
CS 110
Computer Architecture

Lecture 24:
Review for Midterm

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Project 4
• Program on a RISC-V CPU!
• Sipeed Longan Nano Development Board with
– RISC-V 32bit CPU!
– Comes with a Screen!

2

32 bit

RISC-V CPU
• Gigadevince GD32VF103CBT6 GD32VF103 “Bumblebee Core”

• ISA: RV32IMAC
– Integer; Multiplication & Division; Atomic Operations; Compressed

(16bit) instructions

– Single-cycle hardware multiplier and Multi-cycles hardware divider

• 108MHz

• 128kb Flash

• 32kb SRAM

• Cache?
– No Cache needed: 0 wait states for Flash and SRAM!

(CPU speed is low while using modern memory)

• Supports misaligned memory access operations (Load/Store)

• Virtual Memory?
– No Virtual Memory – everything (Flash, SRAM, devices) is mapped to

the 32bit address space.

3

• DMA?
– Yes!
– peripheral to memory, memory to peripheral, memory to memory DMA

modes
• Interrupts?

– Yes!
– Supports the RISC-V architecturally defined software, timer and external

interrupts.
– Dozens of external interrupt sources
– Programmable 16 interrupt levels and priorities

• Power Saving Modes?
– Yes!
– Sleep (core clock off – interrupts run)
– Deep-Sleep (most interrupts off)
– Standby (SRAM and registers are lost – save state to flash! Few interrupts

available)
• Pipelining?

– 2-stage pipeline!
• Simple dynamic branch predictor
• Instruction fetch unit (IFU) can prefetch the following two instructions to

mask the instruction memory access latency
• Support Machine Mode and User Mode

4

5

Memory
Map

6

7

• Vdd = 3.3V => 35mA @108MHz => 0.12W
8

Cool Projects

9

Project 4

• Program in C and RISC-V on the Logan Nano
• Implement Pong Game
– OR some better game if your want

• Call C functions from RISC-V!
– Good – we do NOT need to program everything by

hand on hardware – use provided C library!

• Lab 11: get familiar with the Logan Nano
• Lab 14 in week 18 (“2nd final week”): Demo

and checkup of Project 4

10

We provide each project group with:

• 1 x Sipeed Logan Nano with screen and housing RMB 34.8
https://item.taobao.com/item.htm?id=601743142093

• 2 x push buttons https://detail.tmall.com/item.htm?id=554574318222

• You need to provide
your own USB-C cable!

• You are free to buy your own hardware (e.g. your own Logan
Nano, buttons, potentiometers, speaker!?) for Project 4…

• Code still goes to gitlab! 12

https://item.taobao.com/item.htm?id=601743142093
https://detail.tmall.com/item.htm?id=554574318222

Links:
• https://longan.sipeed.com/en/
• https://www.gigadevice.com/microcontroller/gd32vf103cbt6/
• https://github.com/nucleisys/Bumblebee_Core_Doc
• https://docs.platformio.org/en/latest/platforms/gd32v.html

• Lab 11: https://robotics.shanghaitech.edu.cn/courses/ca/20s/labs/11/

13

https://longan.sipeed.com/en/
https://www.gigadevice.com/microcontroller/gd32vf103cbt6/
https://github.com/nucleisys/Bumblebee_Core_Doc
https://docs.platformio.org/en/latest/platforms/gd32v.html
https://robotics.shanghaitech.edu.cn/courses/ca/20s/labs/11/

Midterm

• Date: Tuesday, May. 26
• Time: 10:15- 12:15 (normal lecture slot++)

– Be there latest 10:00 – we start 10:15 sharp!
• Venue: 4 rooms – check on egate which room you are!:

– SPST1-503
SPST1-201
SPST1-501
SIST1A-106

• Closed book:
– You can bring two A4 pages with notes (both sides; in English):

Write your Chinese and Pinyin name on the top! Handwritten
by you!
• Final: you can bring three A4 pages

– You will be provided with the RISC-V ”green sheet”
– No other material allowed!

15

Midterm I
• Wear your Corona mask! =>
• Switch cell phones off!

(not silent mode – off!)
– Put them in your bags.

• Bags under the table. Nothing except paper, pen, 1
drink, 1 snack, your student ID card on the table!

• No other electronic devices are allowed!
– No ear plugs, music, smartwatch…

• Anybody touching any electronic device will FAIL the
course!

