
CS 110
Computer Architecture

Lecture 14:
Caches Part I

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Admin

• P 1.2 due today!
– Can use slip days…

• Project 2.1 will be published very soon.

• Midterm: Hopefully on-site later in the
semester
– Contents: More or less everything up to then

2

Cache Agenda
• Cache Lecture I

– Caches Introduction
– Principle of Locality
– Simple Cache
– Direct Mapped & Set-Associative Caches

• Cache Lecture II
– Stores to Caches
– Cache Performance
– Cache Misses

• Cache Lecture III
– Multi-Level Caches
– Cache Configurations
– Cache Examples

• …
• Lecture: Cache Coherence (Caches for multi-core computers)
• Lecture: Advanced Caches

3

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
4

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory (Cache)

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Processor

Control

Datapath

Components of a Computer

5

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Problem: Large memories slow?
Library Analogy

• Finding a book in a large library takes time
– Takes time to search a large card catalog – (mapping

title/author to index number)
– Round-trip time to walk to the stacks and retrieve the

desired book.
• Larger libraries makes both delays worse
• Electronic memories have the same issue, plus

the technologies that we use to store an
individual bit get slower as we increase density
(SRAM versus DRAM versus Magnetic Disk)

6However what we want is a large yet fast memory!

Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access
2017 microprocessor executes ~1000 instructions in same time as DRAM access

Slow DRAM access has disastrous impact on CPU performance!

Great Idea #3: Principle of Locality /
Memory Hierarchy

Note: These names
are a bit dated

Big Idea: Memory Hierarchy
Processor

Size of memory at each level

Increasing
distance from

processor,
decreasing

speed

Level 1

Level 2

Level n

Level 3

. . .

Inner

Outer

Levels in
memory
hierarchy

As we move to outer levels the latency goes up
and price per bit goes down.

9

What to do: Library Analogy
• Want to write a report using library books
• Go to library, look up relevant books, fetch from

stacks, and place on desk in library
• If need more, check them out and keep on desk
– But don’t return earlier books since might need

them
• You hope this collection of ~10 books on desk

enough to write report, despite 10 being only a
tiny fraction of books available

10

Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual
Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
em

or
y

Ad
dr

es
s (

on
e

do
t p

er
 a

cc
es

s)

Big Idea: Locality

• Temporal Locality (locality in time)
– If a memory location is referenced, then it will

tend to be referenced again soon

• Spatial Locality (locality in space)
– If a memory location is referenced, the locations

with nearby addresses will tend to be referenced
soon

12

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y

Ad
dr

es
s (

on
e

do
t p

er
 a

cc
es

s)

Spatial
Locality

Temporal
Locality

Principle of Locality

• Principle of Locality: Programs access small
portion of address space at any instant of time
(spatial locality) and repeatedly access that
portion (temporal locality)

• What program structures lead to temporal
and spatial locality in instruction accesses?

• In data accesses?

14

Memory Reference Patterns
Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

vector access

scalar accesses

And the Bane of Locality: Pointer
Chasing...

• We all love linked lists, trees, etc...
– Easy to append onto and manipulate...

• But they have horrid locality preferences
– Every time you follow a pointer it is to an unrelated location:

No spacial reuse from previous pointers
– And if you don't chase the pointers again you don't get temporal

reuse either
• Why modern languages tend to do things a bit differently.

For example, go has "slices" and "maps":
– Slice, easy to append to to array

• Only copies on append when you overwhelm the size
– Map, a hash table implementation

• But without nearly so much pointer chasing

16

Cache Philosophy
• Programmer-invisible hardware mechanism to

give illusion of speed of fastest memory with size
of largest memory
– Works fine even if programmer has no idea what a

cache is
– However, performance-oriented programmers today

sometimes “reverse engineer” cache design to design
data structures to match cache

– And modern programming languages try to provide
storage abstractions that provide flexibility while still
caching well

• Does have limits: When you overwhelm the cache
your performance may drop off a cliff...

17

Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

RegFile

Main
Memory
(DRAM)D

ata
Cache

Instr
Cache

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

18

• Principle of locality + memory hierarchy presents programmer with
≈ as much memory as is available in the cheapest technology at the
≈ speed offered by the fastest technology

Cost/bit: highest lowest

Third-
Level
Cache

(SRAM)

How is the Hierarchy Managed?

