CS 110 Computer Architecture

Lecture 4: Intro to Assembly Language, RISC-V Intro

Instructors: Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C

Admin

- Life lecture always covers the 1st video of next lecture
- All videos of next lecture will be published at the day of this (so the previous) lecture
- 1st video is not required to watch, if you understood this live lecture
 - there are NO mandatory piazza polls in the 1st video
- Other videos are MANDATORY to watch
 - You are REQUIRED to do the according polls till the day of that lecture (day where the video is published on the website).

Admin

- Labs 2-9 today
- Prepare checkoffs!
- When meeting with TA, you should be able to do all checkoffs.
- On campus: go to lab, do the lab, at the end of the class, checkoff with TA...
- Prepare zoom, practice screen sharing (whole screen)

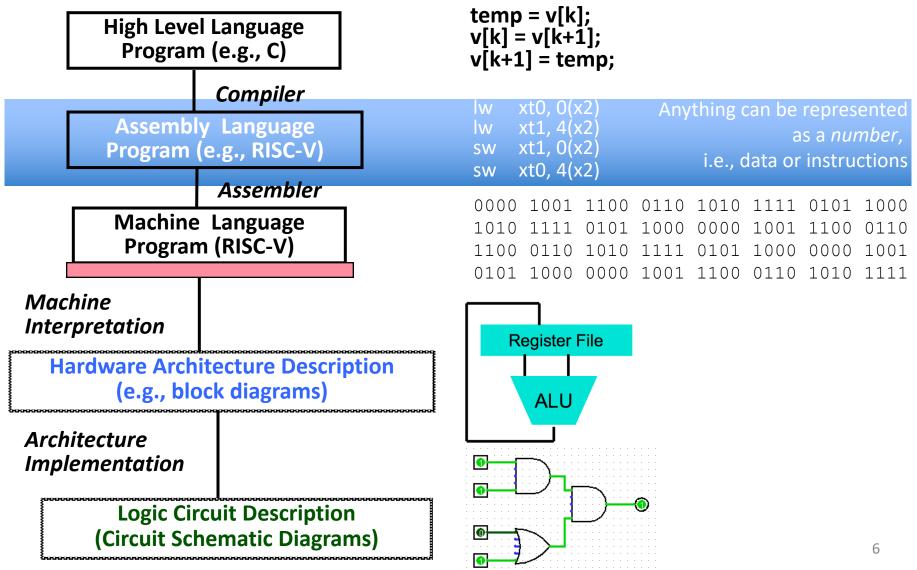
• HW 2 is due soon (March 12)

• HW 3 and Project 1 will be released soon!

History

51 years ago: **Apollo Guidance** Computer programmed in **Assembly** 30x30x30cm, 32 kg. 10,000 lines of machine code manually entered tons of easter eggs!

abcnews.go.com/Technology/apollo-11s-sourcecode-tons-easter-eggsincluding/story?id=40515222



Margaret Hamilton with the code she wrote.

- Lead Apollo flight software designer.
- Came up with the idea of naming the discipline, "software engineering"
- <u>https://en.wikipedia.org/wiki/Margaret</u>
 <u>Hamilton_%28scientist%29</u>

179	TC	BANKCALL	# TEMPORARY, I HOPE HOPE HOPE
180	CADR	STOPRATE	# TEMPORARY, I HOPE HOPE HOPE
181	тс	DOWNFLAG	# PERMIT X-AXIS OVERRIDE

Levels of Representation/Interpretation

Assembly Language

- Basic job of a CPU: execute lots of *instructions*.
- Instructions are the primitive operations that the CPU may execute.
- Different CPUs implement different sets of instructions. The set of instructions a particular CPU implements is an

Instruction Set Architecture (ISA).

 Examples: ARM, Intel x86, MIPS, RISC-V, IBM/Motorola PowerPC (old Mac), Intel IA64, ...

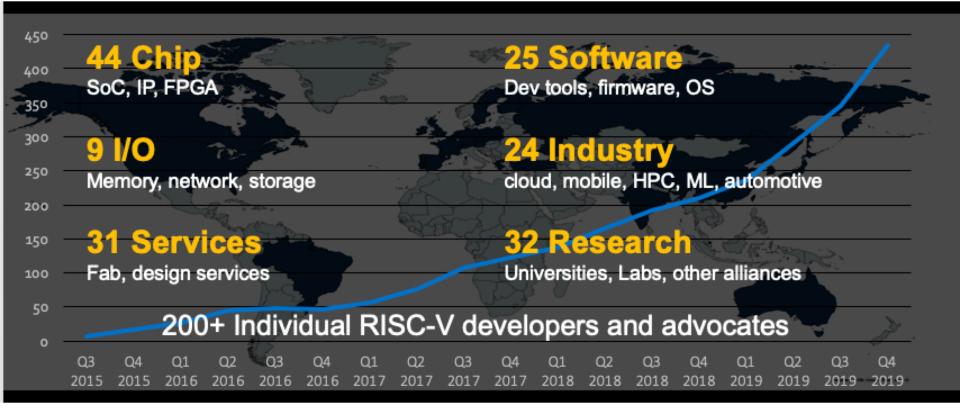
Instruction Set Architectures

- Early trend was to add more and more instructions to new CPUs to do elaborate operations
 - VAX architecture had an instruction to multiply polynomials!

