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New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
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Why Parallel Processing?

• CPU Clock Rates are no longer increasing
– Technical & economic challenges 
• Advanced cooling technology too expensive or 

impractical for most applications 
• Energy costs are prohibitive 

• Parallel processing is only path to higher 
speed 
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Using Parallelism for Performance

• Two basic ways:
– Multiprogramming
• run multiple independent programs in parallel
• “Easy”

– Parallel computing
• run one program faster
• “Hard”

• We’ll focus on parallel computing for next few 
lectures
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Single-Instruction/Single-Data Stream
(SISD)

• Sequential computer 
that exploits no 
parallelism in either the 
instruction or data 
streams. Examples of 
SISD architecture are 
traditional uniprocessor 
machines
– E.g. Our RISC-V 

processor
– Superscalar is SISD 

because programming 
model is sequential
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Processing Unit

This is what we did up to now in CA.



Single-Instruction/Multiple-Data Stream
(SIMD or “sim-dee”)

• SIMD computer exploits 
multiple data streams 
against a single 
instruction stream to 
operations that may be 
naturally parallelized, 
e.g., Intel SIMD 
instruction extensions 
or NVIDIA Graphics 
Processing Unit (GPU)
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Today’s topic.



Multiple-Instruction/Multiple-Data Streams
(MIMD or “mim-dee”)

• Multiple autonomous 
processors 
simultaneously 
executing different 
instructions on different 
data. 
– MIMD architectures 

include multicore and 
Warehouse-Scale 
Computers
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Multiple-Instruction/Single-Data Stream
(MISD)

• Multiple-Instruction, 
Single-Data stream  
computer that exploits 
multiple instruction 
streams against a single 
data stream.
– Rare, mainly of historical 

interest only

8
Few applications. Not covered in CA.



Flynn* Taxonomy, 1966

• Since about 2013, SIMD and MIMD most common parallelism 
in architectures – usually both in same system!

• Most common parallel processing programming style: Single 
Program Multiple Data (“SPMD”)
– Single program that runs on all processors of a MIMD
– Cross-processor execution coordination using synchronization 

primitives
• SIMD (aka hw-level data parallelism): specialized function 

units, for handling lock-step calculations involving arrays
– Scientific computing, signal processing, multimedia 

(audio/video processing)

9

*Prof. Michael 
Flynn, Stanford



Big Idea: Amdahl’s (Heartbreaking) Law
• Speedup due to enhancement E is

Speedup w/ E =      ----------------------
Exec time w/o E

Exec time w/ E 

• Suppose that enhancement E accelerates a fraction F   (F <1) 
of the task by a factor S (S>1) and the remainder of the task is 
unaffected

Execution Time w/ E  =

Speedup w/ E  =
10

Execution Time w/o E x [ (1-F) + F/S] 

1 / [ (1-F) + F/S ]



Big Idea: Amdahl’s Law
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Speedup  =                       1

(1 - F)   +   F
SNon-speed-up part Speed-up part

1

0.5 + 0.5
2

1

0.5 + 0.25
= = 1.33

Example: the execution time of half of the program can 
be accelerated by a factor of 2.
What is the program speed-up overall?



Example #1: Amdahl’s Law

• Consider an enhancement which runs 20 times faster but 

which is only usable 25% of the time

Speedup w/ E  =  1/(.75 + .25/20)  =  1.31

• What if its usable only 15% of the time?

Speedup w/ E  =  1/(.85 + .15/20)  =  1.17

• Amdahl’s Law tells us that to achieve linear speedup with 

100 processors, none of the original computation can be 

scalar!

