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Admin

• From Lab 9, all labs would be on site. Visit the 
website of this course for details.
– Contact your TA if you have got questions.
– Or post your questions in Piazza.

• For students that are on the way back
– Contact me, Dr. Sören, or TA if you need any help.

• There is a video quiz for this lecture. 
– A poll will be posted in Piazza.
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Memory

CA so far…
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CPU

Caches

RISC-V Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
return

fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1

Project 2



So how is this any different?
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Keyboard

Screen

Storage



Memory

Adding I/O
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CPU

Caches

RISC-V Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
return

fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1

Project 2

I/O (Input/Output)

Screen Keyboard Storage



CPU+$s, etc.
Memory

Raspberry Pi (< 300RMB on jd.com)
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Storage I/O
(Micro SD Card)

Serial I/O
(USB)

Network I/O
(Ethernet)Screen I/O

(HDMI)



It’s a real computer!
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But wait…
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• That’s not the same! Our CS 110 experience isn’t like the 
real world. When we run VENUS, it only executes one 
program and then stops.

• When I switch on my computer, I get this:

Yes, but that’s just software! The Operating System (OS)



Well, “just software”

• The biggest piece of software on your machine?
• How many lines of code? These are guesstimates:
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Year Kernel Version Size of zipped file
1994 linux-1.0.tar.gz 1MB
1996 linux-2.0.tar.gz 6MB
2001 linux-2.4.0.tar.gz 23MB
2003 linux-2.6.0.tar.gz 40MB
2011 linux-3.0.tar.gz 92MB
2015 linux-4.0.tar.gz 118MB
2019 linux-5.0.tar.gz 155MB

Apr 2020 linux-5.6.8.tar.gz 166MB

All 7 fictions in txt format 
zipped to be 2.5MB

Say No to Pirated Products 
(拒绝盗版)



What does the OS do?
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• One of the first things that runs when your computer 
starts (right after firmware/ bootloader)

• Loads, runs and manages programs:
– Multiple programs at the same time (time-sharing)
– Isolate programs from each other (isolation)
– Multiplex resources between applications (e.g., devices)

• Services: File System, Network stack, printer, etc.
• Finds and controls all the devices in the machine in a 

general way (using “device drivers”)



What does the core of OS need to do?
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• Provide interaction with the outside world
– Interact with “devices”

• Disk, screen, keyboard, mouse, network, etc.

• Provide isolation between running programs 
(processes)
– Each program runs in its own little world

• Virtual memory



Agenda
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• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory



Agenda
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• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory



What happens at boot?
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• When the computer switches on, it does the same as 
Venus: the CPU executes instructions from some 
start address (stored in Flash ROM)

• Bootstrapping: 
https://en.wikipedia.org/wiki/Bootstrapping

CPU

PC = 0x2000 (some default value) Address Space

0x2000:
addi t0, zero, 0x1000
lw t0, 4(t0)
…

(Code to copy firmware into 
regular memory and jump 
into it)

Memory mapped

https://en.wikipedia.org/wiki/Bootstrapping


What happens at boot?
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• When the computer switches on, it does the same as 
Venus: the CPU executes instructions from some 
start address (stored in Flash ROM)

1. BIOS: Find a storage
device and load first 
sector (block of data)

2. Bootloader (stored on, e.g., 
disk): Load the OS kernel from 
disk into a location in memory 
and jump into it.

3. OS Boot: Initialize 
services, drivers, etc.

4. Init: Launch an application 
that waits for input in loop 
(e.g., Terminal/Desktop/...



UEFI
Unified Extensible Firmware Interface

• Successor of BIOS
• Much more powerful and complex
• E.g. graphics menu; networking;

browsers
• All modern Intel & AMD 

based computer use UEFI
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Agenda
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• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory



How to interact with devices?
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• Assume a program running on a CPU. How does it 
interact with the outside world?

• Need I/O interface for Keyboards,
Network, Mouse, Screen, etc.
– Connect to many types of devices 
– Control these devices, respond

to them, and transfer data
– Present them to user

programs so
they are useful

cntrl reg.
data reg.

