
CS 110
Computer Architecture

Lecture 6:
RISC-V Instruction Formats

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Admin

• Add/ drop is over =>
– Participation will be checked more rigorous now!

• Midterm I will be canceled.

• Adjustment of grading scaling
– Still might change in the future!

2

Course Grading
• Projects: 30% (-3%)
• Homework: 15% (-2%)
• Lab: 5%
• Exams: 30%
– Midterm 1: 10% ? (-10%)
– Midterm 2: 10%
– Final: 20%

• Participation: 10% (+5%)
• Quizzes: 10% (+10%)

3

Participation

• Participation: 10%
– Maybe each item 2%:
– Video Lecture Poll Participation
– Online Lecture Participation (join zoom lecture)
– Online Lecture Quiz Participation
– Lab, Homework, Project Attendance
– Piazza statistics:

4

Quiz

• Quizzes: 10%
– Video Lecture piazza polls (maybe 3%)
– Online Lecture Quizzes (maybe 7%)

• Online Lecture Quizzes Grading:
– Graded generously
– Test of paying attention & understanding basic

concepts
– Submitting (almost) empty solution 15 minutes

before deadline will get 0 points.
5

Admin

• Head TA Yanjie Song keeps track of students with
technical difficulties – contact him if there are
such problems! We will find a solution.

• HW3 is published – due March 27 – start early!

• Project 1.1 will be published today!

• Never share your code with anybody!

6

RISC-V ISA so far…
• Registers we know so far (All of them!)

– a0-a7 for function arguments, a0-a1 for return values

– sp, stack pointer, ra return address

– s0-s11 saved registers

– t0-t6 temporaries

– zero

• Instructions we know:
– Arithmetic: add, addi, sub

– Logical: sll, srl, slli, srli, slai, and, or, xor, andi, ori, xori

– Decision: beq, bne, blt, bge

– Unconditional branches (jumps): j, jr

– Functions called with jal, return with jr ra.

• The stack is your friend: Use it to save anything you need. Just
leave it the way you found it!

12 Shift Instructions…
• Two versions of of all shift instructions. Shift amount via:

– Register
– Immediate

• (On RV64: additional “word” version of instruction: only works on first 32bit
of 64bit register)

• Shift Left
• Shift Right Arithmetic: Fill upper bits with msb
• Shift Right Logic: Fill upper bits with 0’s

8

Frame Pointer!?
• As a reminder, we shove all the C local variables etc. on the

stack...
– Combined with space for all the saved registers
– This is called the "activation record" or "call frame" or "call

record”
• But a naive compiler may cause the stack pointer to bounce

up and down during a function call
– Can be a lot simpler to have a compiler do a bunch of pushes

and pops when it needs a bit of temporary space: more so on a
CISC rather than a RISC however

• Plus: not all programming languages can store all activation
records on the stack:
– The use of lambda in Scheme, Python, Go, etc. requires that

some call frames are allocated on the heap since variables may
last beyond the function call!

9

Convention: Use s0 as a
Frame Pointer (fp)

• At the start, save s0 (x8) and then have the Frame pointer point to
one below the sp when you were called...
addi sp sp -20 # Initially grabbing 5 words of space
sw ra 16(sp) #
sw fp 12(sp) # save fp/s0/x8
addi fp sp 20 # Points to the start of this call record
...

• Now we can address local variables off the frame pointer rather
than the stack pointer
– Simplifies the compiler

• Since it can now move the stack up and down easily
– Simplifies the debugger

10

But note…
• It isn't necessary in C...
– Most C compilers has a -f-omit-frame-pointer option on

most architectures
• It just fubars debugging a bit

• So for our hand-written assembly, we will generally
ignore the frame pointer

• The calling convention says it doesn't matter if you use
a frame pointer or not!
– It is just a callee saved register, so if you use it as a frame

pointer...
It will be preserved just like any other saved register
But if you just use it as s0, that makes no difference!

11

The Stack Is Also
For Local Variables...

• e.g. char[20] foo;

• Requires enough space on the stack
– May need padding

• So then to pass foo to something in a0...
addi a0 sp offset-for-foo-off-sp
addi a0 fp offset-for-foo-off-fp
• If you are using the frame pointer...