• To get a speedup of 90 from 100 processors, the 

percentage of the original program that could be scalar 

would have to be 0.1% or less

Speedup w/ E  =  1/(.001 + .999/100)  =  90.99
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Speedup w/ E =   1 / [ (1-F) + F/S ]
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If the portion of
the program that
can be parallelized
is small, then the
speedup is limited

The non-parallel
portion limits
the performance



Strong and Weak Scaling
• To get good speedup on a parallel processor while 

keeping the problem size fixed is harder than getting 
good speedup by increasing the size of the problem.
– Strong scaling: when speedup can be achieved on a 

parallel processor without increasing the size of the 
problem

– Weak scaling: when speedup is achieved on a parallel 
processor by increasing the size of the problem 
proportionally to the increase in the number of processors

• Load balancing is another important factor: every 
processor doing same amount of work  
– Just one unit with twice the load of others cuts speedup 

almost in half
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SIMD Architectures
• Data parallelism: executing same operation 

on multiple data streams
• Example to provide context:

– Multiplying a coefficient vector by a data vector 
(e.g., in filtering)
y[i] := c[i]× x[i], 0 ≤ i < n

• Sources of performance improvement:
– One instruction is fetched & decoded for entire 

operation
– Multiplications are known to be independent
– Pipelining/ concurrency in memory access as well
– Special functional units may be faster
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Intel “Advanced Digital Media Boost”

• To improve performance, Intel’s SIMD instructions
– Fetch one instruction, do the work of multiple instructions
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First SIMD Extensions:
MIT Lincoln Labs TX-2, 1957



Intel SIMD Extensions

• MMX 64-bit registers, reusing floating-point 
registers [1992]
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Intel Advanced Vector eXtensions AVX
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https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/
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Intel Architecture SSE SIMD Data Types

• Note: in Intel Architecture (unlike RISC-V) a word is 16 bits
– Single-precision FP: Double word (32 bits)
– Double-precision FP: Quad word (64 bits)
– AVX-512 available (16x float and 8x double)



SSE/SSE2 Floating Point Instructions

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register

{SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register

{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register

{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register

{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register

{A} 128-bit operand is aligned in memory

{U} means the 128-bit operand is unaligned in memory 

{H} means move the high half of the 128-bit operand

{L} means move the low half of the 128-bit operand
21

Move 

does 

both 
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Packed and Scalar Double-Precision 
Floating-Point Operations 
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Packed

Scalar



X86 SIMD Intrinsics
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Raw Double-Precision Throughput

24https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
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Example: SIMD Array Processing
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for each f in array
f = sqrt(f)

for each f in array
{

load f to the floating-point register
calculate the square root
write the result from the register to memory

}
for each 4 members in array
{

load 4 members to the SSE register
calculate 4 square roots in one operation
store the 4 results from the register to memory

}
SIMD style



Data-Level Parallelism and SIMD

• SIMD wants adjacent values in memory that 
can be operated in parallel

• Usually specified in programs as loops
for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;
• How can reveal more data-level parallelism 

than available in a single iteration of a loop?
• Unroll loop and adjust iteration rate
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Looping in RISC-V
• D Standard Extension (double) – builds upon F standard extension (float)

Assumptions: 

- t1 is initially the address of the element in the array with the highest 
address

- f0 contains the scalar value s

- 8(t2) is the address of the last element to operate on

CODE:
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Loop Unrolled

NOTE:
1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if 

loop_limit(mod 4) = 0
3.   Using different registers for each iteration 

eliminates data hazards in pipeline
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Loop Unrolled Scheduled
4 Loads side-by-side: 
Could replace  with 4-wide SIMD Load

4 Adds side-by-side: 
Could replace with 4-wide SIMD Add

4 Stores side-by-side: 
Could replace with 4-wide SIMD Store
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Loop Unrolling in C
• Instead of compiler doing loop unrolling, could do it 

yourself in C
for(i=1000; i>0; i=i-1)

x[i] = x[i] + s;
• Could be rewritten
for(i=1000; i>0; i=i-4) {

x[i]   = x[i] + s; 
x[i-1] = x[i-1] + s;  
x[i-2] = x[i-2] + s; 
x[i-3] = x[i-3] + s;
}
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What is downside of doing it in C?



Generalizing Loop Unrolling

• A loop of n iterations
• k copies of the body of the loop
• Assuming (n mod k) ≠ 0

Then we will run the loop with 1 copy of the 
body (n mod k) times and with k copies of the 
body floor(n/k) times
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RISC-V Vector Extension
• 32 vector registers

• Need to setup length of data and 
number of parallel registers to 
work on before usage (vconfig)!

