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Agenda

• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)
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Increasing Processor Performance

1. Clock rate
– Limited by technology and power dissipation

2. Pipelining
– “Overlap” instruction execution
– Deeper pipeline: 5 => 10 => 15 stages
• Less work per stage à shorter clock cycle
• But more potential for hazards
• Multi-issue “superscalar” processor
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Greater Instruction-Level Parallelism (ILP)

• Multiple issue “superscalar”
– Replicate pipeline stages => multiple pipelines
– Start multiple instructions per clock cycle
– CPI < 1, so use Instructions Per Cycle (IPC)
– E.g., 4GHz 4-way multiple-issue

• 16 BIPS, peak CPI = 0.25, peak IPC = 4

– But dependencies reduce this in practice
• “Out-of-Order” execution
– Reorder instructions dynamically in hardware to reduce 

impact of hazards

• Hyper-threading
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Pipelined RISC-V RV32I Datapath
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imm

Hyper-threading (simplified)

• Duplicate all elements that hold the state (registers)
• Use the same CL blocks
• Use muxes to select which state to use every clock cycle
• => run 2 independent processes

– No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, …)

• Speedup?       
– No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable 

resources (e.g. wait for memory)
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Intel Nehalem i7
• Hyperthreading:

– About 5% die area
– Up to 30% speed gain

(BUT also < 0% possible)
• Pipeline: 20-24 stages!
• Out-of-order execution

1. Instruction fetch.
2. Instruction dispatch to an instruction queue
3. Instruction: Wait in queue until input 

operands are available => instruction can 
leave queue before earlier, older instructions.

4. The instruction is issued to the appropriate 
functional unit and executed by that unit.

5. The results are queued.
6. Write to register only after all older 

instructions have their results written.
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Superscalar Processor
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Superscalar = Multicore?

• NO!

• Superscalar: More than one Instruction per clock cycle!

– Computing not a different thread!

– Computing instructions from the same program!

=> Higher throughput

• In Flynn's taxonomy (later in course):

– a single-core superscalar processor is classified as an SISD processor 

(Single Instruction stream, Single Data stream)

– But: most superscalar processors support short vector operations =>

those are then SIMD (Single Instruction stream, Multiple Data 

streams).

– And: nowadays most superscalar processors are multicore, too. 9

https://en.wikipedia.org/wiki/Superscalar_processor



“Iron Law” of Processor 
Performance
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Time   =   Instructions Cycles    Time
Program         Program         Instruction       Cycle

CPI = Cycles Per Instruction

� �
Can time Can count Can look up

CPI = Cycles   =   Time Instructions Time
Instruction  Program            Program           Cycle( )� �



Benchmark: CPI of Intel Core i7
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Calculating CPI Another Way

• First calculate CPI for each individual 
instruction (add, sub, and, etc.)

• Next calculate frequency of each individual 
instruction

• Finally multiply these two for each instruction 
and add them up to get final CPI (the 
weighted sum)
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Example (RISC processor)

Op Freqi CPIi Prod (% Time)

ALU 50% 1 .5 (23%)

Load 20% 5 1.0 (45%)

Store 10% 3 .3 (14%)

Branch 20% 2 .4 (18%)

2.2Instruction Mix (Where time spent)
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Agenda

• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)
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Complex Pipeline
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IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

• More than one Functional Unit
• Floating point execution!

• Fadd & Fmul: fixed number of cycles; > 1
• Fdiv: unknown number of cycles!

• Memory access: on Cache miss unknown number of cycles
• Issue: Assign instruction

to functional unit

GPRs
FPRs

GPRs: General Purpose Registers
FPRs: Floating Point Registers



Issues in Complex Pipeline Control
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IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPRs
FPRs

• Structural conflicts at the execution stage if some FPU or memory unit is not 
pipelined and takes more than one cycle
• Structural conflicts at the write-back stage due to variable latencies of different 
functional units
• Out-of-order write hazards due to variable latencies of different functional 
units



Modern Complex In-Order Pipeline

• Delay writeback so all operations 
have same latency to W stage
– Write ports never oversubscribed 