RISC philosophy (Cocke IBM, Patterson, Hennessy, 1980s)

Reduced Instruction Set Computing

- Keep the instruction set small and simple, makes it easier to build fast hardware.
- Let software do complicated operations by composing simpler ones.


RISC-V Architecture RISC-V®

- New open-source, license-free RISC ISA spec
 - Supported by growing shared software ecosystem
 - Appropriate for all levels of computing system, from microcontrollers to supercomputers
 - 32-bit, 64-bit, and 128-bit variants (we're using 32-bit in class, textbook uses 64-bit)

 RISC-V standard maintained by nonprofit RISC-V Foundation

More than 435 RISC-V Members

across 33 Countries Around the World

Platinum Foundation Members

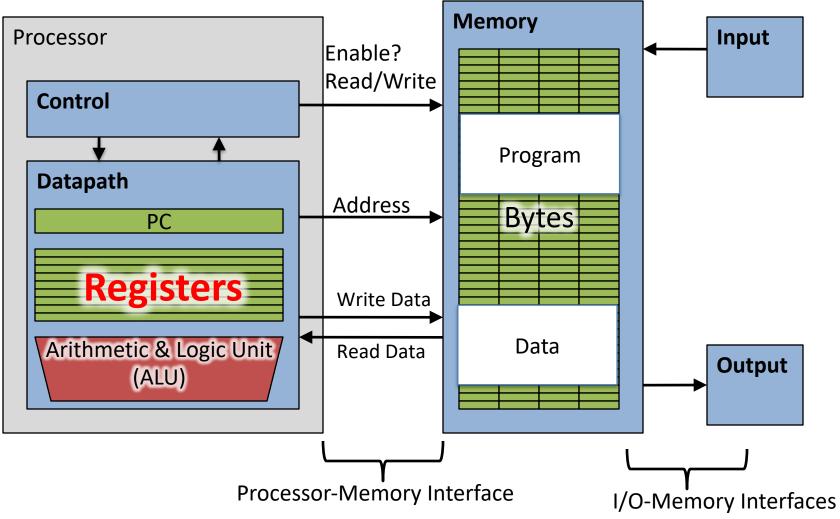
Constant and the second	Alibaba Group PLATINUM	ANDES	Andes Technology FOUNDING PLATINUM	antmicro	Antmicro FOUNDING PLATINUM
Revealed Revealed Research	Berkeley Architecture Research FOUNDING PLATINUM	bluespec	Bluespec FOUNDING PLATINUM	ConnectFree	ConnectFree PLATINUM
cortus	Cortus FOUNDING PLATINUM	Google	Google FOUNDING PLATINUM		Huami PLATINUM
Міскоснір	Microchip Technology FOUNDING PLATINUM	Micron	Micron Technology PLATINUM		NVIDIA FOUNDING PLATINUM
NP	NXP Platinum	orionSTAR खेलेड छे	Orion PLATINUM	Qualcomm	Qualcomm FOUNDING PLATINUM
Rambus	Rambus Inc. FOUNDING PLATINUM	SAMSUNG	Samsung PLATINUM	SANECHIPS	Sanechips Technology Co. PLATINUM
SiFive	SiFive Founding platinum	THALES	Thales PLATINUM	Western Digital.	Western Digital FOUNDING PLATINUM

RISC-V in China

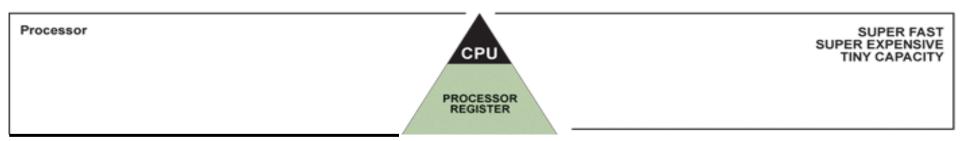
- 33 Chinese members in the global RISC-V Foundation
- 500 attendees at the China RISC-V Forum in Nov 2019
- RISC-V International Open Source Laboratory (RIOS Laboratory) research at Tsinghua-Berkeley Shenzhen Institute (TBSI) June 2019
- Alibaba processor achieves 7.1 Coremark/MHz at a frequency of 2.5GHz on a 12nm process node, which is 40 percent more powerful than any RISC-V processor produced to date. – EE/Times July 2019
- GigaDevice launched world's first general-purpose microcontroller based on RISC-V for the IOT market. – EE Times 26 Aug 2019
- Huami's upcoming Huangshan 1S Processor in 7nm
 Huami one of the top wearable manufacturers; August 27, 2019

Why RISC-V in CS110?

- Why RISC-V instead of Intel 80x86?
 - RISC-V is simple, elegant. Don't want to get bogged down in gritty details.
- It is a very very clean RISC
 - No real additional "optimizations"
- Generally only one way to do any particular thing
 - Only exception is two different atomic operation options: Load Reserved/Store Conditional Atomic swap/add/etc...