12

The Stack Is Also For Arguments
• Arguments 1-8 are passed in a0-a7
• But what about a 9th argument or more?
• But what about complex structs as arguments?

– Pass those on the stack!
– When the function is called,

• 0(sp) -> arg #9
4(sp) -> arg #10...

• ALWAYS keep sp the lowest address used!
– Because: Interrupts

may use your stack!
– => Arguments are in

the frame of the
caller!

• Don’t need to
memorize this
for exams

13

Stack Before, During, After Function

sp

Before call
sp

During call

Saved argument
registers (if any)

Saved return
address (if needed)

Saved saved
registers (if any)

Local variables
(if any)

sp

After call

Arguments on
stack (if needed)

Arguments on
stack (if needed)

Arguments (may
have changed!)fp

Register Allocation

• We have some set of registers that are useful for
local variables, temporaries that last across
function calls, etc...

• We have some other set of registers that are just
for temporary use

• Which ones do we use? What do we instead save
on the stack?

• This is the "Register Allocation" problem
– Experience it in great detail in CS 131 Compilers ...

• Can either be trivial or NP-complete!

15

Levels of
Representation/Interpretation

lw xt0, 0(x2)
lw xt1, 4(x2)
sw xt1, 0(x2)
sw xt0, 4(x2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

16

Logic Circuit Description
(Circuit Schematic Diagrams)

Big Idea:
Stored-Program

Computer

• Instructions are represented as bit patterns - can think
of these as numbers

• Therefore, entire programs can be stored in memory to
be read or written just like data

• Can reprogram quickly (seconds), don’t have to rewire
computer (days)

• Known as the “von Neumann” computers after widely
distributed tech report on EDVAC project
– Wrote-up discussions of Eckert and Mauchly
– Anticipated earlier by Turing and Zuse

First Draft of a Report on the EDVAC
by

John von Neumann
Contract No. W–670–ORD–4926

Between the
United States Army Ordnance Department and the

University of Pennsylvania
Moore School of Electrical Engineering

University of Pennsylvania

June 30, 1945

17

Consequence #1: Everything Addressed

• Since all instructions and data are stored in memory,
everything has a memory address: instructions, data
words
– both branches and jumps use these

• C pointers are just memory addresses: they can point to
anything in memory
– Unconstrained use of addresses can lead to nasty bugs; up to

you in C; limited in Java by language design
• One register keeps address of instruction being executed:

“Program Counter” (PC)
– Basically a pointer to memory: Intel calls it Instruction Pointer (a

better name)

18

Consequence #2: Binary Compatibility

• Programs are distributed in binary form
– Programs bound to specific instruction set
– Different version for ARM (phone) and PCs

• New machines want to run old programs (“binaries”)
as well as programs compiled to new instructions

• Leads to “backward-compatible” instruction set
evolving over time

• Selection of Intel 8086 in 1981 for 1st IBM PC is major
reason latest PCs still use 80x86 instruction set; could
still run program from 1981 PC today

19

Instructions as Numbers (1/2)

• Currently most data we work with is in words (32-
bit chunks):
– Each register is a word.
– lw and sw both access memory one word at a time.

• So how do we represent instructions?
– Remember: Computer only understands 1s and 0s, so

“add x10,x11,x0” is meaningless.
– RISC-V seeks simplicity: since data is in words, make

instructions be fixed-size 32-bit words, too
• Same 32-bit instructions used for RV32, RV64, RV128

20

Instructions as Numbers (2/2)
• One word is 32 bits, so divide instruction word into “fields”.
• Each field tells processor something about instruction.
• We could define different fields for each instruction, but RISC-

V seeks simplicity, so define 6 basic types of instruction
formats:

– R-format for register-register arithmetic operations
– I-format for register-immediate arithmetic operations and loads
– S-format for stores
– B-format for branches (minor variant of S-format, called SB before)
– U-format for 20-bit upper immediate instructions
– J-format for jumps (minor variant of U-format, called UJ before)

21

Summary of RISC-V Instruction
Formats

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 821

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
opcodeimm[31:12] rd U-type

R-type

opcodeimm[20|10:1|11]] rdimm[19:12] J-type

R-Format Instruction Layout

• 32-bit instruction word divided into six fields of varying
numbers of bits each: 7+5+5+3+5+7 = 32