• registers « memory
– By compiler (or assembly level programmer)

• cache « main memory
– By the cache controller hardware

• main memory « disks (secondary storage)
– By the operating system (virtual memory)
– Virtual to physical address mapping assisted by the

hardware (‘translation lookaside buffer’ or TLB)
– By the programmer (files)

Also a type of cache

Memory Access without Cache

• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99

1. Processor issues address 1022ten to Memory
2. Memory reads word at address 1022ten (99)
3. Memory sends 99 to Processor
4. Processor loads 99 into register t0

20

Processor

Control

Datapath

Adding Cache to Computer

21

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Memory Access with Cache
• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99
• With cache: Processor issues address 1022ten to

Cache
1. Cache checks to see if has copy of data at address

1022ten
2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory

I. Memory reads 99 at address 1022ten
II. Memory sends 99 to Cache
III. Cache replaces word with new 99
IV. Cache sends 99 to processor

2. Processor loads 99 into register t0
22

TA Discussion

Mengying Wu

23

Q & A

24

Quiz

25

• Select statements that are true:

A. The assembly programmer/ compiler has to use the cache
correctly to ensure the correct execution of the program.

B. The assembly programmer/ compiler has to use the main
memory correctly to ensure the correct execution of the
program.

C. Random accesses to memory will benefit very little from
caches.

D. We use a hierarchy of caches to give the programmer the
illusion of having memory as big as the biggest memory
with almost the speed of the fastest memory.

26

Quiz
Piazza: “Online Lecture 14 $ Poll”

CS 110
Computer Architecture

Lecture 14:
Caches Part I

Video 2: Cache Details
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

27
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Memory Access with Cache
• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99
• With cache: Processor issues address 1022ten to

Cache
1. Cache checks to see if has copy of data at address

1022ten
2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory

I. Memory reads 99 at address 1022ten
II. Memory sends 99 to Cache
III. Cache replaces word with new 99
IV. Cache sends 99 to processor

2. Processor loads 99 into register t0
28

Cache “Tags”
• Need way to tell if have copy of location in

memory so that can decide on hit or miss
• On cache miss, put memory address of block

in “tag address” of cache block
1022 placed in tag next to data from memory (99)

29

Tag (= Address in this simple example) Data

252 12
1022 99
131 7

2041 20

From earlier
instructions

Anatomy of a
16 Byte Cache,

4 Byte Block
• Operations:

1. Cache Hit
2. Cache Miss
3. Refill cache from

memory

• Cache needs Address
Tags to decide if
Processor Address is a
Cache Hit or Cache Miss
– Compares all 4 tags

30

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

Tag Data

252 12
1022 99
131 7

2041 20

Tag Data

252 12
1022 99
511 11

2041 20

Cache Replacement
• Suppose processor now requests location 511, which

contains 11?
• Doesn’t match any cache block, so must “evict” one

resident block to make room
– Which block to evict?

• Replace “victim” with new memory block at address 511

31

Block Must be Aligned in Memory

• Word blocks are aligned, so binary address of
all words in cache always ends in 00two

• How to take advantage of this to save
hardware and energy?

• Don’t need to compare last 2 bits of 32-bit
byte address (comparator can be narrower)

=> Don’t need to store last 2 bits of 32-bit byte
address in Cache Tag (Tag can be narrower)

32

Anatomy of a 32B
Cache, 8B Block

33

• Blocks must be aligned
in pairs, otherwise
could get same word
twice in cache

Ø Tags only have even-
numbered words

Ø Last 3 bits of address
always 000two

Ø Tags, comparators can
be narrower

• Can get hit for either
word in block

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

42
1947

12

130
2040

1000
7
20

-10

Hardware Cost of
Cache

• Need to compare
every tag to the
Processor address

• Comparators are
expensive

3434

32-bit
Address

32-bit
Data

Cache
32-bit

Address
32-bit
Data

Memory

Tag Data

Tag Data

Tag Data

Tag Data

Processor

Set Associative
Cache

3535

Processor

32-bit
Address

32-bit
Data

Cache
32-bit

Address
32-bit
Data

Memory

Tag Data

Tag Data

Set 0

Set 1

• Optimization: use 2
“sets” => ½ comparators

• 1 Address bit selects
which set

• Compare only tags from
selected set

• Generalize to more sets:
– Need as many

comparitors as tags in a
set

Set Associative
Cache

• Optimization: use 2
“sets” => ½ comparators

• 1 Address bit selects
which set

• Compare only tags from
selected set

• Generalize to more sets:
– Need as many

comparitors as tags in a
set

– Don’t need extra mux
per comparitor – tags
and data are memory –
have mux inside! 3636