DI E	2	ISC-V	Reference 1	① Data	RV643	HMETIC CORI 4 Multiply Extens	ice		TION S	T			0
VL	-	GER INSTRUCTIONS, in al	phabetical order		MNEM mal.m		FMI	[NAME		D	ESCRIPTION	(in Verilae)	NOTE
EVISI BASE I	NIL	NAME	DESCRIPTION (in Verilog)	NOTE	mulh	110		Milliph		2	28*(let0)*85	1200320	NOI
	194.1	ADD (Word)	R[rd] = R[rs1] + R[rs2]	1)	maller		R	MULiphy	upper Hat				
101.003N	1	ADD Inunediate (Word)	R[rd] = R[rs1] + imm	1)	maltra		R	Milliph	upper Hal	(Ner/Unik)	141-01(a) * 80	nJD(122.64)	6
Mill, addin	÷.	AND	R[nd] = R[m1] & R[m2]				R	MUL/phy Unissed	upper Hat	r R	H-(R)*85	n010(122.64)	
and		AND transdiste	R[rd] = R[rs1] & imm		div,d	Evw.		DEVIde (V		10	NI-OIMURS-	-77.	
andi	÷.	Add Upper Immediate to PC	R[ed] = PC + (inne, 12b0)		divu			DEVIde LA			HI-(R(al)/R(e		
ALLOC Herz	SR	Branch EQual	if(R[rs1]==R[rs2) PC+PC+(inre,15%)		200,0		R	REMainde	(Kord)	80	all - (That is an	1.Th	
		Branch Greater than or Equal	PC+PC+[4000,10/0]		zenu,		R	RIMainia	v Unsigno		H]=(R[si]]% R	(47))	
607	58	Branch Greater than or Depair.	PC+PC+time_1000		RV648	and RV64D Floa	ting-	Point Ex.	tessieer				
		Branch 2 Unsigned	inR(n11>=R(n2)	21				Load (Wo Shire (Wo			ni) - MIR(al jein		
6910			PC=PC+(incr,16/0)			L. faill.d		ADD SIGN	ni)	м	(#(m))+H	64	
MIC	SB	Branch Less Than	if[R[n1] <r[n2] 0}<="" pc+pc+{imm,18="" td=""><td></td><td></td><td>s,feeb.d</td><td>2</td><td>SLIBbart.</td><td></td><td></td><td>nf] = F[n1] + Fjm</td><td></td><td>7</td></r[n2]>			s,feeb.d	2	SLIBbart.			nf] = F[n1] + Fjm		7
	58	Branch Less Than Unsigned	B[R[m1]+R[m2] PC+PC+(imm,18/0)	2)		e, fmol.d	2	MILtely			nf] = F[oi] - Fijs nf] = F[oi] * Fijs		1
100	SIL	Branch Not Equal	if[R[rs1]1+R[rs2] PC+PC+(imm,18/0)					DENNE			NI = Floi] * Pyc		
	1	Cost./Stat.RegRead&Clear	$R[nd] = CSR_{c}CSR = CSR_{c} + R[ni1]$.s,fsqrt.d		SQuert Ra	Too		ng = rpsip/ rpsi ng = spat[mi];		7
	I.	Cost/SunRegRoud&Clear	$R[rd] = CSR, CSR = CSR & \neg imm$		Emods	.w,fmadi.d		Matciply-			n]=F[o1]*F[s	21 - Flatt	-
		lenn Cont/Stat.RepRead&Set	Rfedl = CSR: CSR = CSR (Ried)		Empub			Multiply-5			NI-Fioll*Fix		
catté	1	Cost/Sut.RepRead/Cost Cost/Sut.RepRead/Cost	R[nd] = CSR; CSR = CSR innn			b.s.fmsub.d	R	Negative 2	Alleh S	Librari T	N]=-(7]a1]*F		
carrel						d.s.fmadd.d		Negative f		100 M	H[(F[al]+F]	(all) - F[mJ])	
CHEN		Cont/Stat.RepRoad& Write	R[nd] = CSR; CSR = R[rs1]			.s.fegsj.d		SIGN som		71	HI = (F[m2]-63)	Station .	
CHEN CHEN	1	Cost/Stat.Rog Read& Write	R[of] = CSR; CSR = incn			h.a.fagsjn.d	R	Negative 1	AN SHE	e 11	N] = { (F(n2)-5 n1 Ha2 0-1	ile's	
		Irun			(1933)		R	Xer SIGN	source	71	HI - (Tind)-63-	Fiather,	
elcoak		Environment BREAK	Transfer control to debugger					Millioner		P			
ecall	1	Environment CALL	Transfer control to operating system		cais.	s,fmin.d					$ \sigma = F [a1] < F[a] $ $ \sigma $	1237759411	
fesce	1	Synch thread	Synchronizes threads Synchronizes writes to instruction		fmax.	s,fmex.d	R	MAXImu		F	$ c = \langle F al > F al $	n2[17 F[st]]	
fence.1	1	Synch Instr & Date	Synchronizes writes to invitaction					Concert			oll - (Petter P		
141		Jump & Link	R[nd] = PC+4; PC = PC + {imm, 15'0}					Compare 1					
jal jalr		Jump & Link Register	Risd] = PC+4; PC = R[rs1]+imm	67			R	Compare					
