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Admin

• P 1.2 due today!
– Can use slip days…

• Project 2.1 will be published very soon.

• Midterm: Hopefully on-site later in the 
semester
– Contents: More or less everything up to then
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Cache Agenda
• Cache Lecture I

– Caches Introduction
– Principle of Locality
– Simple Cache 
– Direct Mapped & Set-Associative Caches

• Cache Lecture II
– Stores to Caches
– Cache Performance
– Cache Misses

• Cache Lecture III
– Multi-Level Caches
– Cache Configurations
– Cache Examples

• …
• Lecture: Cache Coherence (Caches for multi-core computers)
• Lecture: Advanced Caches
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New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
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Problem: Large memories slow?
Library Analogy

• Finding a book in a large library takes time
– Takes time to search a large card catalog – (mapping 

title/author to index number)
– Round-trip time to walk to the stacks and retrieve the 

desired book.
• Larger libraries makes both delays worse
• Electronic memories have the same issue, plus 

the technologies that we use to store an 
individual bit get slower as we increase density 
(SRAM versus DRAM versus Magnetic Disk)

6However what we want is a large yet fast memory! 



Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access
2017 microprocessor executes ~1000 instructions in same time as DRAM access

Slow DRAM access has disastrous impact on CPU performance! 



Great Idea #3: Principle of Locality / 
Memory Hierarchy

Note: These names
are a bit dated



Big Idea: Memory Hierarchy
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and price per bit goes down. 
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What to do: Library Analogy
• Want to write a report using library books
• Go to library, look up relevant books, fetch from 

stacks, and place on desk in library
• If need more, check them out and keep on desk
– But don’t return earlier books since might need 

them
• You hope this collection of ~10 books on desk 

enough to write report, despite 10 being only a 
tiny fraction of books available 
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Real Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual 
Memory. IBM Systems Journal 10(3): 168-192 (1971)
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Big Idea: Locality

• Temporal Locality (locality in time)
– If a memory location is referenced, then it will 

tend to be referenced again soon

• Spatial Locality (locality in space)
– If a memory location is referenced, the locations 

with nearby addresses will tend to be referenced 
soon
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Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program 
Restructuring for Virtual Memory. IBM Systems 
Journal 10(3): 168-192 (1971)
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Principle of Locality

• Principle of Locality: Programs access small 
portion of address space at any instant of time 
(spatial locality) and repeatedly access that 
portion (temporal locality)

• What program structures lead to temporal 
and spatial locality in instruction accesses? 

• In data accesses?
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And the Bane of Locality: Pointer 
Chasing...

• We all love linked lists, trees, etc... 
– Easy to append onto and manipulate... 

• But they have horrid locality preferences
– Every time you follow a pointer it is to an unrelated location: 

No spacial reuse from previous pointers
– And if you don't chase the pointers again you don't get temporal 

reuse either 
• Why modern languages tend to do things a bit differently. 

For example, go has "slices" and "maps": 
– Slice, easy to append to to array 

• Only copies on append when you overwhelm the size 
– Map, a hash table implementation 

• But without nearly so much pointer chasing 
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Cache Philosophy
• Programmer-invisible hardware mechanism to 

give illusion of speed of fastest memory with size 
of largest memory
– Works fine even if programmer has no idea what a 

cache is
– However, performance-oriented programmers today 

sometimes “reverse engineer” cache design to design 
data structures to match cache

– And modern programming languages try to provide 
storage abstractions that provide flexibility while still 
caching well

• Does have limits: When you overwhelm the cache 
your performance may drop off a cliff...
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• Principle of locality + memory hierarchy presents programmer with 
≈ as much memory as is available in the cheapest technology at the 
≈ speed offered by the fastest technology

Cost/bit:         highest                                                                                                 lowest
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How is the Hierarchy Managed?

