
CS 110
Computer Architecture

Lecture 12:
Pipelining

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Admin

• Update your zoom app!

• From Thursday on we will use a password –
find it on piazza

• HW4 is due this Friday!

2

Agenda

• Pipelining
• Hazards
– Structural
– Data
• R-type instructions
• Load

– Control

3

Complete Single-Cycle RV32I
Datapath!

+4

Add

addr
inst

IMEM

pc+4

pc+4

wb

pcwb

Inst[24:20]
ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn ALUSel

Asel

MemRW

0

1

Imm[31:0]
Imm.
Gen

Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC

Inst
[31:7]

1

0

2

clk

WBSel

Branch
Comp

1

0

ImmSel

1

0

PCSel BrUn

BrEq

BrLT

Control logic

Bsel

mem

alu
alu

4

Stages of Execution on Datapath

in
st
ru
ct
io
n

m
em
or
y

+4

rs2
rs1
rd

re
gi
st
er
s

ALU

D
at
a

m
em
or
y

imm

1. Instruction
Fetch

2. Decode/
Register
Read

3. Execute 4. Memory 5. Register
Write

PC

5

Single Cycle Performance
• Assume time for actions are

– 100ps for register read or write; 200ps for other events
• Clock period is?

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

• Clock rate (cycles/second = Hz) = 1/Period (seconds/cycle)

6

Single Cycle Performance
• Assume time for actions are

– 100ps for register read or write; 200ps for other events
• Clock period is?

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

• What can we do to improve clock rate?
• Will this improve performance as well?

Want increased clock rate to mean faster programs
7

Gotta Do Laundry
• Students �� (A An)��� (Bao Bo),
�� (Chen Chen) and �� (Ding
Ding) each have one load of clothes
to wash, dry, fold, and put away
– Washer takes 30 minutes

– Dryer takes 30 minutes

– “Folder” takes 30 minutes

– “Stasher” takes 30 minutes to put
clothes into drawers

A B C D

8

Sequential Laundry

• Sequential laundry takes
8 hours for 4 loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30

Time
30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

9

Pipelined Laundry

• Pipelined laundry takes
3.5 hours for 4 loads!

T
a
s
k

O
r
d
e
r

B
C
D

A

12 2 AM6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30

10

• Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

• Multiple tasks operating
simultaneously using different
resources

• Potential speedup = Number
pipe stages

• Time to “fill” pipeline and time
to “drain” it reduces speedup

Pipelining Lessons (1/2)

11

6 PM 7 8 9
Time

B
C
D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

• Suppose new Dryer
takes 20 minutes, new
Folder takes 20
minutes. How much
faster is pipeline?

• Pipeline rate limited by
slowest pipeline stage

• Unbalanced lengths of
pipe stages reduces
speedup

6 PM 7 8 9
Time

3030 30 3030 30 30
T
a
s
k

O
r
d
e
r

Pipelining Lessons (2/2)

12

B
C
D

A

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rs2
rs1
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

Single Cycle Datapath

13

Pipelining with RISC-V

14

Phase Pictogram tstep Serial
Instruction Fetch 200 ps
Reg Read 100 ps
ALU 200 ps
Memory 200 ps
Register Write 100 ps
tinstruction 800 ps

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

instruction sequence

tcycle

tinstruction

tcycle Pipelined
200 ps
200 ps
200 ps
200 ps
200 ps

1000 ps

Pipelining with RISC-V

15

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3
tcycle

instruction sequence

tinstruction

Single Cycle Pipelining
Timing tstep = 100 … 200 ps tcycle = 200 ps

Register access only 100 ps All cycles same length

Instruction time, tinstruction = tcycle = 800 ps 1000 ps

CPI (Cycles Per Instruction) ~1 (ideal) ~1 (ideal), >1 (actual)

Clock rate, fs 1/800 ps = 1.25 GHz 1/200 ps = 5 GHz

Relative speed 1 x 4 x

Sequential vs Simultaneous

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

tcycle
= 200 ps

instruction sequence

tinstruction = 1000 ps

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

What happens sequentially, what happens simultaneously?

