
CS 110
Computer Architecture

An Introduction to Operating Systems

Instructors:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s

Admin

• From Lab 9, all labs would be on site. Visit the
website of this course for details.
– Contact your TA if you have got questions.
– Or post your questions in Piazza.

• For students that are on the way back
– Contact me, Dr. Sören, or TA if you need any help.

• There is a video quiz for this lecture.
– A poll will be posted in Piazza.

2

Memory

CA so far…

3

CPU

Caches

RISC-V Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
return

fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1

Project 2

So how is this any different?

4

Keyboard

Screen

Storage

Memory

Adding I/O

5

CPU

Caches

RISC-V Assembly

C Programs
#include <stdlib.h>

int fib(int n) {
return

fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1

Project 2

I/O (Input/Output)

Screen Keyboard Storage

CPU+$s, etc.
Memory

Raspberry Pi (< 300RMB on jd.com)

6

Storage I/O
(Micro SD Card)

Serial I/O
(USB)

Network I/O
(Ethernet)Screen I/O

(HDMI)

It’s a real computer!

7

But wait…

8

• That’s not the same! Our CS 110 experience isn’t like the
real world. When we run VENUS, it only executes one
program and then stops.

• When I switch on my computer, I get this:

Yes, but that’s just software! The Operating System (OS)

Well, “just software”

• The biggest piece of software on your machine?
• How many lines of code? These are guesstimates:

9

Year Kernel Version Size of zipped file
1994 linux-1.0.tar.gz 1MB
1996 linux-2.0.tar.gz 6MB
2001 linux-2.4.0.tar.gz 23MB
2003 linux-2.6.0.tar.gz 40MB
2011 linux-3.0.tar.gz 92MB
2015 linux-4.0.tar.gz 118MB
2019 linux-5.0.tar.gz 155MB

Apr 2020 linux-5.6.8.tar.gz 166MB

All 7 fictions in txt format
zipped to be 2.5MB

Say No to Pirated Products
(拒绝盗版)

What does the OS do?

10

• One of the first things that runs when your computer
starts (right after firmware/ bootloader)

• Loads, runs and manages programs:
– Multiple programs at the same time (time-sharing)
– Isolate programs from each other (isolation)
– Multiplex resources between applications (e.g., devices)

• Services: File System, Network stack, printer, etc.
• Finds and controls all the devices in the machine in a

general way (using “device drivers”)

What does the core of OS need to do?

11

• Provide interaction with the outside world
– Interact with “devices”

• Disk, screen, keyboard, mouse, network, etc.

• Provide isolation between running programs
(processes)
– Each program runs in its own little world

• Virtual memory

Agenda

12

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory

Agenda

13

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory

What happens at boot?

14

• When the computer switches on, it does the same as
Venus: the CPU executes instructions from some
start address (stored in Flash ROM)

• Bootstrapping:
https://en.wikipedia.org/wiki/Bootstrapping

CPU

PC = 0x2000 (some default value) Address Space

0x2000:
addi t0, zero, 0x1000
lw t0, 4(t0)
…

(Code to copy firmware into
regular memory and jump
into it)

Memory mapped

https://en.wikipedia.org/wiki/Bootstrapping

What happens at boot?

15

• When the computer switches on, it does the same as
Venus: the CPU executes instructions from some
start address (stored in Flash ROM)

1. BIOS: Find a storage
device and load first
sector (block of data)

2. Bootloader (stored on, e.g.,
disk): Load the OS kernel from
disk into a location in memory
and jump into it.

3. OS Boot: Initialize
services, drivers, etc.

4. Init: Launch an application
that waits for input in loop
(e.g., Terminal/Desktop/...

UEFI
Unified Extensible Firmware Interface

• Successor of BIOS
• Much more powerful and complex
• E.g. graphics menu; networking;

browsers
• All modern Intel & AMD

based computer use UEFI

16

Agenda

17

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory

How to interact with devices?

18

• Assume a program running on a CPU. How does it
interact with the outside world?

• Need I/O interface for Keyboards,
Network, Mouse, Screen, etc.
– Connect to many types of devices
– Control these devices, respond

to them, and transfer data
– Present them to user

programs so
they are useful

cntrl reg.
data reg.

Operating System

Processor Mem

PCI Bus

SCSI Bus

Instruction Set Architecture for I/O

• What must the processor do for I/O?
– Input: reads a sequence of bytes
– Output: writes a sequence of bytes

• Interface options
– Some processors have special input/output instructions
– Memory Mapped Input/Output (used by RISC-V):

• Use normal load/store instructions, e.g., lw/sw, for input/output
– In small pieces

• A portion of the address space dedicated to IO
• I/O device registers there (no memory there)

19

Memory Mapped I/O

• Certain addresses are not regular memory
• Instead, they correspond to registers in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address

20

Processor-I/O Speed Mismatch

• 1GHz microprocessor can execute 1B load or store
instructions per second, or 4,000,000 KB/s data rate
• I/O data rates range from 0.01 KB/s to 1,250,000 KB/s

• Input: device may not be ready to send data as fast as
the processor loads it
• Also, might be waiting for human to act

• Output: device not be ready to accept data as fast as
processor stores it

• What to do?