jair 15		Load Bite	Rindi =	4)				Classify T			[id] = diss(F[et])		
		tree of a	(56%M[](7),M[R[rs1]+imn](7.0))								[n] - K[m]]		
250		Load Byte Unsigned	R[nd] = {\$650,M[R[rs1]+imm](7.0)}		£87.8	.s.fmr.x.d		More to I			[H] - F[m1]		
bd		Load Doubleword	R[nd] = M[R[rs1]+imm](63.0)					Convet 5			[n] = single(F(n)	D	
15	1	Load Halfword	R[rd] =	-4 >				Convert 8		CP P	[sf] - double(F[rs]	1D	
			{48bM[](15),M[8[rs1]+imm](15:0)}					Convert 8			[st] = (los(8):s1)		
1bs	1	Load Halfword Unsigned	R[ed] = (48b0,M[R[es1]+ierrn](15:0)) R[ed] = (32b5rem<31>, ierrs, 12b0)					Convert 8			(1c(8)sof) - [le]		
		Load Upper Immediate	R[rd] = (32b5mm<31>, imm, 12b0) R[rd] =	4							(*)] = (loe(3)=1)		- 2,
1×	T.	F000 4(66	R[rd] = (325MB(31),MR(rd1)timm)(31.0))	-+1				Convert II		a chaigsed?	(re(F)mod = [re)	Deved	2
242	1	Load Werd Unsigned	R[rd] = {3250,M[R[rs1]+imm](31:0)}					Converta			(14)(5)(9) = imp (14)(5)(9) = imp		
	R		Birdl = Rist11 Ris21				1	Converter	116.107	Incinent .	(which it is a second s	allall	
eri I		OR Immediate	Rindi = Rini 11 imm										
40		State Bytz	MiRin(1)+irret(7:0) - Rin(2)(7:0)			Atomic Extensi					· · · · · · · · · · · · · · · · · · ·		
50		State Doubleword	M[R[es1]+imm](63:0) = R[es2](63:0)			d.w.amoadd.d		ADD		5	Election - (no		
sh		Stare Halfword	M[R[is1]+imm](15:0) = R[is2](15:0)					AND				5/]] + 8(92)	
	R.	Shift Left (Word)	$R[rd] = R[rs1] \iff R[rs2]$	1)								(Self A () e	
		Shift Left Immediate (Word)		I)	62006	a.w.amona.s.d.	R	MAXING			[]ul] = M[R]ul] []. (Rin'l's Million	D-MPERIO - Rest	
	R	Set Less Than	R[rd] = (R[rs1] < R[rs2]) ?1:0				R	MAXIM	ra Uniden				3
	1	Set Less Than Immediate	R[rd] = (R[rs1] < imm) ? 1 : 0					MNma			r(Risci) > MiRini Peit = Mittini II	D Witch [] + R(n2)	
	L	Set < Invnediate Unsigned	R[sd] = (R[ss1] < imm) ? 1 : 0	2)							(Rad] (Mikial	[] M[R[n1]] = R[n2]	
	R	Set Less Than Unsigned	R[sd] = (R[ss1] < R[ss2]) ? 1 : 0	2)	aront	h.w.anonime.d	R		e Uragos		4(d)=M(R(n))]. (33+2) <m(r(n))< td=""><td>[] AURON] - RIAZ</td><td>-</td></m(r(n))<>	[] AURON] - RIAZ	-
		Shift Right Arithmetic (Word)		1,5)	ARCOT	.w.amoor.d	R	OR.			[k] = M[R]n1[] [R]n1[] - M[R]		
		Shift Right Arith Imm (Word)		1,5)		ар.м, аповуар.d	p	SWAP			(bd) - Mikintis	(*)][[K](*)] [[K](*)]] = R[(*)]	
		Shift Right (Word)	$\mathbb{R}[nd] = \mathbb{R}[ns1] >> \mathbb{R}[ns2]$	1)	280.000		R						
		Shift Right Immediate (Word)		1) 1)	11.11.			Load Res	hand		M[R(n1]] = M[R] R[m] = M[R]m1]		
		SUBtract (Word) Starc Word	$\mathbb{R}[nd] = \mathbb{R}[nd] = \mathbb{R}[nd]$	1>							warvation on ME	Rinij	
			M[R[m1]+imm](31:0) = R[m2](31:0)		BC.H.	sc.d	R	Store	al.			all = 1	
			$R[rd] = R[rd] \wedge R[rd2]$										
	mi	white only and the state	R[rd] = R[rs1] ^ imm ghneser 32 bits of a 64-bit regulars		COR	E INSTRUCTIC	N F	ORMA'	IS				
						31 27	26	25 24	20	19 15		11 7	6
					RÍ	funct7				rst	fanct3	rd	Opcod
					il					nd	funct3	ed	Opcod
					8	iner[11:5			152	csl	funct3	imm[4:0]	opced
		th one sperand signed and cer	e ansigned v operation using the rightmost 32 hits	date.	SB	imm(1210;			102	rsl	funct3	imn[4:1[11]	opcod
					U	andraine		int				rd	opcod
& Claug denore			ch properties are true (e.g., -inf0,+0	+ togt	U U		1×					rd	opeoo