• Examples
– opcode is a 7-bit field that lives in bits 6-0 of the instruction
– rs2 is a 5-bit field that lives in bits 24-20 of the instruction

Field’s bit positions

Number of bits in fieldName of field

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

R-Format Instructions opcode/funct fields

– opcode: partially specifies what instruction it is
• Note: This field is equal to 0110011two for all R-

Format register-register arithmetic instructions
– funct7+funct3: combined with opcode,

these two fields describe what operation to
perform

• Question: You have been professing simplicity, so why aren’t opcode
and funct7 and funct3 a single 17-bit field?
– We’ll answer this later

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

R-Format Instructions register specifiers

– rs1 (Source Register #1): specifies register containing
first operand

– rs2 : specifies second register operand
– rd (Destination Register): specifies register which will

receive result of computation
– Each register field holds a 5-bit unsigned integer (0-

31) corresponding to a register number (x0-x31)

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

R-Format Example

• RISC-V Assembly Instruction:
add x18,x19,x10

0000000 01010 10011 000 10010 0110011

Reg-Reg OPrd=18addadd rs2=10 rs1=19

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

All RV32 R-format instructions

Different encoding in funct7 + funct3 selects different operations

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011
0000000 rs2 rs1 001 rd 0110011

add
sub
sll

0000000 rs2 rs1 010 rd 0110011 slt
0000000 rs2 rs1 011 rd 0110011 sltu
0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 101 rd 0110011 srl
0100000 rs2 rs1 101 rd 0110011 sra
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

Question
• What is correct encoding of add x4, x3, x2 ?

A: 4021 8233hex

B: 0021 82b3hex

C: 4021 82b3hex

D: 0021 8233hex

E: 0021 8234hex

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011

add
sub

0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

31 25 20 15 71224 19 14 11 6 0

I-Format Instructions

• What about instructions with immediates?
– 5-bit field only represents numbers up to the value

31: immediates may be much larger than this
– Ideally, RISC-V would have only one instruction

format (for simplicity): unfortunately, we need to
compromise

• Define new instruction format that is mostly
consistent with R-format
– Notice if instruction has immediate, then uses at

most 2 registers (one source, one destination)

I-Format Instruction Layout

• Only one field is different from R-format, rs2 and funct7
replaced by 12-bit signed immediate, imm[11:0]

• Remaining fields (rs1, funct3, rd, opcode) same as before
• imm[11:0] can hold values in range [-2048ten , +2047ten]
• Immediate is always sign-extended to 32-bits before use

in an arithmetic operation
• We’ll later see how to handle immediates > 12 bits

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcodeImm[11:0]

12

I-Format Example

• RISC-V Assembly Instruction:
addi x15,x1,-50

111111001110 00001 000 01111 0010011

OP-Immrd=15addimm=-50 rs1=1

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12

All RV32 I-format Arithmetic
Instructions

“Shift-by-immediate” instructions only use lower
5 bits of the immediate value for shift amount
(can only shift by 0-31 bit positions)

One of the higher-order immediate bits is
used to distinguish “shift right logical”
(SRLI) from “shift right arithmetic” (SRAI)

imm[11:0] rs1 000 rd 0010011
imm[11:0] rs1 010 rd 0010011
imm[11:0] rs1 011 rd 0010011

addi
slti
sltiu

imm[11:0] rs1 100 rd 0010011 xori
imm[11:0] rs1 110 rd 0010011 ori
imm[11:0] rs1 111 rd 0010011 andi

0000000 shamt rs1 001 rd 0010011 slli
0000000 shamt rs1 101 rd 0010011 srli
0100000 shamt rs1 101 rd 0010011 srai

Load Instructions are also I-Type

• The 12-bit signed immediate is added to the base address in
register rs1 to form the memory address
– This is very similar to the add-immediate operation but used to create

address not to create final result

• The value loaded from memory is stored in register rd

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12
offset[11:0] base width dest LOAD

I-Format Load Example
• RISC-V Assembly Instruction:

lw x14, 8(x2)

000000001000 00010 010 01110 0000011

LOADrd=14lwimm=+8 rs1=2

(load word)