(one inst. in & one inst. out every 
cycle)

– Stall pipeline on long latency 
operations, e.g., divides, cache 
misses

Commit 
Point

PC
Inst. 
Mem D Decode X1 X2

Data 
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3

Unpipelined 
divider

How to prevent increased writeback latency 
from slowing down single cycle integer 
operations? Bypassing
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Agenda

• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)
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Static Multiple Issue
• aka.: Very Long Instruction Word (VLIW)
• Compiler bundles instructions together
• Compiler takes care of hazards
• CPU executes at the same time

19



Static Two-Issue RISC-V Datapath
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In-Order Superscalar Pipeline

• Fetch two instructions per cycle; 
issue both simultaneously if one is 
integer/memory and other is floating point

• Inexpensive way of increasing throughput, 
examples include Alpha 21064 (1992) & 
MIPS R5000 series (1996)

• Same idea can be extended to wider issue 
by duplicating functional units (e.g. 4-issue 
UltraSPARC & Alpha 21164) but regfile
ports and bypassing costs grow quickly

Commit 
Point

2
PC

Inst. 
Mem D

Dual
Decode X1 X2

Data 
Mem W+GPRs

X2 WFAdd X3

X3

FPRs X1

X2 FMul X3

X2FDiv X3
Unpipelined 
divider
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TA Discussion

/
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Q & A
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Quiz
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• Select statements that are true:

A. The number of clock cycles a floating point multiplier 
needs depends on the values of the operands.

B. The number of clock cycles a floating point divider needs 
depends on the values of the operands.

C. A hyperthreading CPU can execute more than one 
process/ thread at a given time

D. A superscalar CPU can execute more than one process/ 
thread at a given time.

E. A multi-core CPU can execute more than one process/ 
thread at a given time.
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Quiz
Piazza: “Online Lecture 13 Super Poll”
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Agenda

• Control Hazards
• Processor Performance
• Complex Pipelines
– Static Multiple Issues (VLIW)
– Dynamic Multiple Issues (Superscalar)
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Superscalar:
Dynamic Multiple Issue

• Hardware guarantees correct execution =>
– Compiler does not need to (but can) optimize

• Dynamic pipeline scheduling: 
– Re-order instructions based on:

• What functional units are free
• Avoiding of data hazards

– Reservation Station 
• Buffer of instructions waiting to be executed
• With operands (Registers) needed
• Once all operands are available: execute!

– Commit Unit (Reorder buffer): supply the operands to reservation 
station; write to register

– OR: Unified Physical Register File :
Registers are renamed for use in reservation station and commit unit
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Out of Order Issue 
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Program State

Waiting WaitingComputing

15   14  13  12 …
19
21
25
26

16
20
24

17
18
22
23

… 30  29  28  27

Memory

Architectual State 
(Registers & Memory) as 

if this Instruction is 
finished in in-order CPU.

Next Instructions
Done 
Instructions

Reservation 
Station

Commit
Unit

Functional Units 
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv  x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv  x7 , x15
23: mv  x8 , x16
24: mv  x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv  x6 , x7



Out of Order Issue 
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Program State

Waiting WaitingComputing

15   14  13  12 …
19
21
25
26

16 div x10 x9 x8
20 lw x13 8(x12)
24 mv x9 x17

17
18
22
23

… 30  29  28  27

Memory

Architectual State 
(Registers & Memory) as 

if this Instruction is 
finished in in-order CPU.

Next Instructions
Done 
Instructions

Reservation 
Station

Commit
Unit

Functional Units 
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv  x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv  x7 , x15
23: mv  x8 , x16
24: mv  x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv  x6 , x7

CPU Cycle: 1000



Out of Order Issue 
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Program State

Waiting WaitingComputing

18   17  16  15 …
21
26
27
28

20 lw x13 8(x12)
19 add x11 x10      

x12
25 div x7 x7 x8

22
23
24

… 32  31  30  29 

Memory

Architectual State 
(Registers & Memory) as 

if this Instruction is 
finished in in-order CPU.