• vflw.s: vector float load word . 
stride: load a single word, put in 
v1 ‘vector length’ times

• vsetvl: ask for certain vector 
length – hardware knows what it 
can do (maxvl)!
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Hardware Support up to CPU 
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Admin
• Project 2.1 is due on Thursday

• Lectures will most likely continue online!

• Complete Schedule for course is online

• Midterm on May 28!
– Summary lecture on May 21
– Q&A session on May 26
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TA Discussion

Hang Su
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Q & A
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Quiz
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Quiz
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Suppose a program spends 80% of its time in a square root 
routine. How much must you speedup square root to make 
the program run 5 times faster?

A: 5
B: 16
C: 20
D: 100
E: None of the above

Speedup w/ E =   1 / [ (1-F) + F/S ]

Piazza: “Online Lecture 18 Amdahl”
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Example: Add Two Single-Precision
Floating-Point Vectors

Computation to be performed:

vec_res.x = v1.x + v2.x;
vec_res.y = v1.y + v2.y;
vec_res.z = v1.z + v2.z;
vec_res.w = v1.w + v2.w;

SSE Instruction Sequence:
(Note: Destination on the right in x86 assembly)
movaps address-of-v1, %xmm0 

// v1.w | v1.z | v1.y | v1.x -> xmm0
addps address-of-v2, %xmm0  

// v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x -> xmm0              
movaps %xmm0, address-of-vec_res

40

mov a  ps :  move from mem to XMM register,
memory aligned, packed single precision

add  ps :  add from mem to XMM register,
packed single precision

mov a  ps :  move from XMM register to mem, 
memory aligned, packed single precision
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Intel SSE Intrinsics

• Intrinsics are C functions and procedures for 
inserting assembly language into C code, including 
SSE instructions
– With intrinsics, can program using these instructions 

indirectly
– One-to-one correspondence between SSE instructions and 

intrinsics



Example SSE Intrinsics

• Vector data type:
_m128d

• Load and store operations:
_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double

• Load and broadcast across vector
_mm_load1_pd MOVSD + shuffling/duplicating

• Arithmetic:
_mm_add_pd ADDPD/add, packed double
_mm_mul_pd MULPD/multiple, packed double

Corresponding SSE instructions:Intrinsics:
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Example: 2 x 2 Matrix Multiply

Ci,j = (A×B)i,j = ∑ Ai,k× Bk,j

2

k = 1

Definition of Matrix Multiply:

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

1 0

0 1

1 3

2 4

x

C1,1= 1*1 + 0*2 = 1 C1,2= 1*3 + 0*4 = 3

C2,1= 0*1 +  1*2 = 2 C2,2= 0*3 + 1*4 = 4

=
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Example: 2 x 2 Matrix Multiply

Ci,j = (A×B)i,j = ∑ Ai,k× Bk,j

2

k = 1

Definition of Matrix Multiply:

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

1 0

0 1

1 3

2 4

x

C1,1= 1*1 + 0*2 = 1 C1,2= 1*3 + 0*4 = 3

C2,1= 0*1 +  1*2 = 2 C2,2= 0*3 + 1*4 = 4

=
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Example: 2 x 2 Matrix Multiply

• Using the XMM registers
– 64-bit/double precision/two doubles per XMM reg
C1

C2

C1,1

C1,2

C2,1

C2,2
Stored in memory in Column order

B1

B2

Bi,1

Bi,2

Bi,1

Bi,2

A A1,i A2,i


C1,1 C1,2

C2,1 C2,2

�

C1 C2
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Example: 2 x 2 Matrix Multiply

• Initialization

• I = 1

C1

C2

0

0

0

0

B1

B2

B1,1

B1,2

B1,1

B1,2

A A1,1 A2,1 _mm_load_pd: Stored in memory in 
Column order

_mm_load1_pd: SSE instruction that loads 
a double word and stores it in the high and 
low double words of the XMM register
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• Initialization

• I = 1

C1

C2

0

0

0

0

B1

B2

B1,1

B1,2

B1,1

B1,2

A A1,1 A2,1
_mm_load_pd: Load 2 doubles into XMM 
reg, Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads 
a double word and stores it in the high and 
low double words of the XMM register 
(duplicates value in both halves of XMM)
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A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