16

RISC-V Pipeline

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

tcycle
= 200 ps

instruction sequence

tinstruction = 1000 ps

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

Resource use of
instruction over
time

Resource use in a
particular time slot

17

Single-Cycle RISC-V RV32I Datapath

18

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUnBrEqBrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Pipelining RISC-V RV32I Datapath

19

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1

0

0
1
21

0
pc

0

1

inst[11:7]

inst[19:15]

inst[24:20]

inst[31:7]

pc+4
alu

mem

wb

alu

pc+4

Reg[rs1]

pc

imm[31:0]

Reg[rs2]

wb

Instruction Fetch
(F)

Instruction
Decode/Register Read

(D)

ALU Execute
(X)

Memory Access
(M)

Write Back
(W)

Pipelined RISC-V RV32I Datapath

20

IMEM
ALU

+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

Must pipeline instruction along
with data, so control operates
correctly in each stage

Recalculate PC+4 in M
stage to avoid sending both
PC and PC+4 down pipeline

Each stage operates on different instruction

21

IMEM
ALU

+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

add
t0, t1,
t2

or t3, t4, t5sll t6, t0, t3sw t0, 4(t3)lw t0, 8(t3)

Pipeline registers separate stages, hold data for each instruction in flight

Pipelined Control
• Control signals derived from instruction

– As in single-cycle implementation
– Information is stored in pipeline registers for use by later stages

22

Question
Logic in some stages takes 200ps and in some
100ps. Clk-Q delay is 30ps and setup-time is
20ps. What is the maximum clock frequency at
which a pipelined design with 5 stages can
operate?

• A: 10GHz

• B: 5GHz

• C: 6.7GHz

• D: 4.35GHz

• E: 4GHz
23

TA Discussion

Video Anqi Pang
Watch After watching all videos of today…

24

Q & A

25

Quiz

26

Quiz
• Select the statements that are TRUE:

A. Pipelining increases instruction throughput
B. Pipelining increases instruction latency
C. Pipelining increases clock frequency
D. Pipelining decreases number of components

Also: Select the make of the car that Prof. Schwertfeger likes to
rent to drive fast on German Highways:

E. BMW (��)
F. Audi (��)
G. Mercedes-Benz (��)
H. Porsche (���)

27

Piazza: “Online Lecture 12 Pipelining Poll”

CS 110
Computer Architecture

Lecture 12:
Pipelining

Video 2: Hazards
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

28
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Pipelining
• Hazards
– Structural
– Data
• R-type instructions
• Load

– Control

29

Pipelining Hazards
A hazard is a situation that prevents starting the

next instruction in the next clock cycle
1) Structural hazard
– A required resource is busy

(e.g. needed in multiple stages)
2) Data hazard
– Data dependency between instructions
– Need to wait for previous instruction to complete its

data read/write
3) Control hazard
– Flow of execution depends on previous instruction

30

Structural Hazard

• Problem: Two or more instructions in the
pipeline compete for access to a single
physical resource

• Solution 1: Instructions take it in turns to use
resource, some instructions have to stall

• Solution 2: Add more hardware to machine
• Can always solve a structural hazard by adding

more hardware

31

Regfile Structural Hazards

• Each instruction:
– can read up to two operands in decode stage
– can write one value in writeback stage

• Avoid structural hazard by having separate
“ports”
– two independent read ports and one independent

write port
• Three accesses per cycle can happen

simultaneously
32

Structural Hazard: Memory Access

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

instruction sequence

sw t0, 4(t3)

lw t0, 8(t3)

• Instruction and data
memory used
simultaneously

ü Use two separate
memories

33

Instruction and Data Caches

34

Processor
Control

Datapath
PC

Registers
Arithmetic & Logic Unit

(ALU)

Memory (DRAM)

Bytes

Data

Program
Instruction

Cache

Data
Cache

Structural Hazards – Summary

• Conflict for use of a resource
• In RISC-V pipeline with a single memory

– Load/store requires data access
– Without separate memories, instruction fetch would have to stall for that

cycle
• All other operations in pipeline would have to wait

• Pipelined datapaths require separate instruction/data memories
– Or separate instruction/data caches

• RISC ISAs (including RISC-V) designed to avoid structural hazards
– e.g. at most one memory access/instruction

35

Agenda

• Pipelining
• Hazards
– Structural
– Data
• R-type instructions
• Load

– Control

36

Data Hazard: Register Access

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

instruction sequence

sw t0, 4(t3)

lw t0, 8(t3)

• Separate ports, but what if write to same value as read?
• Does sw in the example fetch the old or new value?

37

Register Access Policy

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

instruction sequence sw t0, 4(t3)

lw t0, 8(t3)

• Exploit high speed of
register file (100 ps)

1) WB updates value
2) ID reads new value

• Indicated in diagram by
shading

38

Might not always be possible to write then read in same cycle,
especially in high-frequency designs. Always check assumptions!

Data Hazard: ALU Result

add s0, t0, t1

sub t2, s0, t0

or t6, s0, t3

instruction sequence

xor t5, t1, s0

sw s0, 8(t3)

5 5 5 5 5/9 9 9 9 9Value of s0

Without some fix, sub and or will calculate wrong result!