Next Instructions
Done 
Instructions

Reservation 
Station

Commit
Unit

Functional Units 
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv  x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv  x7 , x15
23: mv  x8 , x16
24: mv  x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv  x6 , x7

CPU Cycle: 1001

* 16 finished =>
16, 17, 18 committed
* 16 computed x10 
=> 19 can run
* division unit free
=> 25 can run
* 24 finished
* 27, 28 were fetched



Out of Order Issue 
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Program State

Waiting WaitingComputing

20   19 18  17  …
26
27
28
29

25 div x7 x7 x8
21 lw x14 8(x10)

22
23
24

… 33 32  31  30

Memory

Architectual State 
(Registers & Memory) as 

if this Instruction is 
finished in in-order CPU.

Next Instructions
Done 
Instructions

Reservation 
Station

Commit
Unit

Functional Units 
(ALU, Memory)

15: add x9 , x9 , x9
16: div x10, x9 , x8
17: mv  x12, x6
18: add x12, x12, x6
19: add x11, x10, x12
20: lw x13, 8(x12)
21: lw x14, 8(x10)
22: mv  x7 , x15
23: mv  x8 , x16
24: mv  x9 , x17
25: div x7 , x7 , x8
26: sw x10, 0(x12)
27: mv  x6 , x7

CPU Cycle: 1002

* 20 & 19 finished =>
20 & 19 committed
* mem unit free =>
21 can run
* 26 still waiting for 
mem unit
* 27 waiting for 25



Phases of Instruction Execution
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Fetch: Instruction bits retrieved from 
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to 
functional units. When execution completes, 
all results and exception flags are available.

Decode: Instructions dispatched to 
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates 
architectural state (aka “graduation”), or 
takes precise trap/interrupt.

PC

Commit

Decode/Rename



Separating Completion from Commit

• Re-order buffer (ROB) holds register results from 
completion until commit
– Entries allocated in program order during decode
– Buffers completed values and exception state until in-order commit 

point
– Completed values can be used by dependents before committed 

(bypassing)
– Each entry holds program counter, instruction type, destination 

register specifier and value if any, and exception status (info often 
compressed to save hardware)
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In-Order versus 
Out-of-Order Phases

• Instruction fetch/decode/rename always in-order
– Need to parse ISA sequentially to get correct semantics
– Proposals for speculative OoO instruction fetch, e.g., Multiscalar.  

Predict control flow and data dependencies across sequential program 
segments fetched/decoded/executed in parallel, fixup if prediction 
wrong

• Dispatch (place instruction into machine buffers to 
wait for issue) also always in-order
– Some use “Dispatch” to mean “Issue”
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In-Order Versus Out-of-Order Issue
• In-order (InO) issue:
– Issue stalls on read after write (RAW), dependencies or 

structural hazards, or possibly write after read (WAR), 
write after write (WAW) hazards

– Instruction cannot issue to execution units unless all 
preceding instructions have issued to execution units

• Out-of-order (OoO) issue:
– Instructions dispatched in program order to reservation 

stations (or other forms of instruction buffer) to wait for 
operands to arrive, or other hazards to clear

– While earlier instructions wait in issue buffers, following 
instructions can be dispatched and issued out-of-order
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In-Order versus 
Out-of-Order Completion

• All but simplest machines have out-of-order 
completion, due to different latencies of functional 
units and desire to bypass values as soon as available

• Classic RISC V-stage integer pipeline just barely has 
in-order completion
– Load takes two cycles, but following one-cycle integer op completes at 

same time, not earlier
– Adding pipelined FPU immediately brings OoO completion

37



Superscalar Intel Processors

• Pentium 4: Marketing demanded higher clock rate => 
deeper pipelines & high power consumption

• Afterwards: Multi-core processors
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Arm Cortex A53 & Intel Core i7 920
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ARM Cortex A53 Pipeline

40

• Prediction 1 clock cycle! Predict: branches, future function returns; 8 clock 
cycles on mis-prediction (flush pipeline)



Speculative & Out-of-Order Execution

41



Intel Nehalem i7
• Hyperthreading:

– About 5% die area
– Up to 30% speed gain

(BUT also < 0% possible)
• Pipeline: 20-24 stages!
• Out-of-order execution

1. Instruction fetch.
2. Instruction dispatch to an instruction queue
3. Instruction: Wait in queue until input 

operands are available => instruction can 
leave queue before earlier, older instructions.