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12
offset[11:0] base width dest LOAD

All RV32 Load Instructions

• LBU is “load unsigned byte”
• LH is “load halfword”, which loads 16 bits (2 bytes) and sign-extends to fill destination 32-

bit register
• LHU is “load unsigned halfword”, which zero-extends 16 bits to fill destination 32-bit

register
• There is no LWU in RV32, because there is no sign/zero extension needed when copying

32 bits from a memory location into a 32-bit register

funct3 field encodes size and
‘signedness’ of load data

imm[11:0] rs1 000 rd 0000011
imm[11:0] rs1 001 rd 0000011
imm[11:0] rs1 010 rd 0000011

lb
lh
lw

imm[11:0] rs1 100 rd 0000011 lbu
imm[11:0] rs1 101 rd 0000011 lhu

S-Format Used for Stores

• Store needs to read two registers, rs1 for base memory address,
and rs2 for data to be stored, as well immediate offset!

• Can’t have both rs2 and immediate in same place as other
instructions!

• Note that stores don’t write a value to the register file, no rd!
• RISC-V design decision is move low 5 bits of immediate to where rd

field was in other instructions – keep rs1/rs2 fields in same place
• register names more critical than immediate bits in hardware design

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

Keeping Registers always in
the Same Place...

• The critical path for all operations includes
fetching values from the registers

• By always placing the read sources in the same
place, the register file can read without hesitation
– If the data ends up being unnecessary (e.g. I-Type), it

can be ignored
• Other RISCs have had slightly different encodings
– Necessitating the logic to look at the instruction to

determine which registers to read

• Example of one of the (many) little tweaks done
in RISC-V to make things work better

37

S-Format Example
• RISC-V Assembly Instruction:

sw x14, 8(x2)

0000000 01110 00010 010 01000 0100011

STOREoffset[4:0]
=8

SWoffset[11:5]
=0

rs2=14 rs1=2

combined 12-bit offset = 80000000 01000

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

All RV32 Store Instructions

Imm[11:5] rs2 rs1 000 imm[4:0] 0100011 sb
sh
sw

Imm[11:5] rs2 rs1 001 imm[4:0] 0100011
Imm[11:5] rs2 rs1 010 imm[4:0] 0100011

• Store byte, halfword, word
width

Q & A

40

Very nice Venus Tutorial

Ze Song

Will be available shortly after the lecture.

41

Quiz

Prepare for another Programming
PDF Quiz on Thursday!

42

Translate Machine Instruction
to RISC-V Assembly

• 1,074,332,851ten

1. add s4 x18 zero
2. sub s4 s2 x0
3. add s1 x18 zero
4. sub s1 s2 x0
5. neg s4 x18
6. neg s1 s2
7. mv s4 x18
8. mv s1 s2

• 0x FF F3 43 13
9. For 13-18 : instead of t0 use t1
10. For 13-18 : instead of t0 use t2
11. For 13-18 : instead of t0 use s0
12. For 13-18 : instead of t0 use s1
13. xor t0 t0 -1
14. xori t0 t0 -1
15. xor t0 t0 0xFFF
16. xori t0 t0 0xFFF
17. neg t0 t0
18. not t0 t0 43

Select ALL Assembly instructions that produce this
machine instruction!

Piazza: “Online Lecture 6 Quiz”

CS 110
Computer Architecture

Lecture 6:
Branch Formats

Video 2
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

44
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

RISC-V Conditional Branches

• E.g., BEQ x1, x2, Label
• Branches read two registers but don’t write a

register (similar to stores)
• How to encode label, i.e., where to branch to?

