
CS 110
Computer Architecture

Lecture 13:
Superscalar CPUs

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)

2

Increasing Processor Performance

1. Clock rate
– Limited by technology and power dissipation

2. Pipelining
– “Overlap” instruction execution
– Deeper pipeline: 5 => 10 => 15 stages
• Less work per stage à shorter clock cycle
• But more potential for hazards
• Multi-issue “superscalar” processor

3

to issue:
��

Greater Instruction-Level Parallelism (ILP)

• Multiple issue “superscalar”
– Replicate pipeline stages => multiple pipelines
– Start multiple instructions per clock cycle
– CPI < 1, so use Instructions Per Cycle (IPC)
– E.g., 4GHz 4-way multiple-issue

• 16 BIPS, peak CPI = 0.25, peak IPC = 4

– But dependencies reduce this in practice
• “Out-of-Order” execution
– Reorder instructions dynamically in hardware to reduce

impact of hazards

• Hyper-threading
4

Pipelined RISC-V RV32I Datapath

5

in
st

ru
ct

io
n

m
em

or
y

+4

rs2
rs1
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

PC

imm

Hyper-threading (simplified)

• Duplicate all elements that hold the state (registers)
• Use the same CL blocks
• Use muxes to select which state to use every clock cycle
• => run 2 independent processes

– No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, …)

• Speedup?
– No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable

resources (e.g. wait for memory)
6

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

re
gi

st
er

s

PC
PC

rs2
rs1
rd

Intel Nehalem i7
• Hyperthreading:

– About 5% die area
– Up to 30% speed gain

(BUT also < 0% possible)
• Pipeline: 20-24 stages!
• Out-of-order execution

1. Instruction fetch.
2. Instruction dispatch to an instruction queue
3. Instruction: Wait in queue until input

operands are available => instruction can
leave queue before earlier, older instructions.

4. The instruction is issued to the appropriate
functional unit and executed by that unit.

5. The results are queued.
6. Write to register only after all older

instructions have their results written.
7

Superscalar Processor

8

Superscalar = Multicore?

• NO!

• Superscalar: More than one Instruction per clock cycle!

– Computing not a different thread!

– Computing instructions from the same program!

=> Higher throughput

• In Flynn's taxonomy (later in course):

– a single-core superscalar processor is classified as an SISD processor

(Single Instruction stream, Single Data stream)

– But: most superscalar processors support short vector operations =>

those are then SIMD (Single Instruction stream, Multiple Data

streams).

– And: nowadays most superscalar processors are multicore, too. 9

https://en.wikipedia.org/wiki/Superscalar_processor

“Iron Law” of Processor
Performance

10

Time = Instructions Cycles Time
Program Program Instruction Cycle

CPI = Cycles Per Instruction

� �
Can time Can count Can look up

CPI = Cycles = Time Instructions Time
Instruction Program Program Cycle()� �

Benchmark: CPI of Intel Core i7

11

CPI = 1

Calculating CPI Another Way

• First calculate CPI for each individual
instruction (add, sub, and, etc.)

• Next calculate frequency of each individual
instruction

• Finally multiply these two for each instruction
and add them up to get final CPI (the
weighted sum)

12

Example (RISC processor)

Op Freqi CPIi Prod (% Time)

ALU 50% 1 .5 (23%)

Load 20% 5 1.0 (45%)

Store 10% 3 .3 (14%)

Branch 20% 2 .4 (18%)

2.2Instruction Mix (Where time spent)

13

Agenda

• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)

14

Complex Pipeline

15

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

• More than one Functional Unit
• Floating point execution!

• Fadd & Fmul: fixed number of cycles; > 1
• Fdiv: unknown number of cycles!

• Memory access: on Cache miss unknown number of cycles
• Issue: Assign instruction

to functional unit

GPRs
FPRs

GPRs: General Purpose Registers
FPRs: Floating Point Registers

Issues in Complex Pipeline Control

16

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different
functional units
• Out-of-order write hazards due to variable latencies of different functional
units

Modern Complex In-Order Pipeline

• Delay writeback so all operations
have same latency to W stage
– Write ports never oversubscribed

(one inst. in & one inst. out every
cycle)

– Stall pipeline on long latency
operations, e.g., divides, cache
misses

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined
divider

How to prevent increased writeback latency
from slowing down single cycle integer
operations? Bypassing

17

Agenda

• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)

18

Static Multiple Issue
• aka.: Very Long Instruction Word (VLIW)
• Compiler bundles instructions together
• Compiler takes care of hazards
• CPU executes at the same time

19

Static Two-Issue RISC-V Datapath

20

In-Order Superscalar Pipeline

• Fetch two instructions per cycle;
issue both simultaneously if one is
integer/memory and other is floating point

• Inexpensive way of increasing throughput,
examples include Alpha 21064 (1992) &
MIPS R5000 series (1996)

• Same idea can be extended to wider issue
by duplicating functional units (e.g. 4-issue
UltraSPARC & Alpha 21164) but regfile
ports and bypassing costs grow quickly

