
CS 110
Computer Architecture

Advanced Caches

Instructor:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s

School of Information Science and Technology SIST

ShanghaiTech University

1

Slides based on UC Berkeley's CS61C and
Carnegie Mellon Univ. ECE447 (2015)

https://robotics.shanghaitech.edu.cn/courses/ca

Midterm
• Date: Tuesday, May 26th, 2020
• Time: 10:15- 12:15 (normal lecture slot++)

– Be there latest 10:00 – we start 10:15 sharp!
• Venue: 4 rooms – check on egate which room you are!

– SPST1-503
SPST1-201
SPST1-501
SIST1A-106

• Closed book:
– You can bring two A4 pages with notes (both sides; in English):

Write your Chinese and Pinyin name on the top! Handwritten
by you!

• Final: you can bring three A4 pages
– You will be provided with the RISC-V ”green sheet”
– No other material allowed!

2

Midterm I
• Wear your Corona mask! =>
• Switch cell phones off!

(not silent mode – off!)
– Put them in your bags.

• Bags under the table. Nothing except paper, pen, 1
drink, 1 snack, your student ID card on the table!

• No other electronic devices are allowed!
– No ear plugs, music, smartwatch…

• Anybody touching any electronic device will FAIL the
course!

• Anybody found cheating (copy your neighbors answers,
additional material, ...) will FAIL the course!

3

Admin

4

Admin

5

Admin

6

Admin

7

Admin

8

Admin

9

Admin

10

Admin

Content

• Main topics: Everything till (including) Lecture 16
– Number representation (int & float)
– C
– CALL
– RISC-V
– SDS; Datapath & Control
– Pipelining & Superscalar
– Caches

• Plus general ”Computer Architecture” knowledge

11

Admin

Quiz on TLB

• TLB Reach: Size of largest virtual address space
that can be simultaneously mapped by TLB

• If we increase the page size, say, from 4KB to
16KB, can we increase the TLB reach?

12

Quiz

A. Yes, of course
B. No, TLB reach is fixed given a processor and memory space

Piazza: “Video Lecture 22 VM”

Outline
• MRU is LRU
• LLC is not monolithic
• Use a crystal ball to help cache
• No, do not cache us
• Yes, you can control the cache

13

MRU is LRU

14

Cache Inclusion

• Multilevel caches

15

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 6MB

Intel Ivy Bridge Cache Architecture (Core i5-3470)

If all blocks in the higher level cache are also present in the lower level cache, then the
lower level cache is said to be inclusive of the higher level cache.

Inclusive

16

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due
to cache replacement

A

B

B

Evict B from L2 due
to cache replacement

A

B

B

A

Back
invalidation

Exclusive

17

L2

L1

Initial state Read A miss; load A
into L1

A

Read B miss; load B
into L1

A B

Evict A from L1 due
to cache replacement
and place in L2

BA

A

Non-inclusive

18

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due
to cache replacement

A

B

B

Evict B from L2 due
to cache replacement

A

B

B

A

Real-world CPUs

• Intel Processors
– Sandy bridge, inclusive
– Haswell, inclusive
– Skylake-S, inclusive
– Skylake-X, non-inclusive

• ARM Processors
– ARMv7, non-inclusive
– ARMv8, non-inclusive

19

Inclusive, or not?

• Inclusive cache eases coherence
– Updating a cache block in L1 entails an update in

inclusive LLC.
– A non-inclusive LLC, say L2 cache, which needs to evict

a block, must ask L1 cache if it has the block, because
such information is not present in LLC.

• Non-inclusive cache yields higher performance
though, why?
– No back invalidation
– More data can be cached

20

‘Sneaky’ LRU for Inclusive Cache

21

Inclusive
LLC

L1

A

A B

B

CPU
Core

A is frequently used A is frequently hit in L1
cache. It is MRU in L1 cache.

