
CS 110
Computer Architecture

Lecture 5:
More RISC-V, RISC-V Functions

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Last lecture
• In RISC-V Assembly Language:
– Registers replace C variables
– One instruction (simple operation) per line
– Simpler is Better, Smaller is Faster

• In RV32, words are 32bit
• Instructions:

add, addi, sub, lw, sw, lb
• Registers:

– 32 registers, referred to as x0 – x31
– Zero: x0

2

RISC-V Logical Instructions

Logical
operations

C
operators

Java
operators

RISC-V
instructions

Bit-by-bit AND & & and
Bit-by-bit OR | | or
Bit-by-bit XOR ^ ^ xor
Bit-by-bit NOT ~ ~ xori
Shift left << << sll
Shift right >> >> srl 3

• Useful to operate on fields of bits within a word
− e.g., characters within a word (8 bits)

• Operations to pack /unpack bits into words
• Called logical operations

RISC-V Logical Instructions

• Always two variants
– Register: and x5, x6, x7 # x5 = x6 & x7
– Immediate: andi x5, x6, 3 # x5 = x6 & 3

• Used for ‘masks’

– andi with 0000 00FFhex isolates the least significant byte
– andi with FF00 0000hex isolates the most significant byte

– andi with 0000 0008hex isolates the 4th bit (0000 1000two)

Your Turn. What is in x11?

xor x11, x10, x10
ori x11, x11, 0xFF
andi x11, x11, 0xF0

0x0

0xF

0xF0

0xFF00

0xFFFFFFFF

A:
B:
C:
D:
E:

Your Turn. What is in x11?

xor x11, x10, x10
ori x11, x11, 0xFF
andi x11, x11, 0xF0

0x0

0xF

0xF0

0xFF00

0xFFFFFFFF

A:
B:
C:
D:
E:

Logic Shifting
• Shift Left: slli x11,x12,2 #x11=x12<<2

– Store in x11 the value from x12 shifted 2 bits to the left
(they fall off end), inserting 0’s on right; << in C.
Before: 0000 0002hex

0000 0000 0000 0000 0000 0000 0000 0010two

After: 0000 0008hex

0000 0000 0000 0000 0000 0000 0000 1000two

What arithmetic effect does shift left have?
multiply with 2n

• All shift instructions: register and immediate variant!
• Shift Right: srl is opposite shift; >>

6

Arithmetic Shifting
• Shift right arithmetic moves n bits to the right

(insert high order sign bit into empty bits)
• For example, if register x10 contained

1111 1111 1111 1111 1111 1111 1110 0111two= -25ten

• If executed srai x10, x10, 4, result is:
1111 1111 1111 1111 1111 1111 1111 1110two= -2ten

• Unfortunately, this is NOT same as dividing by 2n

− Fails for odd negative numbers
− C arithmetic semantics is that division should round towards 0

7

Your Turn. What is in x12?

addi x10, x0, 0x7FF
slli x12, x10, 0x10
srli x12, x12, 0x08
and x12, x12, x10

0x0

0x700

0x7F0

0xFF00

0x7FF

A:
B:
C:
D:
E:

Helpful RISC-V Assembler Features

• Symbolic register names
– E.g., a0-a7 for argument registers (x10-x17)
– E.g., zero for x0
– E.g., t0-t6 (temporary) s0-s11 (saved)

• Pseudo-instructions
– Shorthand syntax for common assembly idioms
– E.g., mv rd, rs = addi rd, rs, 0
– E.g., li rd, 13 = addi rd, x0, 13

Computer Decision Making

• Based on computation, do something different
• Normal operation: execute instructions in sequence
• In programming languages: if-statement

• RISC-V: if-statement instruction is
beq register1, register2, L1

means: go to statement labeled L1
if (value in register1) == (value in register2)
….otherwise, go to next statement

• beq stands for branch if equal
• Other instruction: bne for branch if not equal 10

bne flowchart

11

bne
• Branch if not equal
• bne reg1, reg2, label

• Jump if condition is true
• Condition false:
– continue with next

instruction

• If label is after bne:
– Conditional case will reach

label (if no other jump)

Condition
reg1 != reg2

If condition
is false

(reg1 == reg2)

If condition
is true

(reg1 != reg2)

Conditional
Case

label:

Types of Branches
• Branch – change of control flow

• Conditional Branch – change control flow
depending on outcome of comparison
– branch if equal (beq) or branch if not equal (bne)
– Also branch if less than (blt) and branch if greater

than or equal (bge)

• Unconditional Branch – always branch
– a RISC-V instruction for this: jump (j), as in j label