39

Solution 1: Stalling

• Problem: Instruction depends on result from previous instruction
– add s0, t0, t1

sub t2, s0, t3

• Bubble:
– effectively NOP: affected pipeline stages do “nothing”

40

Stalls and Performance

• Stalls reduce performance
– But stalls are required to get correct results

• Compiler can arrange code or insert NOPs
(writes to register x0) to avoid hazards and
stalls
– Requires knowledge of the pipeline structure

41

Solution 2: Forwarding

add t0, t1, t2

or t3, t0, t5

sub t6, t0, t3

instruction sequence

xor t5, t1, t0

sw t0, 8(t3)

5 5 5 5 5/9 9 9 9 9Value of t0

Forwarding: grab operand from pipeline stage,
rather than register file

42

Forwarding (aka Bypassing)

• Use result when it is computed
– Don’t wait for it to be stored in a register
– Requires extra connections in the datapath

43

Detect Need for Forwarding
(example)

add t0, t1, t2

or t3, t0, t5

sub t6, t0, t3

X M WD

instM.rd

instX.rs1

44

Compare destination of
older instructions in
pipeline with sources of
new instruction in
decode stage.
Must ignore writes to x0!

Forwarding Path

45

IMEM

ALU
+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

Forwarding Control
Logic

CS 110
Computer Architecture

Lecture 12:
Pipelining

Video 3: More Hazards
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

46
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Pipelining
• Hazards
– Structural
– Data
• R-type instructions
• Load

– Control

47

Load Data Hazard

1 cycle stall
unavoidable

48

forward

unaffected

Stall Pipeline

Stall

49

repeat and
instruction
and forward

lw Data Hazard

• Slot after a load is called a load delay slot
– If that instruction uses the result of the load, then

the hardware will stall for one cycle
– Equivalent to inserting an explicit nop in the slot
• except the latter uses more code space

– Performance loss
• Idea:
– Put unrelated instruction into load delay slot
– No performance loss!

50

Code Scheduling to Avoid Stalls
• Reorder code to avoid use of load result in the next instr!
• RISC-V code for A[3]=A[0]+A[1]; A[4]=A[0]+A[2]

51

Original Order:
lw t1, 0(t0)
lw t2, 4(t0)
add t3, t1, t2
sw t3, 12(t0)
lw t4, 8(t0)
add t5, t1, t4
sw t5, 16(t0)

Alternative:
lw t1, 0(t0)
lw t2, 4(t0)
lw t4, 8(t0)
add t3, t1, t2
sw t3, 12(t0)
add t5, t1, t4
sw t5, 16(t0)

Stall!

Stall!

9 cycles
7 cycles

Agenda

• Pipelining
• Hazards
– Structural
– Data
• R-type instructions
• Load

– Control
• Instruction-Level Parallelism

52

Control Hazards

beq t0, t1, label

sub t2, s0, t5

or t6, s0, t3

xor t5, t1, s0

sw s0, 8(t3)

executed regardless of
branch outcome!

executed regardless of
branch outcome!!!

PC updated
reflecting branch
outcome

53

Observation

• If branch not taken, then instructions fetched
sequentially after branch are correct

• If branch or jump taken, then need to flush
incorrect instructions from pipeline by
converting to NOPs

54

Kill Instructions after Branch if
Taken

beq t0, t1, label

sub t2, s0, t5

or t6, s0, t3

label: xxxxxx
PC updated
reflecting branch
outcome

55

Taken branch

Convert to NOP

Convert to NOP

Reducing Branch Penalties

• Every taken branch in simple pipeline costs 2
dead cycles

• To improve performance, use “branch
prediction” to guess which way branch will go
earlier in pipeline

• Only flush pipeline if branch prediction was
incorrect

56

Branch Prediction

beq t0, t1, label

label: …..

…..

57

Taken branch

Guess next PC!

Check guess correct

In Conclusion

• Pipelining increases throughput by overlapping
execution of multiple instructions

• All pipeline stages have same duration
– Choose partition that accommodates this constraint

• Hazards potentially limit performance
– Maximizing performance requires programmer/compiler

assistance

58

I:
addi t1, t0, 1
addi t2, t0, 2
addi t3, t0, 2
addi t3, t0, 4
addi t5, t1, 5

II:
add t1, t0, t0
addi t2, t0, 5
addi t4, t1, 5

III:
lw t0, 0(t0)
add t1, t0, t0

Question: For each code sequences below,
choose one of the statements below:

59

Quiz
Piazza: “Video Lecture 12 Pipelining Poll”

A) No stalls as is
B) No stalls with forwarding
C) Must stall

Check the numbers with are correct:

I: A: 1 II: A: 4 III: A: 7
I: B: 2 II: B: 5 III: B: 8
I: C: 3 II: C: 6 III: C: 9