In LLC, A is not
frequently hit

In LLC, A is LRU
A is evicted for
replacement, in
both L1 and L2

As a result, MRU block that should be retained might be evicted, which
causes performance penalty.

Should you be interested, you can click https://doi.org/10.1109/MICRO.2010.52 to read the
related research paper for details.

What if LLC is non-inclusive?

https://doi.org/10.1109/MICRO.2010.52

LLC is not monolithic

22

LLC is not monolithic

23

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 20MB

Previously, it’s considered that, to CPU cores, LLC is monolithic. No matter
where a cache block in the LLC, a core would load it into private L2 and L1
cache with the same time cost.

Intel® Xeon® Processor E5-2667 v3

LLC is fine-grained

24

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 20MBLLC (L3) in Eight Slices

A A

From the paper https://doi.org/10.1145/3302424.3303977

Intel® Xeon® Processor E5-2667 v3

https://doi.org/10.1145/3302424.3303977

Slice-aware memory management

• The idea seems simple
– Put your data closer to your program (core)

• But it not EASY to do so
– Cache management is undocumented, not to

mention even fine-grained slices
– Researchers did a lot of efforts

• Click https://doi.org/10.1145/3302424.3303977 for details
• They managed to improve the average performance by 12.2% for

GET operations of a key-value store.
• 12.2% is a lot, if you consider the huge transactions every day for

Taobao and JD

25

https://doi.org/10.1145/3302424.3303977

Use a crystal ball to help cache

Prefetch

26

Outline of Prefetching
• Why prefetch? Why could/does it work?
• The four questions

– What (to prefetch), when, where, how

• Software prefetching
• Hardware prefetching

27

Prefetching
• Idea: Fetch the data before it is needed (i.e., pre-fetch) by

the program

• Why?
– Memory latency is high. If we can prefetch accurately and

early enough, we can reduce/eliminate that latency.
– Can eliminate compulsory cache misses
– Can it eliminate all cache misses? Capacity, conflict?

• Involves predicting which address will be needed in the
future
– Works if programs have predictable miss address patterns

28

Prefetching and Correctness
• Does a misprediction in prefetching affect

correctness?

• No, prefetched data at a “mispredicted” address
is simply not used

• There is no need for state recovery
– In contrast to branch misprediction or value

misprediction

29

Basics
• In modern systems, prefetching is usually done in

cache block granularity

• Prefetching is a technique that can reduce both
– Miss rate
– Miss latency

• Prefetching can be done by
– hardware
– compiler
– programmer

30

How a HW Prefetcher Fits in the Memory System

31

Prefetching: The Four Questions
• What

– What addresses to prefetch

• When
– When to initiate a prefetch request

• Where
– Where to place the prefetched data

• How
– Software, hardware, execution-based, cooperative

32

Challenges in Prefetching: What
• What addresses to prefetch

– Prefetching useless data wastes resources
• Memory bandwidth
• Cache or prefetch buffer space
• Energy consumption
• These could all be utilized by demand requests or more accurate

prefetch requests
– Accurate prediction of addresses to prefetch is important

• Prefetch accuracy = used prefetches / sent prefetches
• How do we know what to prefetch

– Predict based on past access patterns
– Use the compiler’s knowledge of data structures

• Prefetching algorithm determines what to prefetch

33

Challenges in Prefetching: When
• When to initiate a prefetch request

– Prefetching too early
• Prefetched data might not be used before it is evicted from storage

– Prefetching too late
• Might not hide the whole memory latency

• When a data item is prefetched affects the timeliness of
the prefetcher

• Prefetcher can be made more timely by
– Making it more aggressive: try to stay far ahead of the

processor’s access stream (hardware)
– Moving the prefetch instructions earlier in the code

(software)

34

Challenges in Prefetching: Where (I)
• Where to place the prefetched data

– In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data cache pollution

– In a separate prefetch buffer
+ Demand data protected from prefetches no cache pollution
-- More complex memory system design

- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

• Many modern systems place prefetched data into the cache
– Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …

35

Challenges in Prefetching: Where (II)
• Which level of cache to prefetch into?