12

Label
• Holds the address of data or instructions
– Think: ”constant pointer”
– Will be replaced by the actual address (number)

during assembly (or linking)

• Also available
in C for ”goto”:

• NEVER use
goto !!!!
Very bad
programming
style! 13

14

Label

Example if Statement
• Assuming translations below, compile if block

f → x10 g → x11 h → x12
i → x13 j → x14

if (i == j) bne x13,x14,Exit
f = g + h; add x10,x11,x12

Exit:
• May need to negate branch condition

15

Example if-else Statement

• Assuming translations below, compile
f → x10 g → x11 h → x12
i → x13 j → x14

if (i == j) bne x13,x14,Else
f = g + h; add x10,x11,x12

else j Exit
f = g – h; Else: sub x10,x11,x12

Exit: 16

Magnitude Compares in RISC-V

• Until now, we’ve only tested equalities (== and != in C);
General programs need to test < and > as well.

• RISC-V magnitude-compare branches:

• “Branch on Less Than”

Syntax: blt reg1, reg2, label
Meaning: if (reg1 < reg2) // treat registers as signed integers

goto label;

• “Branch on Less Than Unsigned”

Syntax: bltu reg1, reg2, label
Meaning: if (reg1 < reg2) // treat registers as unsigned integers

goto label;
17

Magnitude Compares in RISC-V

• “Branch on Greater or Equal ”
Syntax: bge reg1, reg2, label
Meaning: if (reg1 >= reg2) // treat registers as signed integers

goto label;

• “Branch on Greater or Equal Unsigned”
Syntax: bgeu reg1, reg2, label
Meaning: if (reg1 >= reg2) // treat registers as unsigned integers

goto label;
• Conditional Branch instructions:

– beq, bne: Branch if equal/ Branch if not equal
– blt, bltu: Branch on less than/ unsigned
– bge, bgeu: Branch on greater or equal/ unsigned

18

C Loop Mapped to RISC-V Assembly
int A[20];
int sum = 0;
for (int i=0; i < 20; i++)

sum += A[i];

Assume x8 holds pointer to A
Assign x10=sum
add x9, x8, x0 # x9=&A[0]
add x10, x0, x0 # sum=0
add x11, x0, x0 # i=0
addi x13,x0, 20 # x13=20

Loop:
bge x11,x13,Done
lw x12, 0(x9) # x12=A[i]
add x10,x10,x12 # sum+=
addi x9, x9,4 # &A[i+1]
addi x11,x11,1 # i++
j Loop

Done:
19

Optimization
• The simple translation is

suboptimal!
– A more efficient way:

• Inner loop is now 4
instructions rather than 7
– And only 1 branch/jump

rather than two: Because
first time through is
always true so can move
check to the end!

• The compiler will often do
this automatically for
optimization
– See that i is only used as

an index in a loop

Assume x8 holds pointer to A
Assign x10=sum
add x10, x0, x0 # sum=0
add x11, x8, x0 # ptr = A
addi x12,x11, 80 # end = A + 80
Loop:

lw x13,0(x11) # x13 = *ptr
add x10,x10, x13 # sum += x13
addi x11,x11, 4 # ptr++

blt x11, x12, Loop: # ptr < end

20

Premature Optimization...

• In general we want correct translations of C to
RISC-V

• It is not necessary to optimize
– Just translate each C statement on its own

• Why?
– Correctness first, performance second

• Getting the wrong answer fast is not what we want from
you...

– We're going to need to read your assembly to grade
it!
• Multiple ways to optimize, but the straightforward

translation is mostly unique-ish.

21

Question
• What value does x12 have at the end?
• Answer:

x12 = 16

22

addi x10, x0 , 0x07
add x12, x0 , x0

label_a:
andi x14, x10, 1
beq x14, x0 , label_b
add x12, x10, x12

label_b:
addi x10, x10, -1
bne x10, x0 , label_a

TA Discussion

Cheng Yu

23

Q & A

24

Quiz

25

Quiz
• DOWNLOAD to disk!
• Then edit with proper PDF reader!
• https://robotics.shanghaitech.edu.cn/courses/ca/20s

/notes/CA_Lecture_4_Quiz.pdf

• Submit to gradescope:
• https://www.gradescope.com/courses/77872
• Only if you have problems with gradescope, send the

PDF to:
Head TA Yanjie Song <songyj at shanghaitech.edu.cn>

26

https://robotics.shanghaitech.edu.cn/courses/ca/20s/notes/CA_Lecture_4_Quiz.pdf
https://www.gradescope.com/courses/77872