Commit
Point

2
PC

Inst.
Mem D

Dual
Decode X1 X2

Data
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3
Unpipelined
divider

21

TA Discussion

/

22

Q & A

23

Quiz

24

• Select statements that are true:

A. The number of clock cycles a floating point multiplier
needs depends on the values of the operands.

B. The number of clock cycles a floating point divider needs
depends on the values of the operands.

C. A hyperthreading CPU can execute more than one
process/ thread at a given time

D. A superscalar CPU can execute more than one process/
thread at a given time.

E. A multi-core CPU can execute more than one process/
thread at a given time.

25

Quiz
Piazza: “Online Lecture 13 Super Poll”

CS 110
Computer Architecture

Lecture 13:
Superscalar CPUs

Video 2: Dynamic Multiple Issue
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

26
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Control Hazards
• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)

27

Superscalar:
Dynamic Multiple Issue

• Hardware guarantees correct execution =>
– Compiler does not need to (but can) optimize

• Dynamic pipeline scheduling:
– Re-order instructions based on:

• What functional units are free
• Avoiding of data hazards

– Reservation Station
• Buffer of instructions waiting to be executed
• With operands (Registers) needed
• Once all operands are available: execute!

– Commit Unit (Reorder buffer): supply the operands to reservation
station; write to register

– OR: Unified Physical Register File :
Registers are renamed for use in reservation station and commit unit

28

Out of Order Issue

29

Program State

Waiting WaitingComputing

15 14 13 12 …
19
21
25
26

16
20
24

17
18
22
23

… 30 29 28 27

Memory

Architectual State
(Registers & Memory) as

if this Instruction is
finished in in-order CPU.

Next Instructions
Done
Instructions

Reservation
Station

Commit
Unit

Functional Units
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv x7 , x15
23: mv x8 , x16
24: mv x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv x6 , x7

Out of Order Issue

30

Program State

Waiting WaitingComputing

15 14 13 12 …
19
21
25
26

16 div x10 x9 x8
20 lw x13 8(x12)
24 mv x9 x17

17
18
22
23

… 30 29 28 27

Memory

Architectual State
(Registers & Memory) as

if this Instruction is
finished in in-order CPU.

Next Instructions
Done
Instructions

Reservation
Station

Commit
Unit

Functional Units
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv x7 , x15
23: mv x8 , x16
24: mv x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv x6 , x7

CPU Cycle: 1000

Out of Order Issue

31

Program State

Waiting WaitingComputing

18 17 16 15 …
21
26
27
28

20 lw x13 8(x12)
19 add x11 x10

x12
25 div x7 x7 x8

22
23
24

… 32 31 30 29

Memory

Architectual State
(Registers & Memory) as

if this Instruction is
finished in in-order CPU.

Next Instructions
Done
Instructions

Reservation
Station

Commit
Unit

Functional Units
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv x7 , x15
23: mv x8 , x16
24: mv x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv x6 , x7

CPU Cycle: 1001

* 16 finished =>
16, 17, 18 committed
* 16 computed x10
=> 19 can run
* division unit free
=> 25 can run
* 24 finished
* 27, 28 were fetched

Out of Order Issue

32

Program State

Waiting WaitingComputing

20 19 18 17 …
26
27
28
29

25 div x7 x7 x8
21 lw x14 8(x10)

22
23
24

… 33 32 31 30

Memory

Architectual State
(Registers & Memory) as

if this Instruction is
finished in in-order CPU.

Next Instructions
Done
Instructions

Reservation
Station

Commit
Unit

Functional Units
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv x7 , x15
23: mv x8 , x16
24: mv x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv x6 , x7

CPU Cycle: 1002

* 20 & 19 finished =>
20 & 19 committed
* mem unit free =>
21 can run
* 26 still waiting for
mem unit
* 27 waiting for 25

Phases of Instruction Execution

33

Fetch: Instruction bits retrieved from
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to
functional units. When execution completes,
all results and exception flags are available.

Decode: Instructions dispatched to
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

PC

Commit

Decode/Rename

Separating Completion from Commit

• Re-order buffer (ROB) holds register results from
completion until commit
– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order commit

point
– Completed values can be used by dependents before committed

(bypassing)
– Each entry holds program counter, instruction type, destination

register specifier and value if any, and exception status (info often
compressed to save hardware)

34

In-Order versus
Out-of-Order Phases

• Instruction fetch/decode/rename always in-order
– Need to parse ISA sequentially to get correct semantics
– Proposals for speculative OoO instruction fetch, e.g., Multiscalar.

