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Review
• Booting a Computer

– BIOS, Bootloader, OS Boot, Init
• Supervisor Mode, Syscalls
• Memory-mapped I/O 
• Polling vs. Interrupts, interrupt vs. exception
• Intro to VM
• Base and Bound registers for VM

– Simple, but doesn’t give us everything we want
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Virtual Memory
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“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address 
is a physical address
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What do we need Virtual Memory for? 
Reason 1: Adding Disks to Hierarchy

• Need to devise a mechanism to “connect” 
memory and disk in the memory hierarchy
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What do we need Virtual Memory for? 
Reason 2: Simplifying Memory for Apps
• Applications should see 

the straightforward 
memory layout we saw 
earlier ->

• User-space applications 
should think they own 
all of memory

• So we give them a 
virtual view of memory
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What do we need Virtual Memory for? 
Reason 3: Protection Between Processes
• With a bare system, addresses issued with 

loads/stores are real physical addresses
• This means any program can issue any address, 

therefore can access any part of memory, even 
areas which it doesn’t own
– Ex: The OS data structures

• We should send all addresses through a 
mechanism that the OS controls, before they 
make it out to DRAM - a translation mechanism
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Address Spaces
• The set of addresses labeling all of memory 

that we can access
• Now, 2 kinds:

– Virtual Address Space - the set of addresses that 
the user program knows about

– Physical Address Space - the set of addresses that 
map to actual physical cells in memory

• Hidden from user applications

• So, we need a way to map between these two 
address spaces
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Base and Bound Machine

[ Can fold addition of base register into (register+immediate) address 
calculation using a carry-save adder (sums three numbers with only a few 
gate delays more than adding two numbers) ] 11
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Memory Fragmentation
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As users come and go, the storage is “fragmented”. 
Therefore, at some stage programs have to be moved
around to compact the storage.
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Blocks vs. Pages

• In caches, we dealt with individual blocks
– Usually ~64B on modern systems
– We could “divide” memory into a set of blocks

• In VM, we deal with individual pages
– Usually ~4 KB on modern systems

• Larger sizes also available: 4MB, very modern 1GB!
– Now, we’ll “divide” memory into a set of pages

• Common point of confusion: Bytes, Words, 
Blocks, Pages are all just different ways of looking 
at memory!
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Bytes, Words, Blocks, Pages
Ex: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B 
blocks (for caches), 4 B words (for lw/sw)

14

Page 3

Page 2

Page 1

Page 0

16 
KiB

Block 0

Block 31

Word 0

Word 31

1 Memory

1 Page 1 Block

Can think of 
memory as:
- 4 Pages
OR
- 128 Blocks
OR
- 4096 Words

Can think of 
a page as:
- 32 Blocks
OR
- 1024 Words



Address Translation

• So, what do we want to achieve at the 
hardware level?
– Take a Virtual Address, that points to a spot in the 

Virtual Address Space of a particular program, and 
map it to a Physical Address, which points to a 
physical spot in DRAM of the whole machine
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Address Translation
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The rest of the lecture is all about implementing
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• Processor-generated address can be split into:
Paged Memory Systems

Page tables make it possible to store the 
pages of a program non-contiguously.
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• A page table contains the physical address of the base of each page
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Private Address Space per User

• Each user has a page table 
• Page table contains an entry for each user page
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Where Should Page Tables Reside?
• Space required by the page tables (PT) is proportional 

to the address space, number of users, ...
⇒ Too large to keep in CPU registers

• Idea: Keep PTs in the main memory
– Needs one reference to retrieve the page base address and 

another to access the data word

=> doubles the number of memory references!
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Page Tables in Physical Memory
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Linear (simple) Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
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Page Table
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DPN
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• Page Table Entry (PTE) 
contains:
– 1 bit to indicate if page exists
– And either PPN or DPN:
– PPN (physical page number) 

for a memory-resident page
– DPN (disk page number) for a 

page on the disk
– Status bits for protection and 

usage (read, write, exec)
• OS sets the Page Table Base 

Register whenever active 
user process changes
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Suppose an instruction references a 
memory page that isn’t in DRAM?

• We get an exception of type “page fault”
• Page fault handler does the following:

– If virtual page doesn’t yet exist, assign an unused page in 
DRAM, or if page exists …

– Initiate transfer of the page we’re requesting from disk to 
DRAM, assigning to an unused page

– If no unused page is left, a page currently in DRAM is
selected to be replaced (based on usage)

– The replaced page is written (back) to disk, page table 
entry that maps that VPN->PPN is marked as invalid/DPN

– Page table entry of the page we’re requesting is updated 
with a (now) valid PPN
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Size of Linear Page Table
With 32-bit memory addresses, 4-KB pages:

=> 232 / 212 = 220 virtual pages per user, assuming 4-Byte PTEs, 
=> 220 PTEs, i.e, 4 MB page table per process!

Larger pages?
• Internal fragmentation (Not all memory in page gets used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244  8-Byte PTEs (35 TB!)

What is the “saving grace” ? Most processes only use a set of 
high address (stack), and a set of low address (instructions, 
heap)
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Hierarchical Page Table – exploits 
sparsity of virtual address space use
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Address Translation & Protection

• Every instruction and data access needs address 
translation and protection checks

A good VM design needs to be fast (~ one cycle) and 
space efficient
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Translation Lookaside Buffers (TLB)
Address translation is very expensive!