CS 110
Computer Architecture

Lecture 5:
More RISC-V, RISC-V Functions
Video 2: Procedures in RISC-V

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

27
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

How Program is Stored

28

Memory

Bytes

Program

Data

One RISC-V Instruction = 32 bits

Assembler to Machine Code
(more later in course)

29

foo.S bar.S

Assembler Assembler

foo.o bar.o

Linker lib.o

a.out

Assembler source files (text)

Machine code object files

Pre-built object
file libraries

Machine code executable file

Assembler converts human-
readable assembly code to
instruction bit patterns

Processor

Control

Datapath

Executing a Program

30

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory

BytesInstruction
Address

Read
Instruction
Bits

Program

Data

• The PC (program counter) is internal register inside processor holding byte
address of next instruction to be executed.

• Instruction is fetched from memory, then control unit executes instruction
using datapath and memory system, and updates program counter (default is
add +4 bytes to PC, to move to next sequential instruction)

C Functions
main() {

int i,j,k,m;
...
i = mult(j,k); ...
m = mult(i,i); ...

}

/* really dumb mult function */
int mult (int mcand, int mlier){

int product = 0;
while (mlier > 0) {
product = product + mcand;
mlier = mlier -1;

}
return product;

}

What information must
compiler/programmer

keep track of?

What instructions can
accomplish this?

Six Fundamental Steps in
Calling a Function

1. Put parameters in a place where function can
access them

2. Transfer control to function
3. Acquire (local) storage resources needed for

function
4. Perform desired task of the function
5. Put result value in a place where calling code

can access it and restore any registers you used
6. Return control to point of origin, since a function

can be called from several points in a program
32

RISC-V Function Call Conventions
• Registers faster than memory, so use them

• Give names to registers, conventions on how to use them

• a0–a7 (x10-x17): eight argument registers to pass
parameters and return values (a0-a1)

• ra: one return address register to return to the point of
origin (x1)

• Also s0-s1 (x8-x9) and s2-s11 (x18-x27):
saved registers (more about those later)

33

Instruction Support for Functions (1/4)

... sum(a,b);... /* a, b: s0, s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000
1004
1008
1012
1016
…
2000
2004

C

In RV32, instructions are 4
bytes, and stored in memory
just like data. So here we show
the addresses of where the
programs are stored.

34

RI
SC
-V

Instruction Support for Functions (2/4)

... sum(a,b);... /* a, b: s0, s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000 add a0, s0, x0 # x = a
1004 mv a1, s1 # y = b
1008 addi ra, zero, 1016 # ra=1016
1012 j sum # jump to sum
1016 … # next instruction
…
2000 sum: add a0, a0, a1
2004 jr ra # new instr. “jump register”

C

35

RI
SC
-V

Instruction Support for Functions (3/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}

2000 sum: add a0, a0, a1
2004 jr ra # new instr. “jump register”

• Question: Why use jr here? Why not use j?

• Answer: sum might be called by many places, so we can’t
return to a fixed place. The calling proc to sum must be able
to say “return here” somehow.

C

36

RI
SC
-V

Instruction Support for Functions (4/4)
• Single instruction to jump and save return address:

jump and link (jal)
• Before:

1008 addi ra, zero, 1016 # $ra=1016
1012 j sum # goto sum

• After:
1008 jal sum # ra=1012, goto sum

• Why have a jal?
– Make the common case fast: function calls very common.
– Reduce program size
– Don’t have to know where code is in memory with jal!

37

Unconditional Branches

• Only two actual instructions

– jal rd offset
– jalr rd rs offset

• Jump And Link

– Add the immediate value to the current address in the program (the

“Program Counter”), go to that location

• The offset is 20 bits, sign extended and left-shifted one (not two)
– At the same time, store into rd the value of PC+4

• So we know where it came from (need to return to)

– jal offset == jal x1 offset (pseudo-instruction; x1 = ra = return address)

– j offset == jal x0 offset (yes, jump is a pseudo-instruction in RISC-V)

• Two uses:

– Unconditional jumps in loops and the like

– Calling other functions 38

Jump and Link Register

• The same except the destination

– Instead of PC + immediate it is rs + immediate

• Same immediate format as I-type: 12 bits, sign extended

• Again, if you don’t want to record where you

jump to…

– jr rs == jalr x0 rs
• Two main uses

– Returning from functions (which were called using

Jump and Link)

– Calling pointers to function

– We will see how soon!