Predict control flow and data dependencies across sequential program
segments fetched/decoded/executed in parallel, fixup if prediction
wrong

• Dispatch (place instruction into machine buffers to
wait for issue) also always in-order
– Some use “Dispatch” to mean “Issue”

35

In-Order Versus Out-of-Order Issue
• In-order (InO) issue:
– Issue stalls on read after write (RAW), dependencies or

structural hazards, or possibly write after read (WAR),
write after write (WAW) hazards

– Instruction cannot issue to execution units unless all
preceding instructions have issued to execution units

• Out-of-order (OoO) issue:
– Instructions dispatched in program order to reservation

stations (or other forms of instruction buffer) to wait for
operands to arrive, or other hazards to clear

– While earlier instructions wait in issue buffers, following
instructions can be dispatched and issued out-of-order

36

In-Order versus
Out-of-Order Completion

• All but simplest machines have out-of-order
completion, due to different latencies of functional
units and desire to bypass values as soon as available

• Classic RISC V-stage integer pipeline just barely has
in-order completion
– Load takes two cycles, but following one-cycle integer op completes at

same time, not earlier
– Adding pipelined FPU immediately brings OoO completion

37

Superscalar Intel Processors

• Pentium 4: Marketing demanded higher clock rate =>
deeper pipelines & high power consumption

• Afterwards: Multi-core processors

38

Arm Cortex A53 & Intel Core i7 920

39

ARM Cortex A53 Pipeline

40

• Prediction 1 clock cycle! Predict: branches, future function returns; 8 clock
cycles on mis-prediction (flush pipeline)

Speculative & Out-of-Order Execution

41

Intel Nehalem i7
• Hyperthreading:

– About 5% die area
– Up to 30% speed gain

(BUT also < 0% possible)
• Pipeline: 20-24 stages!
• Out-of-order execution

1. Instruction fetch.
2. Instruction dispatch to an instruction queue
3. Instruction: Wait in queue until input

operands are available => instruction can
leave queue before earlier, older instructions.

4. The instruction is issued to the appropriate
functional unit and executed by that unit.

5. The results are queued.
6. Write to register only after all older

instructions have their results written.
42

Benchmark: CPI of Intel Core i7

43

CPI = 1

“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

• Managed as circular buffer in program order, new instructions dispatched to
free slots, oldest instruction committed/reclaimed when done (“p” bit set
on result)

• Tag is given by index in ROB (Free pointer value)
• In dispatch, non-busy source operands read from architectural register file

and copied to Src1 and Src2 with presence bit “p” set. Busy operands copy
tag of producer and clear “p” bit.

• Set valid bit “v” on dispatch, set issued bit “i” on issue
• On completion, search source tags, set “p” bit and copy data into src on tag

match. Write result and exception flags to ROB.
• On commit, check exception status, and copy result into architectural

register file if no trap.

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free

44

Managing Rename for Data-in-ROB

• If “p” bit set, then use value in architectural register file

• Else, tag field indicates instruction that will/has produced value

• For dispatch, read source operands <p,tag,value> from arch. regfile,
then also read <p,result> from producing instruction in ROB at tag
index, bypassing as needed. Copy operands to ROB.

• Write destination arch. register entry with <0,Free,_>, to assign tag
to ROB index of this instruction

• On commit, update arch. regfile with <1, _, Result>

• On trap, reset table (All p=1)

45

Tagp Value
Tagp Value
Tagp Value

Tagp Value

One entry per
architectural
register

Rename table
associated with
architectural
registers,
managed in
decode/dispatch

ROB

Data Movement in Data-in-ROB Design

46

Architectural Register
File

Read operands
during decode

Read
operands at
issue

Functional Units

Read results for
commit

Bypass newer
values at dispatch

Result
Data

Write results at
completion

Write results at
commit

Source
Operands

Write sources
in dispatch

Reorder Buffer Holds Active Instructions
(Decoded but not Committed)

47

(Older instructions)

(Newer instructions)

Cycle t

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

Commit

Fetch

Cycle t + 1

Execute

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

ROB contents

Register Renaming

• Programmers/ Compilers (have to) re-use
registers for different, unrelated purposes

• Idea: Re-name on the fly to resolve (fake)
dependencies (anti-dependency)

• Additional benefit: CPU can have more physical
registers than ISA!
– Alpha 21264 CPU has 80 integer register; ISA only 32

48

Alternative to ”Data-in-ROB”:
Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

• Rename all architectural registers into a single physical
register file during decode, no register values read

• Functional units read and write from single unified register file
holding committed and temporary registers in execute

• Commit only updates mapping of architectural register to
physical register, no data movement

49

Unified Physical
Register File

Read operands at issue

Functional Units

Write results at completion

Committed
Register
Mapping

Decode Stage
Register
Mapping

Lifetime of Physical Registers

50

ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
When next writer of same architectural register commits

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)

Conclusion

• “Iron Law” of Processor Performance to
estimate speed

• Complex Pipelines: more in CA II
• Multiple Functional Units => Parallel execution

– Static Multiple Issues (VLIW)
• E.g. 2 instructions per cycle

– Dynamic Multiple Issues (Superscalar)
• Re-order instructions
• Issue Buffer; Re-order Buffer; Commit Unit
• Re-naming of registeres

51

• Select statements that are true:

A. In-order processors have a CPI >= 1
B. More stages allow a higher clock frequency
C. Through hyperthreading we can get a CPI < 0
D. OoO pipelines need speculation
E. We can run the same binary machine code

on a single cycle CPU AND on an superscalar
CPU 52

Quiz
Piazza: “Video Lecture 13 Super Poll”