RISC-V Green Card


Assembly Variables: Registers

- Unlike HLL like C or Java, assembly cannot use variables
 - Why not? Keep Hardware Simple
- Assembly Operands are <u>registers</u>
 - Limited number of special locations built directly into the hardware
 - Operations can only be performed on these!
- Benefit: Since registers are directly in hardware, they are very fast (faster than 1 ns - light travels 30cm in 1 ns!!!)

Registers, inside the Processor

Great Idea #3: Principle of Locality / Memory Hierarchy

Live Lecture Instruction: Put an * in front of your name <u>NOW!</u> e.g. *_32_ChenHao

Number of Registers

- Drawback: Since registers are in hardware, there is a predetermined number of them
 - Solution: Assembly code must be very carefully put together to efficiently use registers
- 32 registers in RISC-V
 - Why 32? Smaller is faster, but too small is bad.
- Each RISC-V register is 32 bits wide (in RV32 variant)
 - Groups of 32 bits called a word in RV32
 - P&H textbook uses 64-bit variant RV64 (doubleword)

RISC-V Registers

- Registers are numbered from 0 to 31
- Number references:
 x0, x1, x2, ... x30, x31
- x0 : special: always holds value zero
 => only 31 registers to hold variable values
- Each register can be referred to by number or name
 - Cover names later

C, Java variables vs. registers

- In C (and most High Level Languages) variables declared first and given a type
 - Example: int fahr, celsius; char a, b, c, d, e;
- Each variable can ONLY represent a value of the type it was declared as (cannot mix and match *int* and *char* variables).
- In Assembly Language, registers have no type; operation determines how register contents are treated

Assembly Instructions

- In assembly language, each statement (called an <u>Instruction</u>), executes exactly one of a short list of simple commands
- Unlike in C (and most other High Level Languages), each line of assembly code contains at most 1 instruction
- Instructions are related to operations
 (=, +, -, *, /) in C or Java

Comments in Assembly

- Another way to make your code more readable: comments!
- Hash (#) is used for RISC-V comments
 - anything from hash mark to end of line is a comment and will be ignored
 - This is just like the C99 //
- Note: Different from C.
 - C comments have format /* comment */ so they can span many lines

RISC-V Addition and Subtraction (1/4)

- Syntax of Instructions:
 - One two, three, four add x1, x2, x3 where:
 - One = operation by name
 - two = operand getting result ("destination")
 - three = 1st operand for operation ("source1")
 - four = 2nd operand for operation ("source2")
- Syntax is rigid:
 - 1 operator, 3 operands
 - Why? Keep Hardware simple via regularity

Addition and Subtraction of Integers (2/4)

- Addition in Assembly
 - Example: add x1, x2, x3 (in RISC-V)
 - Equivalent to: a = b + c (in C)

- where C variables \Leftrightarrow RISC-V registers are:

 $a \Leftrightarrow x1, b \Leftrightarrow x2, c \Leftrightarrow x3$

- Subtraction in Assembly
 Example: sub x3, x4, x5 (in RISC-V)
 - Equivalent to: d = e f (in C)
 - where C variables \Leftrightarrow RISC-V registers are:

 $d \Leftrightarrow x3, e \Leftrightarrow x4, f \Leftrightarrow x5$

Addition and Subtraction of Integers (3/4)

- How to do the following C statement?
 a = b + c + d e;
- Break into multiple instructions
 add x10, x1, x2 # a_temp = b + c
 add x10, x10, x3 # a_temp = a_temp + d
 sub x10, x10, x4 # a = a temp e
- Notice: A single line of C may break up into several lines of RISC-V.
- Notice: Everything after the hash mark on each line is ignored (comments).

Addition and Subtraction of Integers (4/4)

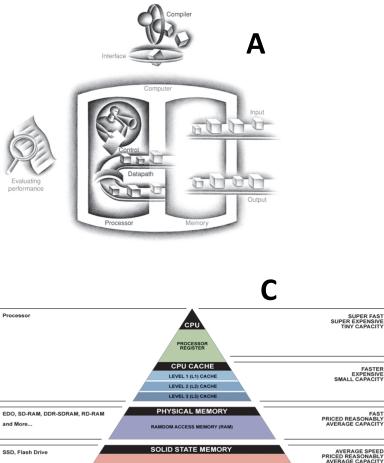
• How do we do this?

f = (g + h) - (i + j);

Use intermediate temporary register add x5, x20, x21 # a_temp = g + h add x6, x22, x23 # b_temp = i + j sub x19, x5, x6 # f = (g + h) - (i + j)