In a two-level page table, each reference 
becomes several memory accesses

Solution: Cache some translations in TLB
TLB hit => Single-Cycle Translation
TLB miss => Page-Table Walk to refill 

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)
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TLB Designs
• Typically 32-128 entries, usually fully associative

– Each entry maps a large page, hence less spatial 
locality across pages => more likely that two entries 
conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way 
set-associative

– Larger systems sometimes have multi-level (L1 and L2) 
TLBs

• Random or FIFO replacement policy
• Upon context switch? New VM space! Flush TLB 

…
• “TLB Reach”: Size of largest virtual address space 

that can be simultaneously mapped by TLB



VM-related events in pipeline

• Handling a TLB miss needs a hardware or 
software mechanism to refill TLB
– usually done in hardware now

• Handling a page fault (e.g., page is on disk) needs 
a precise trap so software handler can easily 
resume after retrieving page

• Handling protection violation may abort process
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Hierarchical Page Table Walk: SPARC v8
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Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

PC
Inst. 
TLB

Inst. 
Cache D Decode E M

Data 
Cache W+

Page Fault?
Protection violation?

Page Fault?
Protection violation?

• Assumes page tables held in untranslated physical memory
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Address Translation:
putting it all together
Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)
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Physical
Address
(to cache)

miss hit

the  page is 
not in memory in memory denied permitted
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software

SEGFAULTWhere?
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Modern Virtual Memory Systems
Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private 
address space and one or more 
shared address spaces

page table = name space

Demand Paging
Provides the ability to run programs 
larger than the primary memory

Hides differences in machine 
configurations

The price is address translation on 
each memory reference

OS

useri

Primary
Memory

Swapping Store
(Disk)

VA PAmapping
TLB



Unlimited?
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• Insufficient free memory: malloc() returns NULL

Remember: Out of Memory



Limited VM Space with x86-64 

• 64-bit Linux allows up to 128TB of virtual address 
space for individual processes, and can address 
approximately 64 TB of physical memory, subject 
to processor and system limitations.

• For Windows 64-bit versions, both 32- and 64-bit 
applications, if not linked with “large address 
aware”, are limited to 2GB of virtual address 
space; otherwise, 128TB for Windows 8.1 and 
Windows Server 2012 R2 or later. 
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48bit for address translation only

• Still provides plenty of space!
• Higher bits “sign extended”: 

“canonical form”
• Convention: “Higher half” for

the Operating System
• Intel has plans (“whitepaper”) for

56 bit translation – no hardware yet

• https://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
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Using 128TB of Memory!?

• A lazy allocation of virtual memory
– Not used  not allocated
– Try reading and writing from those pointers: 

works!
– Even writing Gigabaytes of memory:

works!
• Memory Compression!

– Take no-recently used pages, compress them => 
free the physical page

• https://www.lifewire.com/understanding-compressed-memory-os-x-2260327
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Virtual Machines
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Virtual Machine
• Virtual Memory (VM) != Virtual Machine (VM)

– Emulation: Run a complete virtual CPU & Memory & … - a 
complete virtual machine in software (e.g. QEMU)

– Virtual Machine: Run as many instructions as possible directly 
on CPU, only simulate some parts of the machine) (e.g. 
VirtualBox)

• Last lecture: Supervisor Mode & Use Mode; 
now also: Virtual Machine Mode
– Host OS activates virtual execution mode for guest OS =>
– Guest OS thinks it runs in supervisor mode, but in fact it doesn’t 

have access to physical memory! (among other limitations)
• CPUs support it (AMD-V, Intel VT-x), e.g. new Intel 

instructions: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, 
VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, 
and VMXON
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What about the memory in Virtual 
Machines?

• Need to translate Guest Virtual Address to Guest 
Physical address to Machine (Host) Physical address: 
Earlier the Guest part was done (transparently) in 
software by the Virtual Machine … now in hardware!
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Kernel Samepage Merging

• Some pages are the same for two guests
– Say, running two Windows 10 instances in a 

Ubuntu host
– They share many pages

• KSM: a way to keep only one copy of pages at 
the host OS level
– To save memory, up to 48.0% in some study
– Not good for protection and privacy

• Shared pages leading to the leak of information

43



Cloud Servers

• Many tech giants provide cloud servers
– AWS, Microsoft Azure, Aliyun, Tencent Cloud, etc.
– With flexible and secure computing capabilities
– Pay-and-rent 

• How cloud servers work?
– Virtualization + distributed storage

• Resources, e.g., CPU, memory, disk, virtualized to serve 
multiple users

• Virtual machine migration between physical servers
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Conclusion: VM features track 
historical uses

• Bare machine, only physical addresses
– One program owned entire machine

• Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (not virtual memory)
– Problem with external fragmentation (holes in memory), needed occasional memory 

defragmentation as new jobs arrived
• Time sharing

– More interactive programs, waiting for user.  Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external fragmentation 

(but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited physical 

memory resources while holding working set in memory
• Virtual Machine Monitors

– Run multiple operating systems on one machine
– Hardware support for two levels of translation/protection

• Guest OS virtual -> Guest OS physical -> Host machine physical
– Kernel samepage merging to reduce memory footprints
– Cloud servers based on virtual machine instances



Quiz on TLB

• TLB Reach: Size of largest virtual address space 
that can be simultaneously mapped by TLB

• If we increase the page size, say, from 4KB to 
16KB, can we increase the TLB reach?
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Quiz

A. Yes, of course
B. No, TLB reach is fixed given a processor and memory space

Piazza: “Video Lecture 22 VM”
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