
CS 110
Computer Architecture

Lecture 18:
Amdahl’s Law, Data-level Parallelism

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
2

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory (Cache)

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Today’s
Lecture

Why Parallel Processing?

• CPU Clock Rates are no longer increasing
– Technical & economic challenges
• Advanced cooling technology too expensive or

impractical for most applications
• Energy costs are prohibitive

• Parallel processing is only path to higher
speed

3

Using Parallelism for Performance

• Two basic ways:
– Multiprogramming
• run multiple independent programs in parallel
• “Easy”

– Parallel computing
• run one program faster
• “Hard”

• We’ll focus on parallel computing for next few
lectures

4

Single-Instruction/Single-Data Stream
(SISD)

• Sequential computer
that exploits no
parallelism in either the
instruction or data
streams. Examples of
SISD architecture are
traditional uniprocessor
machines
– E.g. Our RISC-V

processor
– Superscalar is SISD

because programming
model is sequential

5

Processing Unit

This is what we did up to now in CA.

Single-Instruction/Multiple-Data Stream
(SIMD or “sim-dee”)

• SIMD computer exploits
multiple data streams
against a single
instruction stream to
operations that may be
naturally parallelized,
e.g., Intel SIMD
instruction extensions
or NVIDIA Graphics
Processing Unit (GPU)

6
Today’s topic.

Multiple-Instruction/Multiple-Data Streams
(MIMD or “mim-dee”)

• Multiple autonomous
processors
simultaneously
executing different
instructions on different
data.
– MIMD architectures

include multicore and
Warehouse-Scale
Computers

7

Instruction Pool

PU

PU

PU

PU

Da
ta

 P
oo

l

Next lecture & following.

Multiple-Instruction/Single-Data Stream
(MISD)

• Multiple-Instruction,
Single-Data stream
computer that exploits
multiple instruction
streams against a single
data stream.
– Rare, mainly of historical

interest only

8
Few applications. Not covered in CA.

Flynn* Taxonomy, 1966

• Since about 2013, SIMD and MIMD most common parallelism
in architectures – usually both in same system!

• Most common parallel processing programming style: Single
Program Multiple Data (“SPMD”)
– Single program that runs on all processors of a MIMD
– Cross-processor execution coordination using synchronization

primitives
• SIMD (aka hw-level data parallelism): specialized function

units, for handling lock-step calculations involving arrays
– Scientific computing, signal processing, multimedia

(audio/video processing)

9

*Prof. Michael
Flynn, Stanford

Big Idea: Amdahl’s (Heartbreaking) Law
• Speedup due to enhancement E is

Speedup w/ E = ----------------------
Exec time w/o E

Exec time w/ E

• Suppose that enhancement E accelerates a fraction F (F <1)
of the task by a factor S (S>1) and the remainder of the task is
unaffected

Execution Time w/ E =

Speedup w/ E =
10

Execution Time w/o E x [(1-F) + F/S]

1 / [(1-F) + F/S]

Big Idea: Amdahl’s Law

11

Speedup = 1

(1 - F) + F
SNon-speed-up part Speed-up part

1

0.5 + 0.5
2

1

0.5 + 0.25
= = 1.33

Example: the execution time of half of the program can
be accelerated by a factor of 2.
What is the program speed-up overall?

Example #1: Amdahl’s Law

• Consider an enhancement which runs 20 times faster but

which is only usable 25% of the time

Speedup w/ E = 1/(.75 + .25/20) = 1.31

• What if its usable only 15% of the time?

Speedup w/ E = 1/(.85 + .15/20) = 1.17

• Amdahl’s Law tells us that to achieve linear speedup with

100 processors, none of the original computation can be

scalar!

• To get a speedup of 90 from 100 processors, the

percentage of the original program that could be scalar

would have to be 0.1% or less

Speedup w/ E = 1/(.001 + .999/100) = 90.99
12

Speedup w/ E = 1 / [(1-F) + F/S]

13

If the portion of
the program that
can be parallelized
is small, then the
speedup is limited

The non-parallel
portion limits
the performance

Strong and Weak Scaling
• To get good speedup on a parallel processor while

keeping the problem size fixed is harder than getting
good speedup by increasing the size of the problem.
– Strong scaling: when speedup can be achieved on a

parallel processor without increasing the size of the
problem

– Weak scaling: when speedup is achieved on a parallel
processor by increasing the size of the problem
proportionally to the increase in the number of processors

• Load balancing is another important factor: every
processor doing same amount of work
– Just one unit with twice the load of others cuts speedup

almost in half

14

SIMD Architectures
• Data parallelism: executing same operation

on multiple data streams
• Example to provide context:

– Multiplying a coefficient vector by a data vector
(e.g., in filtering)
y[i] := c[i]× x[i], 0 ≤ i < n