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

Tag Data

Tag Data

Set 0

Set 1

Processor Address Fields used by

Cache Controller
• Block Offset: Byte address within block

• Set Index: Selects which set

• Tag: Remaining portion of processor address

• Size of Index = log2 (number of sets)

• Size of Tag = Address size – Size of Index

– log2 (number of bytes/block)

Block offsetSet IndexTag

37

Processor Address (32-bits total)

What is limit to number of sets?
• For a given total number of blocks, we can

save more comparators if have more than 2
sets

• Limit: As Many Sets as Cache Blocks => only
one block per set – only needs one
comparator!

• Called “Direct-Mapped” Design

38

Block offsetIndexTag

Direct Mapped Cache Ex:
Mapping a 6-bit Memory Address

• In example, block size is 4 bytes/1 word

• Memory and cache blocks always the same size, unit of transfer between
memory and cache

• # Memory blocks >> # Cache blocks
– 16 Memory blocks = 16 words = 64 bytes => 6 bits to address all bytes

– 4 Cache blocks, 4 bytes (1 word) per block

– 4 Memory blocks map to each cache block

• Memory block to cache block, aka index: middle two bits

• Which memory block is in a given cache block, aka tag: top two bits
39

05 1

Byte Within Block

Byte Offset

23

Block Within $

4

Mem Block Within
$ Block

Tag Index

One More Detail: Valid Bit

• When start a new program, cache does not
have valid information for this program

• Need an indicator whether this tag entry is
valid for this program

• Add a “valid bit” to the cache tag entry
0 => cache miss, even if by chance, address = tag
1 => cache hit, if processor address = tag

40

Caching: A Simple First Example

00
01
10
11

Cache Main Memory

Q: Where in the cache is
the mem block?

Use 2 middle memory
address bits – the index
– to determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q: Is the memory block in
cache?
Compare the cache tag to the
high-order 2 memory address
bits to tell if the memory
block is in the cache
(provided valid bit is set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits (xx)
define the byte in the
block (32b words)

Index

416bit Memory Address

• One word blocks, cache size = 1K words (or 4KB)

Direct-Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte offset

What kind of locality are we taking advantage of?

20

Data

32

Hit

42

Valid bit
ensures

something
useful in

cache for
this index

Compare
Tag with

upper part
of Address
to see if a

Hit

Read
data
from
cache
instead
of
memory
if a Hit

Comparator

• Four words/block, cache size = 1K words

Multiword-Block Direct-Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0 Byte offset

20

20Tag

Hit

What kind of locality are we taking advantage of?
43

2

Data

32

Word offset

Cache Names for Each Organization
• “Fully Associative”: Line can go anywhere
– First design in lecture
– Note: No Index field, but 1 comparator/ line

• “Direct Mapped”: Line goes one place
– Note: Only 1 comparator
– Number of sets = number blocks

• “N-way Set Associative”: N places for a line
– Number of sets = number of lines/ N
– N comparators
– Fully Associative: N = number of lines
– Direct Mapped: N = 1

44

Range of Set-Associative Caches
• For a fixed-size cache, and a given block size, each

increase by a factor of 2 in associativity doubles the
number of blocks per set (i.e., the number of “ways”)
and halves the number of sets –
• decreases the size of the index by 1 bit and

increases the size of the tag by 1 bit

45

Block offsetIndexTag

More Associativity (more ways)

Total Cash Capacity =

46

Associativity * # of sets * block_size
Bytes = blocks/set * sets * Bytes/block

Byte OffsetTag Index

C = N * S * B

address_size = tag_size + index_size + offset_size
= tag_size + log2(S) + log2(B)

And In Conclusion, …

47

• Principle of Locality for Libraries /Computer
Memory

• Hierarchy of Memories (speed/size/cost per
bit) to Exploit Locality

• Cache – copy of data lower level in memory
hierarchy

• Direct Mapped to find block in cache using Tag
field and Valid bit for Hit

• For a cache with constant total capacity, if we
increase the number of ways by a factor of 2,
what are the FALSE statement(s)?:

A: The number of sets could be doubled
B: The tag width could decrease
C: The block size could stay the same
D: The block size could be halved
E: Tag width must increase

48

Quiz
Piazza: “Video Lecture 14 $ Poll”