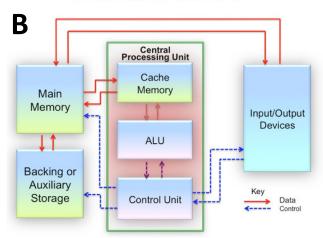
Q & A

Quiz



Piazza: "Online Lecture 3 Quiz"

FASTER


SLOW CHEAP LARGE CAPACTITY

Quiz

NON-VOLATILE FLASH-BASED MEMORY VIRTUAL MEMORY

FILE-BASED MEMORY

Overview of the CPU

performance

Mechanical Hard Drives

CS 110 Computer Architecture

Lecture 4: Intro to Assembly Language, RISC-V Intro

Video 2: Memory Operations

Instructors: Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C

Immediates

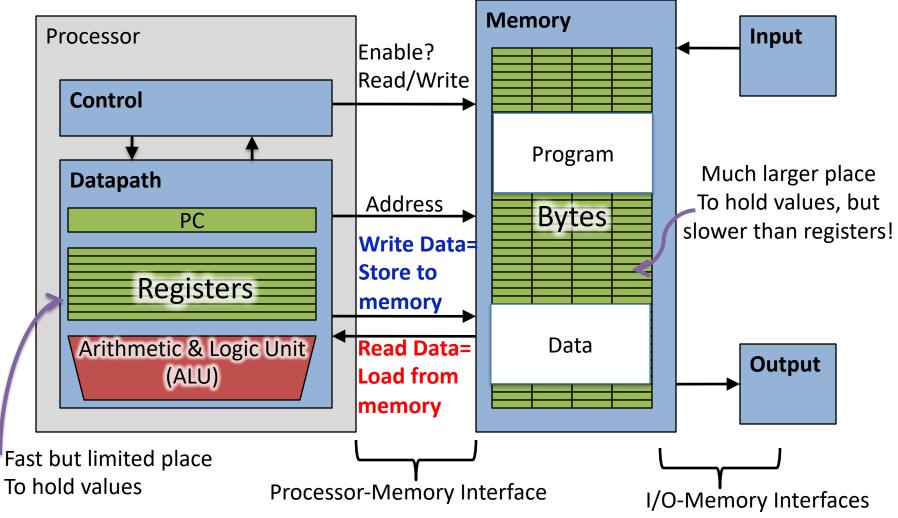
- Immediates are numerical constants.
- They appear often in code, so there are special instructions for them.
- Add Immediate:
 - addi x3, x4, 10 (in RISC-V)
 - f = g + 10 (in C)
 - where RISC-V registers x3,x4 are associated with C variables f, g
- Syntax similar to add instruction, except that last argument is a number instead of a register.

Immediates

- There is no Subtract Immediate in RISC-V: Why? —There are add and sub, but no addi counterpart
- Limit types of operations that can be done to absolute minimum
 - if an operation can be decomposed into a simpler operation, don't include it
 - addi ..., -X = subi ..., X => so no subi

addi $x_{3}, x_{4}, -10$ (in RISC-V) f = g - 10 (in C)

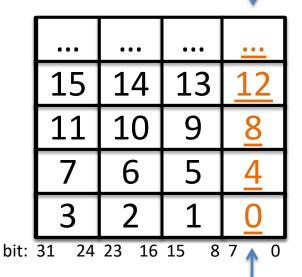
where RISC-V registers x3, x4 are associated with C variables f, g


Register Zero

- One particular immediate, the number zero (0), appears very often in code.
- So the register zero (x0) is 'hard-wired' to value 0; e.g.
 - add x3, x4, x0 (in RISC-V)
 - f = g (in C)
 - where RISC-V registers x3,x4 are associated with C variables f, g
- Defined in hardware, so an instruction
 - add x0,x3,x4 will not do anything!

No-Op

- A No-op is an instruction that does nothing...
 - Why?
 You may need to replace code later: No-ops can fill space, align data, and perform other options
- By *convention* RISC-V has a specific no-op instruction...
 - add x0 x0 x0
- Why?
 - Writes to x0 are always ignored...
 RISC-V uses that a lot as we will see in the jump-and-link operations
 - Making a "standard" no-op improves the disassembler and can potentially improve the processor


Data Transfer: Load from and Store to memory

Memory Addresses are in Bytes

- Lots of data is smaller than 32 bits, but rarely smaller than 8 bits – works fine if everything is a multiple of 8 bits
 Little Endian: Start with the
- 8 bit chunk is called a *byte* (1 word = 4 bytes)
- Memory addresses are really in *bytes*, not words
- Word addresses are 4 bytes apart
 - Word address is same as address of lowest byte

Little Endian: Start with the small end (little end; Least significant byte of the word)

Big Endian: Start with the big end (Most significant₃byte)

en.wikipedia.org/wiki/Big_endian

Big Endian vs. Little Endian

Big-endian and little-endian from Jonathan Swift's Gulliver's Travels

- The order in which <u>BYTES</u> are stored in memory
- Bits always stored as usual. (E.g., 0xC2=0b 1100 0010)