21

Processor Checks Status before Acting

• Path to a device generally has 2 registers:
• Control Register, says it’s OK to read/write (I/O ready) [think

of a flagman on a road]
• Data Register, contains data

• Processor reads from Control Register in loop, waiting
for device to set Ready bit in Control reg
(0 => 1) to say it’s OK

• Processor then loads from (input) or writes to (output)
data register
• Load from or Store into Data Register resets Ready bit

(1 => 0) of Control Register
• This is called “Polling”

22

• Input: Read from keyboard into a0
li t0, 0xffff0000 #ffff0000

Waitloop: lw t1, 0(t0) #control
andi t1, t1,0x1
beq t1, zero, Waitloop
lw a0, 4(t0) #data

• Output: Write to display from a0
li t0, 0xffff0000 #ffff0000

Waitloop: lw t1, 8(t0) #control
andi t1, t1,0x1
beq t1, zero, Waitloop
sw a0, 12(t0) #data

“Ready” bit is from processor’s point of view!

I/O Example (polling)

23

Cost of Polling?

• Assume for a processor with a 1GHz clock it takes
400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning).
Determine % of processor time for polling
– Mouse: polled 30 times/sec so as not to miss user

movement

24

% Processor time to poll
• Mouse Polling [clocks/sec]

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling:
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
=> Polling mouse little impact on processor

25

What is the alternative to polling?

• Wasteful to have processor spend most of its time
“spin-waiting” for I/O to be ready

• Would like an unplanned procedure call that would
be invoked only when I/O device is ready

• Solution: use exception mechanism to help
I/O. Interrupt program when I/O ready, return when
done with data transfer

• Allow to register (post) interrupt handlers: functions
that are called when an interrupt is triggered

26

Interrupt-driven I/O

Label: sll t1,s3,2
addu t1,t1,s5

lw t1,0(t1)
add s1,s1,t1
addu s3,s3,s4
bne s3,s2,abel

Stack Frame

Stack Frame

Stack Frame

handler: li t0, 0xffff0000
lw t1, 0(t0)
andi t1, t1,0x1
lw a0, 4(t0)
sw t1, 8(t0)
ret

Interrupt(SPI0)

CPU Interrupt Table

SPI0 handler

… …

Handler Execution
1. Incoming interrupt suspends instruction stream
2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU
3. Perform a jal to the handler (needs to store any state)
4. Handler run on current stack and returns on finish

(thread doesn’t notice that a handler was run)

27

Terminology
In CA (you’ll see other definitions in use elsewhere):
• Interrupt – caused by an event external to current

running program (e.g. key press, mouse activity)
– Asynchronous to current program, can handle interrupt on

any convenient instruction

• Exception – caused by some event during execution
of one instruction of current running program (e.g.,
page fault, bus error, illegal instruction)
– Synchronous, must handle exception on instruction that

causes exception

• Trap – action of servicing interrupt or exception by
hardware jump to “trap handler” code

28

29

Traps/Interrupts/Exceptions:

altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed - by
another program – the OS. The event is often unexpected from
original program’s point of view.

Precise Traps
• Trap handler’s view of machine state is that every

instruction prior to the trapped one has completed, and no
instruction after the trap has executed.

• Implies that handler can return from an interrupt by
restoring user registers and jumping back to interrupted
instruction (SEPC register will hold the instruction address)
– Interrupt handler software doesn’t need to understand the

pipeline of the machine, or what program was doing!
– More complex to handle trap caused by an exception than

interrupt
• Providing precise traps is tricky in a pipelined superscalar

out-of-order processor!
– But handling imprecise interrupts in software is even worse.

30

31

Trap Handling in 5-Stage Pipeline

• How to handle multiple simultaneous
exceptions in different pipeline stages?

• How and where to handle external
asynchronous interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

32

Save Exceptions Until Commit

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
S
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

33

Handling Traps in In-Order Pipeline

• Hold exception flags in pipeline until commit point (M
stage)

• Exceptions in earlier instructions override exceptions
in later instructions

• Exceptions in earlier pipe stages override later
exceptions for a given instruction

• Inject external interrupts at commit point
• If exception/interrupt at commit: update Cause and

SEPC registers, kill all stages, inject handler PC into
fetch stage

34

Trap Pipeline Diagram
time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5 MA5 WB5

Agenda

35

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and trap
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory

Launching Applications

36

• Applications are called “processes” in most OSs.
– Process: separate memory; thread: shared memory

• Created by another process calling into an OS routine
(using a “syscall”, more details later).
– Depends on OS, but Linux uses fork to create a new

process, and execve to load application.
• Loads executable file from disk (using the file system

service) and puts instructions & data into memory
(.text, .data sections), prepare stack and heap.