Branching Instruction Usage

• Branches typically used for loops (if-else,
while, for)
– Loops are generally small (< 50 instructions)
– Function calls and unconditional jumps handled with

jump instructions (J-Format)
• Recall: Instructions stored in a localized area of

memory (Code/Text)
– Largest branch distance limited by size of code
– Address of current instruction stored in the program

counter (PC)

PC-Relative Addressing

• PC-Relative Addressing: Use the immediate
field as a two’s-complement offset to PC
– Branches generally change the PC by a small

amount
– Can specify ± 211 ‘unit’ addresses from the PC

• Why not use byte as a unit of offset from PC?
– Because instructions are 32-bits (4-bytes)
– We don’t branch into middle of instruction

Scaling Branch Offset

• One idea: To improve the reach of a single
branch instruction, multiply the offset by four
bytes before adding to PC

• This would allow one branch instruction to
reach ± 211 × 32-bit instructions either side of
PC
– Four times greater reach than using byte offset

RISC-V Feature, n×16-bit instructions

• Extensions to RISC-V base ISA support 16-bit
compressed instructions and also variable-length
instructions that are multiples of 16-bits in length

• To enable this, RISC-V scales the branch offset by 2
bytes even when there are no 16-bit instructions

• Reduces branch reach by half and means that ½ of
possible targets will be errors on RISC-V processors
that only support 32-bit instructions (as used in this
class)

• RISC-V conditional branches can only reach ± 210 ×
32-bit instructions on either side of PC

Branch Calculation

• If we don’t take the branch:
PC = PC + 4 (i.e., next instruction)

• If we do take the branch:
PC = PC + immediate*2

• Observations:
– immediate is number of instructions to jump

(remember, specifies words) either forward (+) or
backwards (–)

RISC-V B-Format for Branches

• B-format is mostly same as S-Format, with two register
sources (rs1/rs2) and a 12-bit immediate imm[12:1]

• But now immediate represents values -4096 to +4094
in 2-byte increments

• The 12 immediate bits encode even 13-bit signed byte
offsets (lowest bit of offset is always zero, so no need
to store it)

1 6 5 3 74

31 30 24 15 71225 20 14 11 6 0
imm[12] rs2 rs1 funct3 imm[4:1] opcodeimm[10:5] imm[11]

19 8

5 1
BRANCHoffset[12|10:5] rs1 funct3rs2 offset[4:1|11]

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

Branch Example, Determine Offset

0
1
2
3
4

Count
instructions
from branch

• Branch offset =
• (Branch with offset of 0, branches to itself)

4×32-bit instructions = 16 bytes

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

??????? 01010 10011 000 ????? 1100011

BRANCHimmBEQimm rs2=10 rs1=19

Branch Example, Determine Offset

0
1
2
3
4

Count
instructions
from branch

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

??????? 01010 10011 000 ????? 1100011

BRANCHimmBEQimm rs2=10 rs1=19

offset = 16 bytes = 8x2 bytes

Branch Example, Encode Offset

RISC-V Immediate Encoding
Instruction encodings, inst[31:0]

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 8

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

R-type
I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

32-bit immediates produced, imm[31:0]

31 25 12 1524 11 10 4 0
inst[30:25] inst[24:21] inst[20] I-imm.-inst[31]-

inst[30:25] inst[11:8] inst[7] S-imm.-inst[31]-

inst[30:25] inst[11:8] 0 B-imm.-inst[31]- inst[7]

Upper bits sign-extended from inst[31] always Only bit 7 of instruction changes role in
immediate between S and B

Branch Example, complete encoding

0 01010 10011 000 1000 11000110000000

BRANCHBEQrs2=10 rs1=19

beq x19,x10, offset = 16 bytes

13-bit immediate, imm[12:0], with value 16
0000000010000

imm[4:1]

imm[0] discarded,
always zero

imm[10:5]

imm[11]imm[12]

All RISC-V Branch Instructions

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

Questions on PC-addressing

• Does the value in branch immediate field change if
we move the code?
– If moving individual lines of code, then yes
– If moving all of code, then no (‘position-independent

code’)
• What do we do if destination is > 210 instructions

away from branch?
– Other instructions save us
beq x10,x0,far bne x10,x0,next
next instr à j far

next: # next instr

U-Format for “Upper Immediate”
Instructions

• Has 20-bit immediate in upper 20 bits of 32-bit
instruction word

• One destination register, rd
• Used for two instructions
– LUI – Load Upper Immediate
– AUIPC – Add Upper Immediate to PC

7

31 712 6 0
opcodeimm[31:12] rd

11

20 5
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI to Create Long Immediates

• LUI writes the upper 20 bits of the destination with the
immediate value, and clears the lower 12 bits.

• Together with an ADDI to set low 12 bits, can create any
32-bit value in a register using two instructions (LUI/ADDI).