• registers « memory
– By compiler (or assembly level programmer)

• cache « main memory
– By the cache controller hardware

• main memory « disks (secondary storage)
– By the operating system (virtual memory)
– Virtual to physical address mapping assisted by the 

hardware (‘translation lookaside buffer’ or TLB)
– By the programmer (files)

Also a type of cache



Memory Access without Cache

• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99

1. Processor issues address 1022ten to Memory
2. Memory reads word at address 1022ten (99)
3. Memory sends 99 to Processor
4. Processor loads 99 into register t0
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Memory Access with Cache
• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99
• With cache: Processor issues address 1022ten to 

Cache
1. Cache checks to see if has copy of data at address 

1022ten
2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory

I. Memory reads 99 at address 1022ten
II. Memory sends 99 to Cache
III. Cache replaces word with new 99
IV. Cache sends 99 to processor

2. Processor loads 99 into register t0
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TA Discussion

Mengying Wu
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Q & A
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Quiz
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• Select statements that are true:

A. The assembly programmer/ compiler has to use the cache 
correctly to ensure the correct execution of the program.

B. The assembly programmer/ compiler has to use the main 
memory correctly to ensure the correct execution of the 
program.

C. Random accesses to memory will benefit very little from 
caches.

D. We use a hierarchy of caches to give the programmer the 
illusion of having memory as big as the biggest memory 
with almost the speed of the fastest memory.  

26

Quiz
Piazza: “Online Lecture 14 $ Poll”



CS 110
Computer Architecture 

Lecture 14: 
Caches Part I

Video 2: Cache Details
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

27
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/


Memory Access with Cache
• Load word instruction: lw t0,0(t1)
• t1 contains 1022ten, Memory[1022] = 99
• With cache: Processor issues address 1022ten to 

Cache
1. Cache checks to see if has copy of data at address 

1022ten
2a. If finds a match (Hit): cache reads 99, sends to processor
2b. No match (Miss): cache sends address 1022 to Memory

I. Memory reads 99 at address 1022ten
II. Memory sends 99 to Cache
III. Cache replaces word with new 99
IV. Cache sends 99 to processor

2. Processor loads 99 into register t0
28



Cache “Tags”
• Need way to tell if have copy of location in 

memory so that can decide on hit or miss
• On cache miss, put memory address of block 

in “tag address” of cache block
1022 placed in tag next to data from memory (99)
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Anatomy of a 
16 Byte Cache, 

4 Byte Block
• Operations:

1. Cache Hit
2. Cache Miss
3. Refill cache from 

memory

• Cache needs Address 
Tags to decide if 
Processor Address is a 
Cache Hit or Cache Miss
– Compares all 4 tags
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Tag Data

252 12
1022 99
131 7

2041 20

Tag Data

252 12
1022 99
511 11

2041 20

Cache Replacement
• Suppose processor now requests location 511, which 

contains 11?
• Doesn’t match any cache block, so must “evict” one 

resident block to make room
– Which block to evict?

• Replace “victim” with new memory block at address 511
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Block Must be Aligned in Memory

• Word blocks are aligned, so binary address of 
all words in cache always ends in 00two

• How to take advantage of this to save 
hardware and energy?

• Don’t need to compare last 2 bits of 32-bit 
byte address (comparator can be narrower)

=> Don’t need to store last 2 bits of 32-bit byte 
address in Cache Tag (Tag can be narrower)
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Anatomy of a 32B 
Cache, 8B Block
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• Blocks must be aligned 
in pairs, otherwise 
could get same word 
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Ø Tags only have even-
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Ø Last 3 bits of address 
always 000two

Ø Tags, comparators can 
be narrower 

• Can get hit for either 
word in block
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Hardware Cost of 
Cache

• Need to compare 
every tag to the 
Processor address

• Comparators are 
expensive
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Set Associative 
Cache
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Set Associative 
Cache

• Optimization: use 2 
“sets” => ½ comparators

• 1 Address bit selects 
which set

• Compare only tags from 
selected set

• Generalize to more sets:
– Need as many 

comparitors as tags in a 
set

– Don’t need extra mux 
per comparitor – tags 
and data are memory –
have mux inside! 3636
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Processor Address Fields used by 

Cache Controller
• Block Offset: Byte address within block

• Set Index: Selects which set

• Tag: Remaining portion of processor address

• Size of Index = log2 (number of sets)

• Size of Tag = Address size – Size of Index 

– log2 (number of bytes/block)

Block offsetSet IndexTag
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Processor Address (32-bits total)



What is limit to number of sets?
• For a given total number of blocks, we can 

save more comparators if have more than 2 
sets

• Limit: As Many Sets as Cache Blocks => only 
one block per set – only needs one 
comparator! 

