
CS 110
Computer Architecture 

Virtual Memory 

Instructor:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca


Review
• Booting a Computer

– BIOS, Bootloader, OS Boot, Init
• Supervisor Mode, Syscalls
• Memory-mapped I/O 
• Polling vs. Interrupts, interrupt vs. exception
• Intro to VM
• Base and Bound registers for VM

– Simple, but doesn’t give us everything we want

2



Virtual Memory

5



6

“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address 
is a physical address

PC
Inst. 
Cache D Decode E M

Data 
Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical 
Address

Physical 
Address

Physical Address



What do we need Virtual Memory for? 
Reason 1: Adding Disks to Hierarchy

• Need to devise a mechanism to “connect” 
memory and disk in the memory hierarchy

7



What do we need Virtual Memory for? 
Reason 2: Simplifying Memory for Apps
• Applications should see 

the straightforward 
memory layout we saw 
earlier ->

• User-space applications 
should think they own 
all of memory

• So we give them a 
virtual view of memory

8

code

static data

heap

stack~ 7FFF FFFFhex

~ 0000 0000hex



What do we need Virtual Memory for? 
Reason 3: Protection Between Processes
• With a bare system, addresses issued with 

loads/stores are real physical addresses
• This means any program can issue any address, 

therefore can access any part of memory, even 
areas which it doesn’t own
– Ex: The OS data structures

• We should send all addresses through a 
mechanism that the OS controls, before they 
make it out to DRAM - a translation mechanism

9



Address Spaces
• The set of addresses labeling all of memory 

that we can access
• Now, 2 kinds:

– Virtual Address Space - the set of addresses that 
the user program knows about

– Physical Address Space - the set of addresses that 
map to actual physical cells in memory

• Hidden from user applications

• So, we need a way to map between these two 
address spaces

10



Base and Bound Machine

[ Can fold addition of base register into (register+immediate) address 
calculation using a carry-save adder (sums three numbers with only a few 
gate delays more than adding two numbers) ] 11

PC
Inst. 
Cache D Decode E M

Data 
Cache W+

Main Memory (DRAM)

Memory Controller

Physical 
Address

Physical 
Address

Physical 
Address

Physical Address

Data Bound 
Register

Data Base 
Register

≤

+

Logical 
Address

Bounds Violation?

Physical 
Address

Prog. Bound 
Register

Program Base 
Register

≤

+

Logical 
Address

Bounds Violation?



Memory Fragmentation

12

As users come and go, the storage is “fragmented”. 
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K
24K

24K

32K

24K

user 1
user 2

user 3

OS
Space

16K
24K
16K

32K

24K

user 1
user 2

user 3

user 5

user 4
8K

Users 4 & 5 
arrive

Users 2 & 5
leave OS

Space

16K
24K
16K

32K

24K

user 1

user 4
8K

user 3

free



Blocks vs. Pages

• In caches, we dealt with individual blocks
– Usually ~64B on modern systems
– We could “divide” memory into a set of blocks

• In VM, we deal with individual pages
– Usually ~4 KB on modern systems

• Larger sizes also available: 4MB, very modern 1GB!
– Now, we’ll “divide” memory into a set of pages

• Common point of confusion: Bytes, Words, 
Blocks, Pages are all just different ways of looking 
at memory!

13



Bytes, Words, Blocks, Pages
Ex: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B 
blocks (for caches), 4 B words (for lw/sw)

14

Page 3

Page 2

Page 1

Page 0

16 
KiB

Block 0

Block 31

Word 0

Word 31

1 Memory

1 Page 1 Block

Can think of 
memory as:
- 4 Pages
OR
- 128 Blocks
OR
- 4096 Words

Can think of 
a page as:
- 32 Blocks
OR
- 1024 Words



Address Translation

• So, what do we want to achieve at the 
hardware level?
– Take a Virtual Address, that points to a spot in the 

Virtual Address Space of a particular program, and 
map it to a Physical Address, which points to a 
physical spot in DRAM of the whole machine

15

Virtual Page Number OffsetVirtual Address

Physical Address Physical Page Number Offset



Address Translation

16

Virtual Page Number Offset

Physical Page Number Offset

Virtual Address

Physical Address

Address 
Translation

Copy 
Bits

The rest of the lecture is all about implementing



17

• Processor-generated address can be split into:
Paged Memory Systems

Page tables make it possible to store the 
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table 
of User-1

1
0

2

3

page number      offset

Physical 
Memory

• A page table contains the physical address of the base of each page



18

Private Address Space per User

• Each user has a page table 
• Page table contains an entry for each user page

VA1User 1

Page Table 

VA1User 2

Page Table 

VA1User 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages



19

Where Should Page Tables Reside?
• Space required by the page tables (PT) is proportional 

to the address space, number of users, ...
⇒ Too large to keep in CPU registers

• Idea: Keep PTs in the main memory
– Needs one reference to retrieve the page base address and 

another to access the data word

=> doubles the number of memory references!