• Sources of performance improvement:
– One instruction is fetched & decoded for entire

operation
– Multiplications are known to be independent
– Pipelining/ concurrency in memory access as well
– Special functional units may be faster

15

16

Intel “Advanced Digital Media Boost”

• To improve performance, Intel’s SIMD instructions
– Fetch one instruction, do the work of multiple instructions

17

First SIMD Extensions:
MIT Lincoln Labs TX-2, 1957

Intel SIMD Extensions

• MMX 64-bit registers, reusing floating-point
registers [1992]

18

Intel Advanced Vector eXtensions AVX

19
https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/

https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/

Intel Architecture SSE SIMD Data Types

• Note: in Intel Architecture (unlike RISC-V) a word is 16 bits
– Single-precision FP: Double word (32 bits)
– Double-precision FP: Quad word (64 bits)
– AVX-512 available (16x float and 8x double)

SSE/SSE2 Floating Point Instructions

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register

{SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register

{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register

{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register

{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register

{A} 128-bit operand is aligned in memory

{U} means the 128-bit operand is unaligned in memory

{H} means move the high half of the 128-bit operand

{L} means move the low half of the 128-bit operand
21

Move

does

both

load

and

store

Packed and Scalar Double-Precision
Floating-Point Operations

22

Packed

Scalar

X86 SIMD Intrinsics

23
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Raw Double-Precision Throughput

24https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Example: SIMD Array Processing

25

for each f in array
f = sqrt(f)

for each f in array
{

load f to the floating-point register
calculate the square root
write the result from the register to memory

}
for each 4 members in array
{

load 4 members to the SSE register
calculate 4 square roots in one operation
store the 4 results from the register to memory

}
SIMD style

Data-Level Parallelism and SIMD

• SIMD wants adjacent values in memory that
can be operated in parallel

• Usually specified in programs as loops
for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;
• How can reveal more data-level parallelism

than available in a single iteration of a loop?
• Unroll loop and adjust iteration rate

26

Looping in RISC-V
• D Standard Extension (double) – builds upon F standard extension (float)

Assumptions:

- t1 is initially the address of the element in the array with the highest
address

- f0 contains the scalar value s

- 8(t2) is the address of the last element to operate on

CODE:

27

Loop Unrolled

NOTE:
1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if

loop_limit(mod 4) = 0
3. Using different registers for each iteration

eliminates data hazards in pipeline

28

Loop Unrolled Scheduled
4 Loads side-by-side:
Could replace with 4-wide SIMD Load

4 Adds side-by-side:
Could replace with 4-wide SIMD Add

4 Stores side-by-side:
Could replace with 4-wide SIMD Store

29

Loop Unrolling in C
• Instead of compiler doing loop unrolling, could do it

yourself in C
for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;
• Could be rewritten
for(i=1000; i>0; i=i-4) {

x[i] = x[i] + s;
x[i-1] = x[i-1] + s;
x[i-2] = x[i-2] + s;
x[i-3] = x[i-3] + s;
}

30

What is downside of doing it in C?

Generalizing Loop Unrolling

• A loop of n iterations
• k copies of the body of the loop
• Assuming (n mod k) ≠ 0

Then we will run the loop with 1 copy of the
body (n mod k) times and with k copies of the
body floor(n/k) times

31

RISC-V Vector Extension
• 32 vector registers

• Need to setup length of data and
number of parallel registers to
work on before usage (vconfig)!

• vflw.s: vector float load word .
stride: load a single word, put in
v1 ‘vector length’ times

• vsetvl: ask for certain vector
length – hardware knows what it
can do (maxvl)!

32

Hardware Support up to CPU

33

Admin
• Project 2.1 is due on Thursday

• Lectures will most likely continue online!

• Complete Schedule for course is online

• Midterm on May 28!
– Summary lecture on May 21
– Q&A session on May 26

34

TA Discussion

Hang Su

35

Q & A

36

Quiz

37

Quiz

38

Suppose a program spends 80% of its time in a square root
routine. How much must you speedup square root to make
the program run 5 times faster?

A: 5
B: 16
C: 20
D: 100
E: None of the above

Speedup w/ E = 1 / [(1-F) + F/S]

Piazza: “Online Lecture 18 Amdahl”

CS 110
Computer Architecture

Lecture 18:
Amdahl’s Law, Data-level Parallelism

Video 2: Matrix Multiply Example
Instructors:

Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

39
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Example: Add Two Single-Precision
Floating-Point Vectors

Computation to be performed:

vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;

SSE Instruction Sequence:
(Note: Destination on the right in x86 assembly)
movaps address-of-v1, %xmm0

// v1.w | v1.z | v1.y | v1.x -> xmm0
addps address-of-v2, %xmm0

// v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x -> xmm0
movaps %xmm0, address-of-vec_res