• Called “Direct-Mapped” Design
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Direct Mapped Cache Ex: 
Mapping a 6-bit Memory Address

• In example, block size is 4 bytes/1 word

• Memory and cache blocks always the same size, unit of transfer between 
memory and cache

• # Memory blocks >> # Cache blocks
– 16 Memory blocks = 16 words = 64 bytes => 6 bits to address all bytes

– 4 Cache blocks, 4 bytes (1 word) per block

– 4 Memory blocks map to each cache block

• Memory block to cache block, aka index: middle two bits

• Which memory block is in a given cache block, aka tag: top two bits
39
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One More Detail: Valid Bit

• When start a new program, cache does not 
have valid information for this program

• Need an indicator whether this tag entry is 
valid for this program

• Add a “valid bit” to the cache tag entry
0 => cache miss, even if by chance, address = tag
1 => cache hit, if processor address = tag
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Caching:  A Simple First Example

00
01
10
11

Cache Main Memory

Q: Where in the cache is 
the mem block?

Use 2 middle memory 
address bits – the index 
– to determine which 
cache block (i.e., 
modulo the number of 
blocks in the cache)

Tag Data

Q: Is the memory block in 
cache?
Compare the cache tag to the 
high-order 2 memory address 
bits to tell if the memory 
block is in the cache 
(provided valid bit is set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits (xx) 
define the byte in the 
block (32b words)

Index

416bit Memory Address



• One word blocks, cache size = 1K words (or 4KB)

Direct-Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .                 13 12  11     . . .          2  1  0
Byte offset

What kind of locality are we taking advantage of?

20

Data
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• Four  words/block, cache size = 1K words

Multiword-Block Direct-Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .                 13 12  11    . . .    4  3  2  1  0 Byte offset

20

20Tag

Hit

What kind of locality are we taking advantage of?
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Cache Names for Each Organization
• “Fully Associative”: Line can go anywhere
– First design in lecture
– Note: No Index field, but 1 comparator/ line

• “Direct Mapped”: Line goes one place 
– Note: Only 1 comparator
– Number of sets = number blocks

• “N-way Set Associative”: N places for a line
– Number of sets = number of lines/ N
– N comparators
– Fully Associative: N = number of lines
– Direct Mapped: N = 1
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Range of Set-Associative Caches
• For a fixed-size cache, and a given block size, each 

increase by a factor of 2 in associativity doubles the 
number of blocks per set (i.e., the number of “ways”) 
and halves the number of sets –
• decreases the size of the index by 1 bit and 

increases the size of the tag by 1 bit
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More Associativity (more ways)



Total Cash Capacity =

46

Associativity *  # of sets  *  block_size
Bytes = blocks/set  *  sets  *  Bytes/block 

Byte OffsetTag Index

C = N *  S  *  B

address_size = tag_size + index_size + offset_size
= tag_size + log2(S) + log2(B)



And In Conclusion, …
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• Principle of Locality for Libraries /Computer 
Memory

• Hierarchy of Memories (speed/size/cost per 
bit) to Exploit Locality

• Cache – copy of data lower level in memory 
hierarchy

• Direct Mapped to find block in cache using Tag 
field and Valid bit for Hit



• For a cache with constant total capacity,  if we 
increase the number of ways by a factor of 2, 
what are the FALSE statement(s)?:

A: The number of sets could be doubled
B: The tag width could decrease
C: The block size could stay the same
D: The block size could be halved
E:  Tag width must increase
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