Consider the number 1025 as we normally write it:

 BYTE3
 BYTE2
 BYTE1
 BYTE0

 00000000
 00000000
 00000000
 00000000

Big Endian

ADDR3 ADDR2 ADDR1 ADDR0 BYTE0 BYTE1 BYTE2 BYTE3 00000001 00000100 00000000 00000000

Examples

Names in China (e.g., Schwertfeger, Sören) Java Packages: (e.g., org.mypackage.HelloWorld) Dates done correctly ISO 8601 YYYY-MM-DD (e.g., 2020-03-22) Eating Pizza crust first Unix file structure (e.g., /usr/local/bin/python) "Network Byte Order": most network protocols

IBM z/Architecture; very old Macs

Little Endian

 ADDR3
 ADDR2
 ADDR1
 ADDR0

 BYTE3
 BYTE2
 BYTE1
 BYTE0

 00000000
 00000000
 00000000
 00000001

Examples

Names in the west (e.g., Sören Schwertfeger)

Internet names (e.g., sist.shanghaitech.edu.cn)

Dates written in England DD/MM/YYYY (e.g., 22/03/2020)

Eating Pizza skinny part first (the normal way)

CANopen Intel x86; RISC-V

bi-endian: ARM (runs mostly little endian), MIPS, IA-64, PowerPC

Example

Memory

Addr. dec	Addr. hex	8-bit Value	
	•••	•••	
15	0x0F	0x77	
14	0x0E	0x66	
13	0x0D	0x55	
12	0x0C	0x44	
11	0x0B	0x33	
10	0x0A	0x22	
9	0x09	0x11	
8	0x08	0x00	
7	0x07	0xEF	
6	0x06	0xCD	
5	0x05	0xAB	
4	0x04	0x89	
3	0x03	0x67	
2	0x02	0x45	
1	0x01	0x23	
0	0x00	0x01	

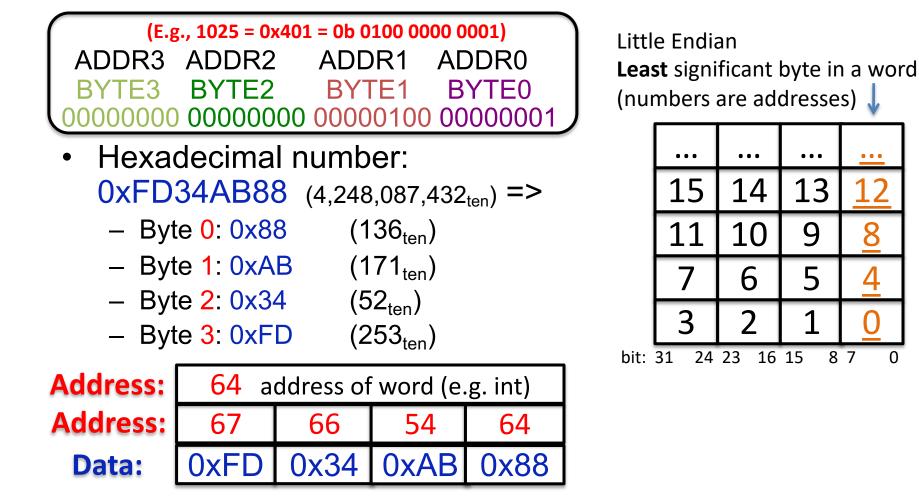
Addresses (hex):

Little Endian

		address						
Word	at	address	0x08:	0x	33	22	11	00
Word	at	address	0x04:	0x	EF	CD	AB	89
Word	at	address	0x00:	0x	67	45	23	01

			:
F	Е	D	<u>C</u>
В	A	9	<u>8</u>
7	6	5	4
3	2	1	<u>0</u>
			•••
77	66	55	44
33	22	11	00
EF	CD	AB	89
67	45	23	01

Addresses (hex):


<u>C</u>	D	Е	F
<u>8</u>	9	A	В
<u>4</u>	5	6	7
<u>0</u>	1	2	3

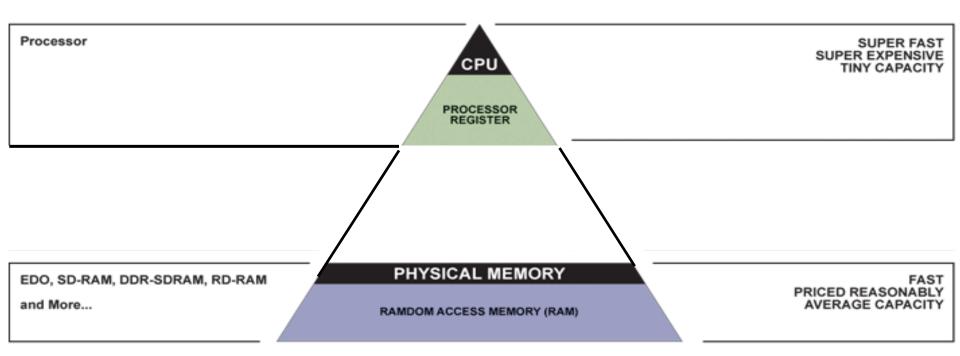
Big Endian

Word	at	address	0x0C:	0x	44	55	66	77
Word	at	address	0x08:	0x	00	11	22	33
Word	at	address	0x04:	0x	89	AB	CD	EF
Word	at	address	0x00:	0x	01	23	45	67

44	55	66	77
00	11	22	33
89	AB	CD	EF
01	23	45	67

RISC-V: Little Endian

- Little Endian: Starts with the little end of a word:
 - It starts with the smallest (least significant) Byte


...