• Set argc and argv, jump into the main function.

Supervisor Mode

37

• If something goes wrong in an application, it could
crash the entire machine. And what about malware,
etc.?

• The OS may need to enforce resource constraints to
applications (e.g., access to devices).

• To help protect the OS from the application, CPUs have
a supervisor mode bit.
– When not in supervisor mode (user mode), a process can

only access a subset of instructions and (physical) memory.
– Process can enter the supervisor mode by using an interrupt,

and change out of supervisor mode using a special
instruction.

Syscalls

38

• What if we want to call into an OS routine? (e.g., to
read a file, launch a new process, send data, etc.)
– Need to perform a syscall: set up function arguments in

registers, and then raise software interrupt
– OS will perform the operation and return to user mode

• This way, the OS can mediate access to all resources,
including devices and the CPU itself.

Multiprogramming

39

• The OS runs multiple applications at the same time.
• But not really (unless you have a core per process)

– Time-sharing processor
• When jumping into process, set timer interrupt.

– When it expires, store PC, registers, etc. (process state).
– Pick a different process to run and load its state.
– Set timer, change to user mode, jump to the new PC.

• Switches between processes very quickly. This is
called a “context switch”.

• Deciding what process to run is called scheduling.

Protection, Translation, Paging

40

• Supervisor mode does not fully isolate applications
from each other or from the OS.
– Application could overwrite another application’s memory.
– Also, may want to address more memory than we actually

have (e.g., for sparse data structures).

• Solution: Virtual Memory. Gives each process the
illusion of a full memory address space that it has
completely for itself.

Agenda

41

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and trap
• Application, Multiprogramming/time-sharing
• Introduction to Virtual Memory

42

“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address is a
physical address

PC
Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

Dynamic Address Translation

43

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
=> base register – add offset to each address

Protection
Independent programs should not affect
each other inadvertently
=> bound register – check range of access

(Note: Multiprogramming drives requirement for
resident supervisor (OS) software to manage context
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS

Virtual vs. Physical Addresses

• Processes use virtual addresses, e.g., 0 … 0xffff,ffff
– Many processes, all using same (conflicting) addresses

• Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)
• Memory manager maps virtual to physical addresses

Processor (& Caches)

Control

Datapath
PC

Registers

(ALU)

Memory (DRAM)

Bytes?

Vi
rt

ua
l A

dd
re

ss

Ph
ys

ic
al

 A
dd

re
ss

Many of these (software & hardware cores) One main memory

44

Simple Base and Bound Translation

45

Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤

Base and Bound Machine

[Can fold addition of base register into (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers)] 46

PC
Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

≤

+

Logical
Address

Bounds Violation?

Physical
Address

Prog. Bound
Register

Program Base
Register

≤

+

Logical
Address

Bounds Violation?

In Conclusion

47

• Once we have a basic machine, it’s mostly up to the
OS to use it and define application interfaces.

• Hardware helps by providing the right abstractions
and features (e.g., Virtual Memory, I/O).

Quiz

Hard disk: transfers data in 16-Byte chunks and can
transfer at 16 MB/second. No transfer can be missed.
What percentage of processor time is spent in polling
(assume 1GHz clock; 400 cycles per poll)?

• A: 2%
• B: 4%
• C: 20%
• D: 40%
• E: 80%

48

Quiz

Piazza: “Video Lecture 21 OS”

	CS 110�Computer Architecture ��An Introduction to Operating Systems�
	Admin
	CA so far…
	So how is this any different?
	Adding I/O
	Raspberry Pi (< 300RMB on jd.com)
	It’s a real computer!
	But wait…
	Well, “just software”
	What does the OS do?
	What does the core of OS need to do?
	Agenda
	Agenda
	What happens at boot?
	What happens at boot?
	UEFI�Unified Extensible Firmware Interface
	Agenda
	How to interact with devices?
	Instruction Set Architecture for I/O
	Memory Mapped I/O
	Processor-I/O Speed Mismatch
	Processor Checks Status before Acting
	I/O Example (polling)
	Cost of Polling?
	% Processor time to poll
	What is the alternative to polling?
	Interrupt-driven I/O
	Terminology
	Traps/Interrupts/Exceptions:�altering the normal flow of control
	Precise Traps
	Trap Handling in 5-Stage Pipeline
	Save Exceptions Until Commit
	Handling Traps in In-Order Pipeline
	Trap Pipeline Diagram
	Agenda
	Launching Applications
	Supervisor Mode
	Syscalls
	Multiprogramming
	Protection, Translation, Paging
	Agenda
	“Bare” 5-Stage Pipeline
	Dynamic Address Translation
	Virtual vs. Physical Addresses
	Simple Base and Bound Translation
	Base and Bound Machine
	In Conclusion
	Quiz