LUI x10, 0x87654 # x10 = 0x87654000
ADDI x10, x10, 0x321# x10 = 0x87654321

One Corner Case
How to set 0xDEADBEEF?
LUI x10, 0xDEADB # x10 = 0xDEADB000
ADDI x10, x10, 0xEEF # x10 = 0xDEADAEEF

ADDI 12-bit immediate is always sign-extended, if top bit is set,
will subtract 1 from upper 20 bits

Solution
How to set 0xDEADBEEF?
LUI x10, 0xDEADC # x10 = 0xDEADC000
ADDI x10, x10, 0xEEF # x10 = 0xDEADBEEF

Pre-increment value placed in upper 20 bits, if sign bit will be set on
immediate in lower 12 bits.

Assembler pseudo-op handles all of this:
li x10, 0xDEADBEEF # Creates two instructions

Actually: Important!
The assembler treats the provided number for ADDI as signed number.
So in order to get 0xEEF, we have to provide the according negative
number! So actually, only this works:
ADDI x10, x10, -273 # -273 = 0xFFFFFFFEEF

AUIPC

• Adds upper immediate value to PC and places
result in destination register

• Used for PC-relative addressing

Label: AUIPC x10, 0 # Puts address of label in x10

J-Format for Jump Instructions

• JAL saves PC+4 in register rd (the return address)
– Assembler “j” jump is pseudo-instruction, uses JAL but sets
rd=x0 to discard return address

• Set PC = PC + offset (PC-relative jump)
• Target somewhere within ±219 locations, 2 bytes apart

– ±218 32-bit instructions
• Immediate encoding optimized similarly to branch instruction

to reduce hardware cost

7

31 712 6 0
opcodeimm[10:1] rd

11

10 5
offset[20:1] dest JAL

imm[20] imm[11] imm[19:12]
1 1 8

19202130

Uses of JAL
j pseudo-instruction
j Label = jal x0, Label # Discard return address

Call function within 218 instructions of PC
jal ra, FuncName

JALR Instruction (I-Format)

• JALR rd, rs, immediate
– Writes PC+4 to rd (return address)
– Sets PC = rs + immediate
– Uses same immediates as arithmetic and loads

• no multiplication by 2 bytes
• In contrast to branches and JAL

7

31 712 6 0
opcodeimm[11:0] rd

11

12 5
offset[11:0] dest JALR

rs1 func3
5 3

151920 14

base 0

Uses of JALR
ret and jr psuedo-instructions
ret = jr ra = jalr x0, ra, 0

Call function at any 32-bit absolute address
lui x1, <hi20bits>
jalr ra, x1, <lo12bits>

Jump PC-relative with 32-bit offset
auipc x1, <hi20bits>
jalr x0, x1, <lo12bits>

Summary of RISC-V Instruction
Formats

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 821

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
opcodeimm[31:12] rd U-type

R-type

opcodeimm[20|10:1|11]] rdimm[19:12] J-type

Complete RV32I ISA

Not in CA lectures

�And in Conclusion…�

• Simplification works for RISC-V: Instructions are same

size as data word (one word) so that they can use the

same memory.

• Computer actually stores programs as a series of

these 32-bit numbers.

• We have covered all RISC-V instructions and registers

– R-type, I-type, S-type, B-type, U-type and J-type instructions

– Practice assembling and disassembling

Question:

• Select (check) the machine instructions that correctly
correspond to the Assembly instruction

• Venus is your friend!
– But solve at least I (jal x1 -44) by hand!

71

Piazza: “Lecture 6 RISC-V poll”

A 0x FF 01 01 13 addi sp sp -16
B 0x 00 05 04 13 mv t0 a0
C 0x 00 00 05 13 mv a0 x0
D 0x 00 11 26 23 sw x1 16(x2)
E 0x 00 81 24 23 sw s0 8(sp)
F 0x 01 21 20 23 sw x18 0(x4)
G 0x 00 03 16 63 bne x10 x0 12
H 0x 03 00 00 6F jal x1 48
I 0x FD 5F F0 EF jal x1 -44
J 0x 00 01 02 B7 li t0 65536
K 0x 00 00 80 67 ret