Example: 2 x 2 Matrix Multiply



Example: 2 x 2 Matrix Multiply

• First iteration intermediate result

• I = 1

C1

C2

B1

B2

B1,1

B1,2

B1,1

B1,2

A A1,1 A2,1 _mm_load_pd: Stored in memory in 
Column order

0+A1,1B1,1

0+A1,1B1,2

0+A2,1B1,1

0+A2,1B1,2

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies 
and then parallel adds in XMM registers

_mm_load1_pd: SSE instruction that loads 
a double word and stores it in the high and 
low double words of the XMM register 
(duplicates value in both halves of XMM)
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A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=



A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

x

C1,1=A1,1B1,1 + A1,2B2,1 C1,2=A1,1B1,2+A1,2B2,2

C2,1=A2,1B1,1 + A2,2B2,1 C2,2=A2,1B1,2+A2,2B2,2

=

• First iteration intermediate result

• I = 2

C1

C2

0+A1,1B1,1

0+A1,1B1,2

0+A2,1B1,1

0+A2,1B1,2

B1

B2

B2,1

B2,2

B2,1

B2,2

A A1,2 A2,2 _mm_load_pd: Stored in memory in 
Column order

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies 
and then parallel adds in XMM registers

_mm_load1_pd: SSE instruction that loads 
a double word and stores it in the high and 
low double words of the XMM register 
(duplicates value in both halves of XMM)
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Example: 2 x 2 Matrix Multiply



Example: 2 x 2 Matrix Multiply

• Second iteration intermediate result

• I = 2

C1

C2

B1

B2

B2,1

B2,2

B2,1

B2,2

A A1,2 A2,2
_mm_load_pd: Stored in memory in 
Column order

C1,1

C1,2

C2,1

C2,2

c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies 
and then parallel adds in XMM registers

_mm_load1_pd: SSE instruction that loads 
a double word and stores it in the high and 
low double words of the XMM register 
(duplicates value in both halves of XMM)
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A1,1B1,1+A1,2B2,1

A1,1B1,2+A1,2B2,2

A2,1B1,1+A2,2B2,1

A2,1B1,2+A2,2B2,2



Example: 2 x 2 Matrix Multiply
(Part 1 of 2)

#include <stdio.h>

// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in 
// comments as v1 = [ a | b]

// where v1 is a variable of type __m128d and
// a, b are doubles

int main(void) {

// allocate A,B,C aligned on 16-byte boundaries
double A[4] __attribute__ ((aligned (16)));

double B[4] __attribute__ ((aligned (16)));

double C[4] __attribute__ ((aligned (16)));

int lda = 2;

int i = 0;

// declare several 128-bit vector variables
__m128d c1,c2,a,b1,b2;

// Initialize A, B, C for example
/* A =                           (note column order!)  

1 0
0 1

*/
A[0] = 1.0; A[1] = 0.0;  A[2] = 0.0;  A[3] = 1.0;

/* B =                              (note column order!)
1 3
2 4

*/
B[0] = 1.0;  B[1] = 2.0;  B[2] = 3.0;  B[3] = 4.0;

/* C =                             (note column order!)
0 0
0 0

*/
C[0] = 0.0; C[1] = 0.0;  C[2] = 0.0; C[3] = 0.0;
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Example: 2 x 2 Matrix Multiply
(Part 2 of 2)

// used aligned loads to set
// c1 = [c_11 | c_21]
c1 = _mm_load_pd(C+0*lda);
// c2 = [c_12 | c_22]
c2 = _mm_load_pd(C+1*lda);

for (i = 0; i < 2; i++) {
/* a = 
i = 0: [a_11 | a_21]
i = 1: [a_12 | a_22]
*/
a = _mm_load_pd(A+i*lda);
/* b1 = 
i = 0: [b_11 | b_11]
i = 1: [b_21 | b_21]
*/
b1 = _mm_load1_pd(B+i+0*lda);
/* b2 = 
i = 0: [b_12 | b_12]
i = 1: [b_22 | b_22]
*/
b2 = _mm_load1_pd(B+i+1*lda);