40

mov a ps : move from mem to XMM register,
memory aligned, packed single precision

add ps : add from mem to XMM register,
packed single precision

mov a ps : move from XMM register to mem,
memory aligned, packed single precision

41

Intel SSE Intrinsics

• Intrinsics are C functions and procedures for
inserting assembly language into C code, including
SSE instructions
– With intrinsics, can program using these instructions

indirectly
– One-to-one correspondence between SSE instructions and

intrinsics

Example SSE Intrinsics

• Vector data type:
_m128d

• Load and store operations:
_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double

• Load and broadcast across vector
_mm_load1_pd MOVSD + shuffling/duplicating

• Arithmetic:
_mm_add_pd ADDPD/add, packed double
_mm_mul_pd MULPD/multiple, packed double

Corresponding SSE instructions:Intrinsics:

42

Example: 2 x 2 Matrix Multiply

Ci,j = (A×B)i,j = ∑ Ai,k× Bk,j

2

k = 1

Definition of Matrix Multiply:

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

1 0

0 1

1 3

2 4

x

C1,1= 1*1 + 0*2 = 1 C1,2= 1*3 + 0*4 = 3

C2,1= 0*1 + 1*2 = 2 C2,2= 0*3 + 1*4 = 4

=

43

Example: 2 x 2 Matrix Multiply

Ci,j = (A×B)i,j = ∑ Ai,k× Bk,j

2

k = 1

Definition of Matrix Multiply:

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

1 0

0 1

1 3

2 4

x

C1,1= 1*1 + 0*2 = 1 C1,2= 1*3 + 0*4 = 3

C2,1= 0*1 + 1*2 = 2 C2,2= 0*3 + 1*4 = 4

=

44

Example: 2 x 2 Matrix Multiply

• Using the XMM registers
– 64-bit/double precision/two doubles per XMM reg
C1

C2

C1,1

C1,2

C2,1

C2,2
Stored in memory in Column order

B1

B2

Bi,1

Bi,2

Bi,1

Bi,2

A A1,i A2,i

C1,1 C1,2

C2,1 C2,2

�

C1 C2

45

Example: 2 x 2 Matrix Multiply

• Initialization

• I = 1

C1

C2

0

0

0

0

B1

B2

B1,1

B1,2

B1,1

B1,2

A A1,1 A2,1 _mm_load_pd: Stored in memory in
Column order

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register

46

• Initialization

• I = 1

C1

C2

0

0

0

0

B1

B2

B1,1

B1,2

B1,1

B1,2

A A1,1 A2,1
_mm_load_pd: Load 2 doubles into XMM
reg, Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

47

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Example: 2 x 2 Matrix Multiply

Example: 2 x 2 Matrix Multiply

• First iteration intermediate result

• I = 1

C1

C2

B1

B2

B1,1

B1,2

B1,1

B1,2

A A1,1 A2,1 _mm_load_pd: Stored in memory in
Column order

0+A1,1B1,1

0+A1,1B1,2

0+A2,1B1,1

0+A2,1B1,2

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

48

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

• First iteration intermediate result

• I = 2

C1

C2

0+A1,1B1,1

0+A1,1B1,2

0+A2,1B1,1

0+A2,1B1,2

B1

B2

B2,1

B2,2

B2,1

B2,2

A A1,2 A2,2 _mm_load_pd: Stored in memory in
Column order

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

49

Example: 2 x 2 Matrix Multiply

Example: 2 x 2 Matrix Multiply

• Second iteration intermediate result

• I = 2

C1

C2

B1

B2

B2,1

B2,2

B2,1

B2,2

A A1,2 A2,2
_mm_load_pd: Stored in memory in
Column order

C1,1

C1,2

C2,1

C2,2

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load1_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

50

A1,1B1,1+A1,2B2,1

A1,1B1,2+A1,2B2,2

A2,1B1,1+A2,2B2,1

A2,1B1,2+A2,2B2,2

Example: 2 x 2 Matrix Multiply
(Part 1 of 2)

#include <stdio.h>

// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in
// comments as v1 = [a | b]

// where v1 is a variable of type __m128d and
// a, b are doubles

int main(void) {

// allocate A,B,C aligned on 16-byte boundaries
double A[4] __attribute__ ((aligned (16)));

double B[4] __attribute__ ((aligned (16)));

double C[4] __attribute__ ((aligned (16)));

int lda = 2;

int i = 0;

// declare several 128-bit vector variables
__m128d c1,c2,a,b1,b2;

// Initialize A, B, C for example
/* A = (note column order!)