20

Page Tables in Physical Memory

VA1

User 1 Virtual 
Address Space

User 2 Virtual 
Address Space

PT 
User 
1 

PT 
User 
2 

VA1

Ph
ys

ic
al

 M
em

or
y



21

Linear (simple) Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE) 
contains:
– 1 bit to indicate if page exists
– And either PPN or DPN:
– PPN (physical page number) 

for a memory-resident page
– DPN (disk page number) for a 

page on the disk
– Status bits for protection and 

usage (read, write, exec)
• OS sets the Page Table Base 

Register whenever active 
user process changes



22

Suppose an instruction references a 
memory page that isn’t in DRAM?

• We get an exception of type “page fault”
• Page fault handler does the following:

– If virtual page doesn’t yet exist, assign an unused page in 
DRAM, or if page exists …

– Initiate transfer of the page we’re requesting from disk to 
DRAM, assigning to an unused page

– If no unused page is left, a page currently in DRAM is
selected to be replaced (based on usage)

– The replaced page is written (back) to disk, page table 
entry that maps that VPN->PPN is marked as invalid/DPN

– Page table entry of the page we’re requesting is updated 
with a (now) valid PPN



23

Size of Linear Page Table
With 32-bit memory addresses, 4-KB pages:

=> 232 / 212 = 220 virtual pages per user, assuming 4-Byte PTEs, 
=> 220 PTEs, i.e, 4 MB page table per process!

Larger pages?
• Internal fragmentation (Not all memory in page gets used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244  8-Byte PTEs (35 TB!)

What is the “saving grace” ? Most processes only use a set of 
high address (stack), and a set of low address (instructions, 
heap)



24

Hierarchical Page Table – exploits 
sparsity of virtual address space use

Level 1 
Page Table

Level 2
Page Tables

Data Pages

page in primary memory 
page in secondary memory

Root of the Current
Page Table

p1

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2   offset
01112212231

10-bit
L1 index

10-bit 
L2 index

Ph
ys

ic
al

 M
em

or
y



27

Address Translation & Protection

• Every instruction and data access needs address 
translation and protection checks

A good VM design needs to be fast (~ one cycle) and 
space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write



28

Translation Lookaside Buffers (TLB)
Address translation is very expensive!

In a two-level page table, each reference 
becomes several memory accesses

Solution: Cache some translations in TLB
TLB hit => Single-Cycle Translation
TLB miss => Page-Table Walk to refill 

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)



29

TLB Designs
• Typically 32-128 entries, usually fully associative

– Each entry maps a large page, hence less spatial 
locality across pages => more likely that two entries 
conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way 
set-associative

– Larger systems sometimes have multi-level (L1 and L2) 
TLBs

• Random or FIFO replacement policy
• Upon context switch? New VM space! Flush TLB 

…
• “TLB Reach”: Size of largest virtual address space 

that can be simultaneously mapped by TLB



VM-related events in pipeline

• Handling a TLB miss needs a hardware or 
software mechanism to refill TLB
– usually done in hardware now

• Handling a page fault (e.g., page is on disk) needs 
a precise trap so software handler can easily 
resume after retrieving page

• Handling protection violation may abort process
30

PC
Inst 
TLB

Inst. 
Cache D Decode E M

Data 
TLB

Data 
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?



31

Hierarchical Page Table Walk: SPARC v8

31 11       0

Virtual Address Index 1 Index 2      Index 3       Offset
31            23            17             11           0

Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table
L3 Table

Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss



32

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

PC
Inst. 
TLB

Inst. 
Cache D Decode E M

Data 
Cache W+

Page Fault?
Protection violation?

Page Fault?
Protection violation?

• Assumes page tables held in untranslated physical memory

Data 
TLB

Main Memory (DRAM)

Memory Controller
Physical 
Address

Physical 
Address

Physical Address

Physical 
Address

Page-Table Base
Register

Virtual 
Address Physical 

Address

Virtual 
Address

Hardware Page 
Table Walker

Miss? Miss?



33

Address Translation:
putting it all together
Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the  page is 
not in memory in memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?



34

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private 
address space and one or more 
shared address spaces

page table = name space

Demand Paging
Provides the ability to run programs 
larger than the primary memory

Hides differences in machine 
configurations

The price is address translation on 
each memory reference

OS

useri

Primary
Memory

Swapping Store
(Disk)

VA PAmapping
TLB



Unlimited?

35



• Insufficient free memory: malloc() returns NULL

Remember: Out of Memory



Limited VM Space with x86-64 

• 64-bit Linux allows up to 128TB of virtual address 
space for individual processes, and can address 
approximately 64 TB of physical memory, subject 
to processor and system limitations.

• For Windows 64-bit versions, both 32- and 64-bit 
applications, if not linked with “large address 
aware”, are limited to 2GB of virtual address 
space; otherwise, 128TB for Windows 8.1 and 
Windows Server 2012 R2 or later. 