– Memory to L2, memory to L1. Advantages/disadvantages?
– L2 to L1? (a separate prefetcher between levels)

• Where to place the prefetched data in the cache?
– Do we treat prefetched blocks the same as demand-fetched

blocks?
– Prefetched blocks are not known to be needed

• With LRU, a demand block is placed into the MRU position

• Do we skew the replacement policy such that it favors the
demand-fetched blocks?
– E.g., place all prefetches into the LRU position in a way?

36

Challenges in Prefetching: Where (III)
• Where to place the hardware prefetcher in the memory

hierarchy?
– In other words, what access patterns does the prefetcher

see?
– L1 hits and misses
– L1 misses only
– L2 misses only

• Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching
-- Prefetcher needs to examine more requests (bandwidth

intensive, more ports into the prefetcher?)

37

Challenges in Prefetching: How
• Software prefetching

– ISA provides prefetch instructions
– Programmer or compiler inserts prefetch instructions (effort)
– Usually works well only for “regular access patterns”

• Hardware prefetching
– Hardware monitors processor accesses
– Memorizes or finds patterns/strides
– Generates prefetch addresses automatically

• Execution-based prefetchers
– A “thread” is executed to prefetch data for the main program
– Can be generated by either software/programmer or hardware

38

Software Prefetching (I)
• Idea: Compiler/programmer places prefetch

instructions into appropriate places in code

 Mowry et al., “Design and Evaluation of a Compiler
Algorithm for Prefetching,” ASPLOS 1992.

• Prefetch instructions prefetch data into caches
• Compiler or programmer can insert such

instructions into the program
39

x86 PREFETCH Instruction

40

microarchitecture
dependent
specification

different instructions
for different cache
levels

Software Prefetching (II)

• Can work for very regular array-based access patterns. Issues:
-- Prefetch instructions take up processing/execution bandwidth
– How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) portability?

-- Going too far back in code reduces accuracy (branches in between)
– Need “special” prefetch instructions in ISA?

• Alpha load into register 31 treated as prefetch (r31==0)
• PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

41

for (i=0; i<N; i++) {
__prefetch(a[i+8]);
__prefetch(b[i+8]);
sum += a[i]*b[i];

}

while (p) {
__prefetch(pnext);
work(pdata);
p = pnext;

}

while (p) {
__prefetch(pnextnextnext);
work(pdata);
p = pnext;

}
Which one is better?

Software Prefetching (III)
• Where should a compiler insert prefetches?

– Prefetch for every load access?
• Too bandwidth intensive (both memory and execution bandwidth)

– Profile the code and determine loads that are likely to miss
• What if profile input set is not representative?

– How far ahead before the miss should the prefetch be inserted?
• Profile and determine probability of use for various prefetch distances

from the miss
– What if profile input set is not representative?
– Usually need to insert a prefetch far in advance to cover 100s of cycles of

main memory latency reduced accuracy

42

Hardware Prefetching (I)
• Idea: Specialized hardware observes load/store

access patterns and prefetches data based on
past access behavior

• Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

43

Next-Line Prefetchers
• Simplest form of hardware prefetching: always

prefetch next N cache lines after a demand access (or
a demand miss)
– Next-line prefetcher (or next sequential prefetcher)
– Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:

- What if the program is traversing memory from higher to lower
addresses?
- Also prefetch “previous” N cache lines?