/* c1 = 
i = 0: [c_11 + a_11*b_11 | c_21 + a_21*b_11]
i = 1: [c_11 + a_21*b_21 | c_21 + a_22*b_21]

*/
c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
/* c2 = 
i = 0: [c_12 + a_11*b_12 | c_22 + a_21*b_12]
i = 1: [c_12 + a_21*b_22 | c_22 + a_22*b_22]

*/
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));       

}

// store c1,c2 back into C for completion
_mm_store_pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);

// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return 0;

}

52



DGEMM Speed Comparison
• Double precision GEneral Matrix Multiply: DGEMM
• Intel Core i7-5557U CPU @ 3.10 GHz

– Instructions per clock (mul_pd) 2; Parallel multiplies per instruction 4
– => 24.8 GFLOPS

• Python:

54



C versus Python
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240x!



Vectorized dgemm

• 4x faster
• Still << theoretical 25 GFLOPS
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Loop Unrolling

N
GFlops

scalar avx unroll
32 1.30 4.56 12.95

160 1.30 5.47 19.70
480 1.32 5.27 14.50
960 0.91 3.64 6.91 57?



FPU versus Memory Access

• How many floating-point operations does matrix 

multiply take? 

– F = 2 x N3 (N3 multiplies, N3 adds) 

• How many memory load/stores? 

– M = 3 x N2 (for A, B, C) 

• Many more floating-point operations than 

memory accesses 

– q = F/M = 2/3 * N 

– Good, since arithmetic is faster than memory access 

– Let’s check the code …
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But memory is accessed repeatedly
• q = F/M = 1.6! (1.25 loads and 2 floating-point operations)
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Cache Blocking

• Where are the operands (A, B, C) stored? 
• What happens as N increases? 
• Idea: arrange that most accesses are to fast cache!

60

• Rearrange code to use values loaded in cache many times
• Only “few” accesses to slow main memory (DRAM) per 

floating point operation 
– -> throughput limited by FP hardware and cache, not slow DRAM

P&H, RISC-V edition p. 465



Blocking Matrix Multiply
(divide and conquer: sub-matrix multiplication)

61



Memory Access Blocking
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Performance

• Intel i7-5557U theoretical limit (AVX2): 24.8 GFLOPS
• Cache:

– L3: 4 MB 16-way set associative shared cache
– L2: 2 x 256 KB 8-way set associative caches
– L1 Cache: 2 x 32KB 8-way set associative caches (2x: D & I)

• Maximum memory bandwidth (GB/s): 29.9

63

N Size
GFlops

scalar avx unroll blocking
32 3x 8KiB 1.30 4.56 12.95 13.80

160 3x 200KiB 1.30 5.47 19.70 21.79

480 3x 1.8MiB 1.32 5.27 14.50 20.17

960 3x 7.2MiB 0.91 3.64 6.91 15.82



Intel Math Kernel Library
• AVX programming too hard? Use MKL! 

– C/C++ and Fortran for Windows, Linux, macOS

• Knowledge about AVX still very helpful for using MKL (e.g. 

Cache blocking, …)

• MKL also for multi-threading…
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And in Conclusion, …

• Amdahl’s Law: Serial sections limit speedup
• Flynn Taxonomy
• Intel SSE SIMD Instructions
– Exploit data-level parallelism in loops
– One instruction fetch that operates on multiple 

operands simultaneously
– 128-bit XMM registers

• SSE Instructions in C
– Embed the SSE machine instructions directly into C 

programs through use of intrinsics
– Achieve efficiency beyond that of optimizing compiler
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Quiz

66

Your boss needs your server program to run 10x faster than it 
is currently running. For that he is upgrading the server from 4 
cores to 64 cores (assume everything else stays the same and 
the hardware scales linearly). Your program currently is 80% 
parallel. At least how much of your program needs to run 
parallel to satisfy your boss?

A: ≈ 90%
B: ≈ 91%
C: ≈ 95%
D: ≈ 97%
E: ≈ 99%
F: None of the above

Piazza: “Video Lecture 18 Amdahl”