4. The instruction is issued to the appropriate 
functional unit and executed by that unit.

5. The results are queued.
6. Write to register only after all older 

instructions have their results written.
42



Benchmark: CPI of Intel Core i7
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CPI = 1



“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

• Managed as circular buffer in program order, new instructions dispatched to 
free slots, oldest instruction committed/reclaimed when done (“p” bit set 
on result)

• Tag is given by index in ROB (Free pointer value)
• In dispatch, non-busy source operands read from architectural register file 

and copied to Src1 and Src2 with presence bit “p” set.  Busy operands copy 
tag of producer and clear “p” bit.

• Set valid bit “v” on dispatch, set issued bit “i” on issue
• On completion, search source tags, set “p” bit and copy data into src on tag 

match.  Write result and exception flags to ROB.
• On commit, check exception status, and copy result into architectural 

register file if no trap.

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free

44



Managing Rename for Data-in-ROB

• If “p” bit set, then use value in architectural register file

• Else, tag field indicates instruction that will/has produced value

• For dispatch, read source operands <p,tag,value> from arch. regfile, 
then also read <p,result> from producing instruction in ROB at tag 
index, bypassing as needed. Copy operands to ROB.

• Write destination arch. register entry with  <0,Free,_>, to assign tag 
to ROB index of this instruction

• On commit, update arch. regfile with <1, _, Result>

• On trap, reset table (All p=1)

45

Tagp Value
Tagp Value
Tagp Value

Tagp Value

One entry per 
architectural 
register

Rename table 
associated with 
architectural 
registers, 
managed in 
decode/dispatch



ROB

Data Movement in Data-in-ROB Design
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Architectural Register 
File

Read operands 
during decode

Read 
operands at 
issue

Functional Units

Read results for 
commit

Bypass newer 
values at dispatch

Result 
Data

Write results at 
completion

Write results at 
commit

Source 
Operands

Write sources 
in dispatch



Reorder Buffer Holds Active Instructions
(Decoded but not Committed)
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(Older instructions)

(Newer instructions)

Cycle t

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

Commit

Fetch

Cycle t + 1

Execute

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

ROB contents



Register Renaming

• Programmers/ Compilers (have to) re-use 
registers for different, unrelated purposes

• Idea: Re-name on the fly to resolve (fake) 
dependencies (anti-dependency)

• Additional benefit: CPU can have more physical 
registers than ISA!
– Alpha 21264 CPU has 80 integer register; ISA only 32
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Alternative to ”Data-in-ROB”:
Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

• Rename all architectural registers into a single physical 
register file during decode, no register values read

• Functional units read and write from single unified register file 
holding committed and temporary registers in execute

• Commit only updates mapping of architectural register to 
physical register, no data movement

49

Unified Physical 
Register File

Read operands at issue

Functional Units

Write results at completion

Committed 
Register 
Mapping

Decode Stage 
Register 
Mapping



Lifetime of Physical Registers
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ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
When next writer of same architectural register commits

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)



Conclusion

• “Iron Law” of Processor Performance to 
estimate speed

• Complex Pipelines: more in CA II
• Multiple Functional Units => Parallel execution

– Static Multiple Issues (VLIW)
• E.g. 2 instructions per cycle

– Dynamic Multiple Issues (Superscalar)
• Re-order instructions
• Issue Buffer; Re-order Buffer; Commit Unit
• Re-naming of registeres
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• Select statements that are true:

A. In-order processors have a CPI >= 1
B. More stages allow a higher clock frequency
C. Through hyperthreading we can get a CPI < 0
D. OoO pipelines need speculation
E. We can run the same binary machine code 

on a single cycle CPU AND on an superscalar 
CPU 52

Quiz
Piazza: “Video Lecture 13 Super Poll”


