tree)->key)
insert(key, &((*tree)->left));

else
insert(key, &((*tree)->right));

} 17

Root

Key=10

Left Right

Key=5

Left Right
Key=16

Left Right

Key=11

Left Right

Observations

• Code, Static storage are easy: they never grow
or shrink

• Stack space is relatively easy: stack frames are
created and destroyed in last-in, first-out
(LIFO) order

• Managing the heap is tricky: memory can be
allocated / deallocated at any time

18

19

Bugs
• Line 9: comparison with strlen instead of sizeof (for 0-

terminator)
• Line 10: strlen instead of sizeof (or +1) for malloc =>
– Line 13: write past end of array (if malloc was used)

• Line 4: Ownership of pointer str not clear =>
– Line 10: Potential memory leak

• Line 4: New pointer is not returned/ no pointer to
pointer is used

• Line 20: memcpy over length of CA
• Line 20: 0-terminator is not copied!
• Line 22 &23: better: call with array size
• Line 14 & 27: return missing!

20

How are Malloc/Free implemented?

• Underlying operating system allows malloc
library to ask for large blocks of memory to
use in heap (e.g., using Unix sbrk() call)

• C standard malloc library creates data
structure inside unused portions to track free
space

21

Simple Slow Malloc Implementation

22

Initial Empty Heap space from Operating System

Free Space

Malloc library creates linked list of empty blocks (one block initially)

FreeObject 1

Free

First allocation chews up space from start of free space

After many mallocs and frees, have potentially long linked list of odd-sized blocks
Frees link block back onto linked list – might merge with neighboring free space

Faster malloc implementations

• Keep separate pools of blocks for different
sized objects

• “Buddy allocators” always round up to power-
of-2 sized chunks to simplify finding correct
size and merging neighboring blocks:

23

Power-of-2 “Buddy Allocator”

24

free

used

Malloc Implementations

• All provide the same library interface, but can
have radically different implementations

• Uses headers at start of allocated blocks and
space in unallocated memory to hold
malloc’s internal data structures

• Rely on programmer remembering to free
with same pointer returned by malloc

• Rely on programmer not messing with internal
data structures accidentally!

25

Q & A

26

Quiz

27

Quiz!
int x = 3;
int result;

int foo(int n)
{ int y;

if (n <= 0) { printf("End case!\n"); return 0; }
else
{ y = n + foo(n-x);

return y;
}

}
result = foo(15);

Right after the printf executes but before the return 0, how many copies of x and y are there
allocated in memory?

A: #x = 1, #y = 2 G: #x = 4, #y = 1
B: #x = 2, #y = 1 H: #x = 5, #y = 1
C: #x = 1, #y = 1 I: #x = 6, #y = 1
D: #x = 1, #y = 4 J: #x = 4, #y = 4
E: #x = 1, #y = 5 K: #x = 5, #y = 5
F: #x = 1, #y = 6 L: #x = 6, #y = 6 28

Piazza: “Online Lecture 2 Quiz”

CS 110
Computer Architecture

Lecture 3: Introduction to C II
Video 3: Memory Bugs

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

29
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Common Memory Problems

• Using uninitialized values
• Using memory that you don’t own
– Deallocated stack or heap variable
– Out-of-bounds reference to stack or heap array
– Using NULL or garbage data as a pointer

• Improper use of free/realloc by messing with the
pointer handle returned by malloc/calloc

• Memory leaks (you allocated something you
forgot to later free)

30

Using Memory You Don’t Own

int *ipr, *ipw;
void ReadMem() {

int i, j;
ipr = (*int) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
free(ipr);

}

void WriteMem() {
ipw = (*int) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = 0;
free(ipw);

}
31

•What is wrong with this code?
• Using pointers beyond the range that had been malloc’d

–May look obvious, but what if mem refs had been result of pointer arithmetic that
erroneously took them out of the allocated range?

Faulty Heap Management

• What is wrong with this code?
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo();
…

}

32

Faulty Heap Management
• Memory leak: more mallocs than frees
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */
…
free(pi); /* foo() is done with pi, so free it */

}

void main() {
pi = malloc(4*sizeof(int));
foo(); /* Memory leak: foo leaks it */
…

}

33

Faulty Heap Management

• What is wrong with this code?

34

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++;

}

Faulty Heap Management

• Potential memory leak – handle has been
changed, do you still have copy of it that can
correctly be used in a later free?

35

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++;

}

Faulty Heap Management

• What is wrong with this code?

36

void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

Faulty Heap Management

• Can’t free non-heap memory; Can’t free
memory that hasn’t been allocated

37

void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

Using Memory You Haven’t Allocated

• What is wrong with this code?

38

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
printf("%s\n", str);

}

Using Memory You Haven’t Allocated

• Reference beyond array bounds

39

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
/* Write Beyond Array Bounds */
printf("%s\n", str);
/* Read Beyond Array Bounds */

}

Using Memory You Don’t Own

40

• What’s wrong with this code?

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}

Using Memory You Don’t Own

41

• Beyond stack read/write

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

} Function returns pointer to stack
memory – won’t be valid after

function returns

result is a local array name –
stack memory allocated

Using Memory You Don’t Own

• What is wrong with this code?

42

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

Using Memory You Don’t Own

• Following a NULL pointer to mem addr 0!

43

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

Managing the Heap
• realloc(p,size):

– Resize a previously allocated block at p to a new size
– If p is NULL, then realloc behaves like malloc
– If size is 0, then realloc behaves like free, deallocating the block from the

heap

– Returns new address of the memory block; NOTE: it is likely to have moved!

E.g.: allocate an array of 10 elements, expand to 20 elements later
int *ip;
ip = (int *) malloc(10*sizeof(int));
/* always check for ip == NULL */
… … …
ip = (int *) realloc(ip,20*sizeof(int));
/* always check for ip == NULL */
/* contents of first 10 elements retained */
… … …
realloc(ip,0); /* identical to free(ip) */

44

Using Memory You Don’t Own
• What is wrong with this code?
int* init_array(int *ptr, int new_size) {

ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
45

Using Memory You Don’t Own
• Improper matched usage of mem handles
int* init_array(int *ptr, int new_size) {

ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
/* oops, forgot: fib = */ init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
46

What if array is moved to
new location?

Remember: realloc may move entire block

And In Conclusion, …
• All data is in memory

– Each memory location has an address to use to refer to it and a
value stored in it

• Pointer is a C version (abstraction) of a data address
– * “follows” a pointer to its value
– & gets the address of a value
– Arrays and strings are implemented as variations on pointers

• C is an efficient language, but leaves safety to the
programmer
– Variables not automatically initialized
– Use pointers with care: they are a common source of bugs in

programs

47

And In Conclusion, …

• C has three main memory segments in which
to allocate data:
– Static Data: Variables outside functions
– Stack: Variables local to function
– Heap: Objects explicitly malloc-ed/free-d.

• Heap data is biggest source of bugs in C code

48