39

Notes on Functions
• Calling program (caller) puts parameters into

registers a0-a7 and uses jal X to invoke
(callee) at address labeled X

• Must have register in computer with address of
currently executing instruction
– Instead of Instruction Address Register (better name),

historically called Program Counter (PC)
– It’s a program’s counter; it doesn’t count programs!

• What value does jal X place into ra? ????
• jr ra puts address inside ra back into PC

40

Where Are Old Register Values Saved
to Restore Them After Function Call?
• Need a place to save old values before call

function, restore them when return, and delete
• Ideal is stack: last-in-first-out queue

(e.g., stack of plates)
– Push: placing data onto stack
– Pop: removing data from stack

• Stack in memory, so need register to point to it
• sp is the stack pointer in RISC-V (x2)
• Convention is grow from high to low addresses
– Push decrements sp, Pop increments sp

41

Stack

• Stack frame includes:
• Return “instruction” address
• Parameters
• Space for other local variables

• Stack frames contiguous
blocks of memory; stack pointer tells where
bottom of stack frame is

• When procedure ends, stack frame is tossed off
the stack; frees memory for future stack frames

frame

frame

frame

frame

$sp

0xBFFFFFF0

Example
int Leaf
(int g, int h, int i, int j)

{
int f;
f = (g + h) – (i + j);
return f;

}
• Parameter variables g, h, i, and j in argument

registers a0, a1, a2, and a3, and f in s0
• Assume need one temporary register s1

43

Stack Before, During, After Function

• Need to save old values of s0 and s1

sp

Before call

sp
Saved s1

During call

Saved s0

sp

After call

Saved s1
Saved s0

RISC-V Code for Leaf()

45

Leaf:
addi sp, sp, -8 # adjust stack for 2 items
sw s1, 4(sp) # save s1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0, a0, a1 # f = g + h
add s1, a2, a3 # s1 = i + j
sub a0, s0, s1 # return value (g + h) – (i + j)

lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi sp, sp, 8 # adjust stack to delete 2 items
jr ra # jump back to calling routine

46

Question:
We want to translate C: *x = *(y+1) into RISC-V
x, y are int ptrs stored in: x3 x5

1: addi x3, x5, 1
2: addi x5, x3, 1
3: sw x3, 0(x5)
4: sw x5, 1(x3)
5: sw x3, 1(x5)
6: sw x3, 4(x5)
7: sw x5, 4(x3)
8: sw x8, 0(x3)
9: sw x3, 0(x8)
10: lw x3, 1(x5)
11: lw x8, 1(x5)
12: lw x5, 1(x8)
13: lw x3, 4(x5)
14: lw x8, 4(x5)
15: lw x5, 4(x8)

1
2
3
4
5
6
10
13
10®7
11®8
11®9
12®3
13®3
14®8
14®9
15®9

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

Piazza: “Lecture 5 Memory poll”

CS 110
Computer Architecture

Lecture 5:
More RISC-V, RISC-V Functions

Video 3: Nested Functions
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

47
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Nested Procedures (1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}
• Something called sumSquare, now
sumSquare is calling mult

• So there’s a value in ra that sumSquare
wants to jump back to, but this will be
overwritten by the call to mult

48

Need to save sumSquare return address
before call to mult

Nested Procedures (2/2)

• In general, may need to save some other info in
addition to ra.

• When a C program is run, there are 3 important
memory areas allocated:
– Static: Variables declared once per program, cease to

exist only after execution completes - e.g., C globals
– Heap: Variables declared dynamically via malloc
– Stack: Space to be used by procedure during

execution; this is where we can save register values

49

The "ABI" Conventions &
Mnemonic Registers

• The "Application Binary Interface" defines our 'calling
convention’
– How to call other functions

• A critical portion is "what do registers mean by
convention”
– We have 32 registers, but how are they used

• Who is responsible for saving registers?
– ABI defines a contract: When you call another function,

that function promises not to overwrite certain registers
• We also have more convenient names based on this
– So going forward, no more x3, x6... type notation

50

Register Conventions (1/2)

• CalleR: the calling function
• CalleE: the function being called
• When callee returns from executing, the caller

needs to know which registers may have changed
and which are guaranteed to be unchanged.

• Register Conventions: A set of generally accepted
rules as to which registers will be unchanged
after a procedure call (jal) and which may be
changed.