Operating System

Processor Mem

PCI Bus

SCSI Bus



Instruction Set Architecture for I/O

• What must the processor do for I/O?
– Input:    reads a sequence of bytes 
– Output: writes a sequence of bytes

• Interface options
– Some processors have special input/output instructions
– Memory Mapped Input/Output (used by RISC-V):

• Use normal load/store instructions, e.g., lw/sw, for input/output
– In small pieces

• A portion of the address space dedicated to IO
• I/O device registers there (no memory there)
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Memory Mapped I/O

• Certain addresses are not regular memory
• Instead, they correspond to registers in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address
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Processor-I/O Speed Mismatch

• 1GHz microprocessor can execute 1B load or store 
instructions per second, or 4,000,000 KB/s data rate
• I/O data rates range from 0.01 KB/s to 1,250,000 KB/s

• Input: device may not be ready to send data as fast as 
the processor loads it
• Also, might be waiting for human to act

• Output: device not be ready to accept data as fast as 
processor stores it

• What to do?
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Processor Checks Status before Acting

• Path to a device generally has 2 registers:
• Control Register, says it’s OK to read/write  (I/O ready) [think 

of a flagman on a road]
• Data Register, contains data

• Processor reads from Control Register in loop, waiting 
for device to set Ready bit in Control reg
(0 => 1) to say it’s OK

• Processor then loads from (input) or writes to (output) 
data register
• Load from or Store into Data Register resets Ready bit

(1 =>  0) of Control Register
• This is called “Polling”
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• Input: Read from keyboard into a0
li t0, 0xffff0000 #ffff0000

Waitloop: lw t1, 0(t0)      #control
andi t1, t1,0x1
beq t1, zero, Waitloop
lw a0, 4(t0)      #data

• Output: Write to display from a0
li t0, 0xffff0000 #ffff0000

Waitloop: lw t1, 8(t0)      #control
andi t1, t1,0x1
beq t1, zero, Waitloop
sw a0, 12(t0)     #data

“Ready” bit is from processor’s point of view!

I/O Example (polling)
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Cost of Polling?

• Assume for a processor with a 1GHz clock it takes 
400 clock cycles for a polling operation (call polling 
routine, accessing the device, and returning). 
Determine % of processor time for polling
– Mouse: polled 30 times/sec so as not to miss user 

movement

24



% Processor time to poll
• Mouse Polling [clocks/sec] 

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling: 
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
=>  Polling mouse little impact on processor
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What is the alternative to polling?

• Wasteful to have processor spend most of its time 
“spin-waiting” for I/O to be ready

• Would like an unplanned procedure call that would 
be invoked only when I/O device is ready

• Solution: use exception mechanism to help 
I/O.  Interrupt program when I/O ready, return when 
done with data transfer

• Allow to register (post) interrupt handlers: functions 
that are called when an interrupt is triggered
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Interrupt-driven I/O

Label: sll t1,s3,2
addu t1,t1,s5

lw t1,0(t1) 
add  s1,s1,t1
addu s3,s3,s4
bne s3,s2,abel

Stack Frame

Stack Frame

Stack Frame

handler: li t0, 0xffff0000
lw t1, 0(t0)
andi t1, t1,0x1
lw a0, 4(t0)
sw t1, 8(t0)
ret 

Interrupt(SPI0)

CPU Interrupt Table

SPI0 handler

… …

Handler Execution
1. Incoming interrupt suspends instruction stream
2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU
3. Perform a jal to the handler (needs to store any state) 
4. Handler run on current stack and returns on finish

(thread doesn’t notice that a handler was run)
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Terminology
In CA (you’ll see other definitions in use elsewhere):
• Interrupt – caused by an event external to current 

running program (e.g. key press, mouse activity)
– Asynchronous to current program, can handle interrupt on 

any convenient instruction

• Exception – caused by some event during execution 
of one instruction of current running program (e.g., 
page fault, bus error, illegal instruction)
– Synchronous, must handle exception on instruction that 

causes exception

• Trap – action of servicing interrupt or exception by 
hardware jump to “trap handler” code
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Traps/Interrupts/Exceptions:

altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed - by 
another program – the OS. The event is often unexpected from 
original program’s point of view. 



Precise Traps
• Trap handler’s view of machine state is that every 

instruction prior to the trapped one has completed, and no 
instruction after the trap has executed.

• Implies that handler can return from an interrupt by 
restoring user registers and jumping back to interrupted 
instruction (SEPC register will hold the instruction address)
– Interrupt handler software doesn’t need to understand the 

pipeline of the machine, or what program was doing!
– More complex to handle trap caused by an exception than 

interrupt
• Providing precise traps is tricky in a pipelined superscalar 

out-of-order processor!
– But handling imprecise interrupts in software is even worse.
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Trap Handling in 5-Stage Pipeline

• How to handle multiple simultaneous 
exceptions in different pipeline stages?

• How and where to handle external 
asynchronous interrupts?