1 0
0 1

*/
A[0] = 1.0; A[1] = 0.0; A[2] = 0.0; A[3] = 1.0;

/* B = (note column order!)
1 3
2 4

*/
B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; B[3] = 4.0;

/* C = (note column order!)
0 0
0 0

*/
C[0] = 0.0; C[1] = 0.0; C[2] = 0.0; C[3] = 0.0;

51

Example: 2 x 2 Matrix Multiply
(Part 2 of 2)

// used aligned loads to set
// c1 = [c_11 | c_21]
c1 = _mm_load_pd(C+0*lda);
// c2 = [c_12 | c_22]
c2 = _mm_load_pd(C+1*lda);

for (i = 0; i < 2; i++) {
/* a =
i = 0: [a_11 | a_21]
i = 1: [a_12 | a_22]
*/
a = _mm_load_pd(A+i*lda);
/* b1 =
i = 0: [b_11 | b_11]
i = 1: [b_21 | b_21]
*/
b1 = _mm_load1_pd(B+i+0*lda);
/* b2 =
i = 0: [b_12 | b_12]
i = 1: [b_22 | b_22]
*/
b2 = _mm_load1_pd(B+i+1*lda);

/* c1 =
i = 0: [c_11 + a_11*b_11 | c_21 + a_21*b_11]
i = 1: [c_11 + a_21*b_21 | c_21 + a_22*b_21]

*/
c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
/* c2 =
i = 0: [c_12 + a_11*b_12 | c_22 + a_21*b_12]
i = 1: [c_12 + a_21*b_22 | c_22 + a_22*b_22]

*/
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));

}

// store c1,c2 back into C for completion
_mm_store_pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);

// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return 0;

}

52

DGEMM Speed Comparison
• Double precision GEneral Matrix Multiply: DGEMM
• Intel Core i7-5557U CPU @ 3.10 GHz

– Instructions per clock (mul_pd) 2; Parallel multiplies per instruction 4
– => 24.8 GFLOPS

• Python:

54

C versus Python

55

240x!

Vectorized dgemm

• 4x faster
• Still << theoretical 25 GFLOPS

56

Loop Unrolling

N
GFlops

scalar avx unroll
32 1.30 4.56 12.95

160 1.30 5.47 19.70
480 1.32 5.27 14.50
960 0.91 3.64 6.91 57?

FPU versus Memory Access

• How many floating-point operations does matrix

multiply take?

– F = 2 x N3 (N3 multiplies, N3 adds)

• How many memory load/stores?

– M = 3 x N2 (for A, B, C)

• Many more floating-point operations than

memory accesses

– q = F/M = 2/3 * N

– Good, since arithmetic is faster than memory access

– Let’s check the code …

58

But memory is accessed repeatedly
• q = F/M = 1.6! (1.25 loads and 2 floating-point operations)

59

Cache Blocking

• Where are the operands (A, B, C) stored?
• What happens as N increases?
• Idea: arrange that most accesses are to fast cache!

60

• Rearrange code to use values loaded in cache many times
• Only “few” accesses to slow main memory (DRAM) per

floating point operation
– -> throughput limited by FP hardware and cache, not slow DRAM

P&H, RISC-V edition p. 465

Blocking Matrix Multiply
(divide and conquer: sub-matrix multiplication)

61

Memory Access Blocking

62

Performance

• Intel i7-5557U theoretical limit (AVX2): 24.8 GFLOPS
• Cache:

– L3: 4 MB 16-way set associative shared cache
– L2: 2 x 256 KB 8-way set associative caches
– L1 Cache: 2 x 32KB 8-way set associative caches (2x: D & I)

• Maximum memory bandwidth (GB/s): 29.9

63

N Size
GFlops

scalar avx unroll blocking
32 3x 8KiB 1.30 4.56 12.95 13.80

160 3x 200KiB 1.30 5.47 19.70 21.79

480 3x 1.8MiB 1.32 5.27 14.50 20.17

960 3x 7.2MiB 0.91 3.64 6.91 15.82

Intel Math Kernel Library
• AVX programming too hard? Use MKL!

– C/C++ and Fortran for Windows, Linux, macOS

• Knowledge about AVX still very helpful for using MKL (e.g.

Cache blocking, …)

• MKL also for multi-threading…

64

And in Conclusion, …

• Amdahl’s Law: Serial sections limit speedup
• Flynn Taxonomy
• Intel SSE SIMD Instructions
– Exploit data-level parallelism in loops
– One instruction fetch that operates on multiple

operands simultaneously
– 128-bit XMM registers

• SSE Instructions in C
– Embed the SSE machine instructions directly into C

programs through use of intrinsics
– Achieve efficiency beyond that of optimizing compiler

65

Quiz

66

Your boss needs your server program to run 10x faster than it
is currently running. For that he is upgrading the server from 4
cores to 64 cores (assume everything else stays the same and
the hardware scales linearly). Your program currently is 80%
parallel. At least how much of your program needs to run
parallel to satisfy your boss?

A: ≈ 90%
B: ≈ 91%
C: ≈ 95%
D: ≈ 97%
E: ≈ 99%
F: None of the above

Piazza: “Video Lecture 18 Amdahl”