37
Source: https://en.wikipedia.org/wiki/X86-64

https://en.wikipedia.org/wiki/X86-64


48bit for address translation only

• Still provides plenty of space!
• Higher bits “sign extended”: 

“canonical form”
• Convention: “Higher half” for

the Operating System
• Intel has plans (“whitepaper”) for

56 bit translation – no hardware yet

• https://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details

38

https://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details


Using 128TB of Memory!?

• A lazy allocation of virtual memory
– Not used  not allocated
– Try reading and writing from those pointers: 

works!
– Even writing Gigabaytes of memory:

works!
• Memory Compression!

– Take no-recently used pages, compress them => 
free the physical page

• https://www.lifewire.com/understanding-compressed-memory-os-x-2260327

39

https://www.lifewire.com/understanding-compressed-memory-os-x-2260327


Virtual Machines

40



Virtual Machine
• Virtual Memory (VM) != Virtual Machine (VM)

– Emulation: Run a complete virtual CPU & Memory & … - a 
complete virtual machine in software (e.g. QEMU)

– Virtual Machine: Run as many instructions as possible directly 
on CPU, only simulate some parts of the machine) (e.g. 
VirtualBox)

• Last lecture: Supervisor Mode & Use Mode; 
now also: Virtual Machine Mode
– Host OS activates virtual execution mode for guest OS =>
– Guest OS thinks it runs in supervisor mode, but in fact it doesn’t 

have access to physical memory! (among other limitations)
• CPUs support it (AMD-V, Intel VT-x), e.g. new Intel 

instructions: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, 
VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, 
and VMXON

41



What about the memory in Virtual 
Machines?

• Need to translate Guest Virtual Address to Guest 
Physical address to Machine (Host) Physical address: 
Earlier the Guest part was done (transparently) in 
software by the Virtual Machine … now in hardware!

42



Kernel Samepage Merging

• Some pages are the same for two guests
– Say, running two Windows 10 instances in a 

Ubuntu host
– They share many pages

• KSM: a way to keep only one copy of pages at 
the host OS level
– To save memory, up to 48.0% in some study
– Not good for protection and privacy

• Shared pages leading to the leak of information

43



Cloud Servers

• Many tech giants provide cloud servers
– AWS, Microsoft Azure, Aliyun, Tencent Cloud, etc.
– With flexible and secure computing capabilities
– Pay-and-rent 

• How cloud servers work?
– Virtualization + distributed storage

• Resources, e.g., CPU, memory, disk, virtualized to serve 
multiple users

• Virtual machine migration between physical servers

44



45

Conclusion: VM features track 
historical uses

• Bare machine, only physical addresses
– One program owned entire machine

• Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (not virtual memory)
– Problem with external fragmentation (holes in memory), needed occasional memory 

defragmentation as new jobs arrived
• Time sharing

– More interactive programs, waiting for user.  Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external fragmentation 

(but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited physical 

memory resources while holding working set in memory
• Virtual Machine Monitors

– Run multiple operating systems on one machine
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical
– Kernel samepage merging to reduce memory footprints
– Cloud servers based on virtual machine instances



Quiz on TLB

• TLB Reach: Size of largest virtual address space 
that can be simultaneously mapped by TLB

• If we increase the page size, say, from 4KB to 
16KB, can we increase the TLB reach?

46

Quiz

A. Yes, of course
B. No, TLB reach is fixed given a processor and memory space

Piazza: “Video Lecture 22 VM”


	CS 110�Computer Architecture �� Virtual Memory �
	Review
	Question on Polling
	% Processor time to poll hard disk
	Virtual Memory
	“Bare” 5-Stage Pipeline
	What do we need Virtual Memory for? Reason 1: Adding Disks to Hierarchy
	What do we need Virtual Memory for? Reason 2: Simplifying Memory for Apps
	What do we need Virtual Memory for? Reason 3: Protection Between Processes
	Address Spaces
	Base and Bound Machine
	Memory Fragmentation
	Blocks vs. Pages
	Bytes, Words, Blocks, Pages
	Address Translation
	Address Translation
	Paged Memory Systems
	Private Address Space per User
	Where Should Page Tables Reside?
	Page Tables in Physical Memory
	Linear (simple) Page Table
	Suppose an instruction references a memory page that isn’t in DRAM?
	Size of Linear Page Table
	Hierarchical Page Table – exploits sparsity of virtual address space use
	Hierarchical Page Table
	Hierarchical Page Table
	Address Translation & Protection
	Translation Lookaside Buffers (TLB)
	TLB Designs
	VM-related events in pipeline
	Hierarchical Page Table Walk: SPARC v8
	Page-Based Virtual-Memory Machine�(Hardware Page-Table Walk)
	Address Translation:�putting it all together
	Modern Virtual Memory Systems� Illusion of a large, private, uniform store
	Unlimited?
	Remember: Out of Memory
	Limited VM Space with x86-64 
	48bit for address translation only
	Using 128TB of Memory!?
	Virtual Machines
	Virtual Machine
	What about the memory in Virtual Machines?
	Kernel Samepage Merging
	Cloud Servers
	Conclusion: VM features track �historical uses
	Quiz on TLB