Register Conventions (2/2)

To reduce expensive loads and stores from spilling
and restoring registers, RISC-V function-calling
convention divides registers into two categories:

1. Preserved across function call
– Caller can rely on values being unchanged
– sp, gp, tp, “saved registers” s0- s11 (s0 is also fp)

2. Not preserved across function call
– Caller cannot rely on values being unchanged
– Argument/return registers a0-a7,ra,

“temporary registers” t0-t6

RISC-V Symbolic Register Names
Numbers: hardware understands

Human-friendly symbolic names in assembly code

RISC-V Green Card

54

Question

• Which statement is FALSE?

55

B: jal saves PC+1 in ra

C: The callee can use temporary registers
(ti) without saving and restoring them

D: The caller can rely on save registers (si)
without fear of callee changing them

A: RISC-V uses jal to invoke a function and
jr to return from a function

Leaf() from last video:

56

Leaf:
addi sp, sp, -8 # adjust stack for 2 items
sw s1, 4(sp) # save s1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0, a0, a1 # f = g + h
add s1, a2, a3 # s1 = i + j
sub a0, s0, s1 # return value (g + h) – (i + j)

lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi sp, sp, 8 # adjust stack to delete 2 items
jr ra # jump back to calling routine

We could have optimized…

• We could have just as easily used t0 and t1
instead…

57

Leaf:
add t0, a0, a1 # t0 = g + h
add t1, a2, a3 # t1 = i + j
sub a0, t0, t1 # return value (g + h) – (i + j)
ret # short for jalr x0 ra

Allocating Space on Stack

• C has two storage classes: automatic and static
– Automatic variables are local to function and

discarded when function exits
– Static variables exist across exits from and entries to

procedures
• Use stack for automatic (local) variables that

don’t fit in registers
• Procedure frame or activation record: segment

of stack with saved registers and local variables

58

Stack Before, During, After Function

sp

Before call
sp

During call

Saved argument
registers (if any)

Saved return
address (if needed)

Saved saved
registers (if any)

Local variables
(if any)

sp

After call

Using the Stack (1/2)

• We have a register sp which always points to
the last used space in the stack.

• To use stack, we decrement this pointer by the
amount of space we need and then fill it with
info.

• So, how do we compile this?
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

60

Using the Stack (2/2)

sumSquare:
addi sp, sp, -8 # space on stack
sw ra, 4(sp) # save ret addr
sw a1, 0(sp) # save y
mv a1, a0 # mult(x,x)
jal mult # call mult
lw a1, 0(sp) # restore y
add a0, a0, a1 # mult()+y
lw ra, 4(sp) # get ret addr
addi sp, sp, 8 # restore stack
jr ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

Basic Structure of a Function

entry_label:
addi sp,sp, -framesize
sw ra, framesize-4(sp) # save ra
save other regs if need be

...

restore other regs if need be
lw ra, framesize-4(sp) # restore $ra
addi sp, sp, framesize
jr ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

62

A Richer Translation Example

63

What is needed?
• We’ll need to save ra
– Because we are calling other function

• We’ll need a local variable for c
– Because we are calling other functions
– Lets put this in s0

• We’ll need a local variable for n
– Lets put this in s1

• So lets form the “preamble” and “postamble”
– What we always do on entering and leaving the

function

64

65

Body of function …

Again, we skipped a lot of

optimization…

• On the leaf node (c < 0) we didn’t need to save ra
(or even s0 & s1 since we don't need to use
them)

• We could get away with only one saved register..
– Save c into s0
– call malloc
– save c into n[0]

– calc c-1

– save n in s0

– recursive call

• But again, we don’t needlessly optimize…

66

Where is the Stack in Memory?

• RV32 convention (RV64 and RV128 have different memory layouts)

• Stack starts in high memory and grows down

– Hexadecimal: bfff_fff0hex

– Stack must be aligned on 16-byte boundary (not true in examples

above)

• RV32 programs (text segment) in low end

– 0001_0000hex

• static data segment (constants and other static variables) above

text for static variables

– RISC-V convention global pointer (gp) points to static

– RV32 gp = 1000_0000hex

• Heap above static for data structures that grow and shrink ; grows

up to high addresses

RV32 Memory Allocation

�And in Conclusion…�
• Registers we know so far (Almost all of them!)

– a0-a7 for function arguments, a0-a1 for return values

– sp, stack pointer, ra return address

– s0-s11 saved registers

– t0-t6 temporaries

– zero

• Instructions we know:
– Arithmetic: add, addi, sub

– Logical: sll, srl, sla, slli, srli, slai, and, or, xor, andi, ori, xori

– Decision: beq, bne, blt, bge

– Unconditional branches (jumps): j, jr

– Functions called with jal, return with jr ra.

• The stack is your friend: Use it to save anything you need.
Just leave it the way you found it!