8

4

0

Great Idea #3: Principle of Locality / Memory Hierarchy

Speed of Registers vs. Memory

- Given that
 - Registers: 32 words (128 Bytes)
 - Memory: Billions of bytes (2 GB to 16 GB on laptop)
- and the RISC principle is...
 - Smaller is faster
- How much faster are registers than memory??
- About 100-500 times faster!

- in terms of *latency* of one access

Load from Memory to Register

- C code
 - int A[100]; /* A => x15 */
 g = h + A[3]; /* h => x13 */

Using Load Word (1w) in RISC-V:
 1w x10,12(x15) # Reg x10 gets A[3]
 add x11,x13,x10 # g = h + A[3]

Note: x15 – base register (pointer to A[0]) 12 – offset in <u>bytes</u> Offset must be a constant known at assembly time

Store from Register to Memory

• C code

int A[100]; /* A => x15 */ A[10] = h + A[4]; /* h => x13 */

- Using Store Word (sw) in RISC-V:

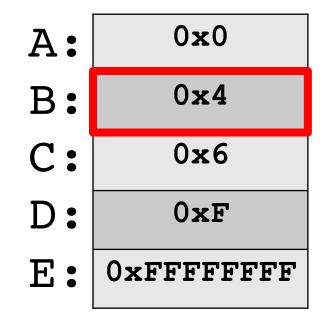
 1w x10,12(x15) # Temp reg x10 gets A[3]
 add x10,x13,x10 # Temp reg x10 gets h + A[3]
 sw x10,40(x15) # A[10] = h + A[3]

 Data flow
- Note:
 - x15 base register (pointer) 12,40 – offsets in <u>bytes</u>

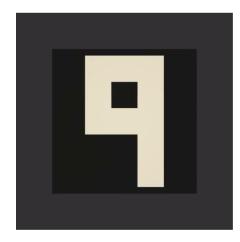
Memory Alignment

- RISC-V does not *require* that integers be word aligned...
 - But it is very **very bad** if you don't make sure they are...
- Consequences of unaligned integers
 - Slowdown: The processor is allowed to be a lot slower when it happens
 - In fact, a RISC-V processor may natively only support aligned accesses, and do unaligned-access in *software*! An unaligned load could take *hundreds of times longer*!
 - Lack of atomicity: The whole thing doesn't happen at once... can introduce lots of very subtle bugs
- So in *practice*, RISC-V requires integers to be aligned on 4- byte boundaries

Loading and Storing Bytes


- In addition to word data transfers (**1w**, **sw**), RISC-V has byte data transfers: RISC-V also has "unsigned – load byte: 1b byte" loads (1bu) which <u>zero</u> - store byte: **sb** extends to fill register. Why
- Same format as lw, sw
- E.g., 1b x10,3(x11)
- no unsigned store byte sbu? - contents of memory location with address = sum of "3" + contents of register x11 is copied to the low byte position of register x10.

Question! What's in x12?


addi x11,x0,0x4F6 sw x11,0(x5) lb x12,1(x5)

Question! What's in x12?

- addi x11,x0,0x85BCF6
- sw x11,0(x5)
- lb x12,2(x5)

A:	0x8
B:	0x85
C :	0xC
D :	0xBC
E :	OXFFFFFF8
F :	0XFFFFFF85
G:	0XFFFFFFC
H :	OXFFFFFFBC

Question! Which of the following is TRUE?

- -A: add x10, x11, 4(x12) is valid in RV32
- B: can byte address 8GB of memory with an RV32 word
- C: imm must be multiple of 4 for lw x10, imm(x10)
 to be valid

D: None of the above

"And in Conclusion..."

- In RISC-V Assembly Language:

 Registers replace C variables
 One instruction (simple operation) per line
 Simpler is Better, Smaller is Faster
- In RV32, words are 32b
- RISC-V is Little Endian
- Instructions: add, addi, sub, lw, sw, lb, lbu, sw
- Registers:
 - 32 registers, referred to as x0 x31
 - Zero: x0

Question:

Piazza: "Lecture 4 RISC-V poll"

We want to translate *x = *y + 1 into RISC-V (x, y int pointers stored in: x10 x11)

- A: addi x10,x11,1
- B: $\lim_{sw} \frac{x10,1(x11)}{x11,0(x10)}$
- C: lw x13,0(x11) addi x13,x13,1 sw x13,0(x10)
- D: sw x13, 0(x11)addi x13, x13, 1lw x13, 0(x10)E: lw x10, 1(x13)sw x11, 0(x13)