PC
Inst. 
Mem D Decode E M

Data 
Mem W+

Illegal 
Opcode Overflow Data address 

Exceptions
PC address 
Exception

Asynchronous Interrupts
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Save Exceptions Until Commit

PC
Inst. 
Mem D Decode E M

Data 
Mem W+

Illegal 
Opcode

Overflow Data address 
Exceptions

PC address 
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
S
EP

C

Kill D 
Stage

Kill F 
Stage

Kill E 
Stage

Select 
Handler 
PC

Kill 
Writeback

Commit 
Point
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Handling Traps in In-Order Pipeline

• Hold exception flags in pipeline until commit point (M 
stage)

• Exceptions in earlier instructions override exceptions 
in later instructions

• Exceptions in earlier pipe stages override later 
exceptions for a given instruction

• Inject external interrupts at commit point 
• If exception/interrupt at commit: update Cause and 

SEPC registers, kill all stages, inject handler PC into 
fetch stage
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Trap Pipeline Diagram
time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5 MA5 WB5



Agenda
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• OS Boot Sequence and Operation
• Devices and I/O, interrupt and trap
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory



Launching Applications
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• Applications are called “processes” in most OSs.
– Process: separate memory; thread: shared memory

• Created by another process calling into an OS routine 
(using a “syscall”, more details later).
– Depends on OS, but Linux uses fork to create a new 

process, and execve to load application.
• Loads executable file from disk (using the file system 

service) and puts instructions & data into memory 
(.text, .data sections), prepare stack and heap.

• Set argc and argv, jump into the main function.



Supervisor Mode
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• If something goes wrong in an application, it could 
crash the entire machine. And what about malware, 
etc.?

• The OS may need to enforce resource constraints to 
applications (e.g., access to devices).

• To help protect the OS from the application, CPUs have 
a supervisor mode bit.
– When not in supervisor mode (user mode), a process can 

only access a subset of instructions and (physical) memory.
– Process can enter the supervisor mode by using an interrupt, 

and change out of supervisor mode using a special 
instruction.



Syscalls
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• What if we want to call into an OS routine? (e.g., to 
read a file, launch a new process, send data, etc.)
– Need to perform a syscall: set up function arguments in 

registers, and then raise software interrupt
– OS will perform the operation and return to user mode

• This way, the OS can mediate access to all resources, 
including devices and the CPU itself.



Multiprogramming
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• The OS runs multiple applications at the same time.
• But not really (unless you have a core per process)

– Time-sharing processor
• When jumping into process, set timer interrupt.

– When it expires, store PC, registers, etc. (process state).
– Pick a different process to run and load its state.
– Set timer, change to user mode, jump to the new PC.

• Switches between processes very quickly. This is 
called a “context switch”.

• Deciding what process to run is called scheduling.



Protection, Translation, Paging
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• Supervisor mode does not fully isolate applications 
from each other or from the OS.
– Application could overwrite another application’s memory.
– Also, may want to address more memory than we actually 

have (e.g., for sparse data structures).

• Solution: Virtual Memory. Gives each process the 
illusion of a full memory address space that it has 
completely for itself.



Agenda

41

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and trap
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory
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“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address is a 
physical address

PC
Inst. 
Cache D Decode E M

Data 
Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical 
Address

Physical 
Address

Physical Address



Dynamic Address Translation
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Motivation
Multiprogramming, multitasking:  Desire to 
execute more than one process at a time (more 
than one process can reside in main memory at 
the same time).

Location-independent programs
Programming and storage management ease
=> base register – add offset to each address

Protection
Independent programs should not affect
each other inadvertently
=> bound register – check range of access

(Note: Multiprogramming drives requirement for 
resident supervisor (OS) software to manage context 
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS



Virtual vs. Physical Addresses

• Processes use virtual addresses, e.g., 0 … 0xffff,ffff
– Many processes, all using same (conflicting) addresses

• Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)
• Memory manager maps virtual to physical addresses

Processor (& Caches)

Control

Datapath
PC

Registers

(ALU)

Memory (DRAM)

Bytes?

Vi
rt

ua
l A

dd
re

ss

Ph
ys

ic
al

 A
dd

re
ss

Many of these (software & hardware cores) One main memory
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Simple Base and Bound Translation
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Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only 
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤



Base and Bound Machine

[ Can fold addition of base register into (register+immediate) address 
calculation using a carry-save adder (sums three numbers with only a few 
gate delays more than adding two numbers) ] 46

PC
Inst. 
Cache D Decode E M

Data 
Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical 
Address

Physical Address

Data Bound 
Register

Data Base 
Register

≤

+

Logical 
Address

Bounds Violation?

Physical 
Address

Prog. Bound 
Register

Program Base 
Register

≤

+

Logical 
Address

Bounds Violation?



In Conclusion
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• Once we have a basic machine, it’s mostly up to the 
OS to use it and define application interfaces.

• Hardware helps by providing the right abstractions 
and features (e.g., Virtual Memory, I/O).



Quiz

Hard disk: transfers data in 16-Byte chunks and can 
transfer at 16 MB/second. No transfer can be missed. 
What percentage of processor time is spent in polling 
(assume 1GHz clock; 400 cycles per poll)?

• A: 2%
• B: 4%
• C: 20%
• D: 40%
• E: 80%
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Quiz

Piazza: “Video Lecture 21 OS”
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