44

Stride Prefetchers
• Two kinds

– Instruction program counter (PC) based
– Cache block address based

• Instruction based:
– Baer and Chen, “An effective on-chip preloading scheme to

reduce data access penalty,” SC 1991.
– Idea:

• Record the distance between the memory addresses referenced
by a load instruction (i.e. stride of the load) as well as the last
address referenced by the load

• Next time the same load instruction is fetched, prefetch last
address + stride

45

Cache-Block Address Based Stride Prefetching

• Can detect
– A, A+N, A+2N, A+3N, …
– Stream buffers are a special case of cache block

address based stride prefetching where N = 1

46

Address tag Stride Control/Confidence

……. ……

Block
address

Stream Buffers (Jouppi, ISCA 1990)
• Each stream buffer holds one stream of

sequentially prefetched cache lines

• On a load miss check the head of all stream
buffers for an address match

– if hit, pop the entry from FIFO, update the cache with
data

– if not, allocate a new stream buffer to the new miss
address (may have to recycle a stream buffer
following LRU policy)

• Stream buffer FIFOs are continuously topped-
off with subsequent cache lines whenever
there is room and the bus is not busy

47

FIFO

FIFO

FIFO

FIFO

DCache

M
em

or
y

in
te

rf
ac

e

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of
a Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

No, do not cache us

48

Why do we use cache?

• The data to be used will be reused soon
• But there is some data for which caching is not

that useful
– So-called streaming data
– e.g., larger matrices filled but used much later

• Caching such data pollutes the cache

49

Non-temporal load & store

• Intel
– MOVNTDQA: Load Double Quadword Non-

Temporal Aligned Hint
– MOVNTDQ: Store Double Quadword Using Non-

Temporal Hint

• ARMv8
– LDNP
– STNP

50

Note that, such instructions only give
a hint to the memory system that
caching is not useful for this data

When you can use them?

• The data is unlikely to be used soon
• The data is large
• Examples

– Logs (journals)
– In file systems and databases, logs are used for

recovery/retrieval

51

Yes, you can control the cache

52

Scratchpad Memory

Scratchpad Memory

• Strictly speaking, scratchpad memory (SPM) is
not cache
– Widely used in embedded systems
– On-chip SRAM, like cache, close to ALU
– Software controlled: software decides what data

sections to be placed in SPM
• By the programmer or the compiler before running

– Memory-mapped to a predefined address range

53

Why SPM?

• To control the execution time
– More predictable than hardware-controlled cache
– Especially for WCET (worst-case execution time)

• With reduced area and energy consumptions
– More space- and energy-efficient

54

Conclusion

• There are many interesting facts of CPU cache
• To make the best of cache can boost your

program’s performance!

55

Quiz for prefetch accuracy

• What is the hardware prefetch accuracy if
access stride = 1 and N = 2?

56

A. 0%
B. 25%
C. 50%
D. 75%
E. 100%

Quiz

Piazza: “Video Lecture 23 Advanced Cache”

	CS 110�Computer Architecture �� Advanced Caches�
	Midterm
	Midterm I
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Content
	Quiz on TLB
	Outline
	MRU is LRU
	Cache Inclusion
	Inclusive
	Exclusive
	Non-inclusive
	Real-world CPUs
	Inclusive, or not?
	‘Sneaky’ LRU for Inclusive Cache
	LLC is not monolithic
	LLC is not monolithic
	LLC is fine-grained
	Slice-aware memory management
	Use a crystal ball to help cache
	Outline of Prefetching
	Prefetching	
	Prefetching and Correctness
	Basics
	How a HW Prefetcher Fits in the Memory System
	Prefetching: The Four Questions�
	Challenges in Prefetching: What
	Challenges in Prefetching: When
	Challenges in Prefetching: Where (I)
	Challenges in Prefetching: Where (II)
	Challenges in Prefetching: Where (III)
	Challenges in Prefetching: How
	Software Prefetching (I)
	x86 PREFETCH Instruction
	Software Prefetching (II)
	Software Prefetching (III)
	Hardware Prefetching (I)
	Next-Line Prefetchers
	Stride Prefetchers
	Cache-Block Address Based Stride Prefetching
	Stream Buffers (Jouppi, ISCA 1990)
	No, do not cache us
	Why do we use cache?
	Non-temporal load & store
	When you can use them?
	Yes, you can control the cache
	Scratchpad Memory
	Why SPM?
	Conclusion
	Quiz for prefetch accuracy