• Anybody found cheating (copy your neighbors answers,
additional material, ...) will FAIL the course!

16

17

18

19

20

21

22

23

Content

• Main topics: Everything till (including) Lecture 16

– Number representation (int & float (Lecture 17!))

– C

– CALL

– RISC-V

– SDS; Datapath & Control

– Pipelining & Superscalar

– Caches

• Plus general ”Computer Architecture” knowledge

• Disclaimer: In this review, important topics for CA are

covered. It does not indicate that other topics from lectures

1-16 will not covered in the exams, nor does it mean that

everything written here will be covered.

24

New School Computer Architecture (1/3)

25

Personal
Mobile
Devices

Old Machine Structures

26

CA

I/O systemProcessor

Compiler
Operating
System
(Mac OSX)

Application (ex: browser)

Digital Design
Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates functioning in

parallel at same time
• Programming Languages 27

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Leverage
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project 1

Project 3

Project 2

CA is NOT about C Programming

• It’s about the hardware-software interface
– What does the programmer need to know to

achieve the highest possible performance
• Languages like C are closer to the underlying

hardware, unlike languages like Python!
– Allows us to talk about key hardware features in

higher level terms
– Allows programmer to explicitly harness

underlying hardware parallelism for high
performance: “programming for performance”

28

Great Ideas in Computer Architecture
1. Design for Moore’s Law

-- Higher capacities caches and DRAM

2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy

-- Parity, SEC/DEC
5. Memory Hierarchy

-- Caches, TLBs

6. Performance via Parallelism/Pipelining/Prediction
-- Data-level Parallelism

29

#2: Moore’s Law

30

Gordon Moore
Intel Cofounder

Predicts:
2X Transistors / chip

every 2 years

Great Idea #3: Principle of Locality/
Memory Hierarchy

5/19/20 31

Great Idea #4: Parallelism

32

Great Idea #5: Performance
Measurement and Improvement

• Tuning application to underlying hardware to
exploit:
– Locality
– Parallelism
– Special hardware features, like specialized instructions

(e.g., matrix manipulation)
• Latency
– How long to set the problem up
– How much faster does it execute once it gets going
– It is all about time to finish

33

Great Idea #6:
Dependability via Redundancy

• Redundancy so that a failing piece doesn’t
make the whole system fail

34

1+1=2 1+1=2 1+1=1

1+1=2
2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy

Key Concepts
• Inside computers, everything is a number
• But numbers usually stored with a fixed size
– 8-bit bytes, 16-bit half words, 32-bit words, 64-bit

double words, …

• Integer and floating-point operations can lead
to results too big/small to store within their
representations: overflow/underflow

35

Number Representation

36

Signed Integers and
Two’s-Complement Representation

• Signed integers in C; want ½ numbers <0, want ½
numbers >0, and want one 0

• Two’s complement treats 0 as positive, so 32-bit
word represents 232 integers from
-231 (–2,147,483,648) to 231-1 (2,147,483,647)
– Note: one negative number with no positive version
– Book lists some other options, all of which are worse
– Every computer uses two’s complement today

• Most-significant bit (leftmost) is the sign bit,
since 0 means positive (including 0), 1 means
negative
– Bit 31 is most significant, bit 0 is least significant

37

Two’s-Complement Integers
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten

... ...
0111 1111 1111 1111 1111 1111 1111 1101two = 2,147,483,645ten
0111 1111 1111 1111 1111 1111 1111 1110two = 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = –2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = –2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = –2,147,483,646ten

... ...
1111 1111 1111 1111 1111 1111 1111 1101two = –3ten
1111 1111 1111 1111 1111 1111 1111 1110two = –2ten
1111 1111 1111 1111 1111 1111 1111 1111two = –1ten

38

Sign Bit

Ways to Make Two’s Complement
• For N-bit word, complement to 2ten

N

– For 4 bit number 3ten=0011two, two’s complement

(i.e. -3ten) would be

16ten-3ten=13ten or 10000two – 0011two = 1101two

39

• Here is an easier way:
– Invert all bits and add 1

– Computers actually do it like this, too

0011two

1100two
+ 1two

3ten

1101two

Bitwise complement

-3ten

Two’s-Complement Examples

• Assume for simplicity 4 bit width, -8 to +7
represented

40

0011
0010

3
+2
5 0101

0011
1110

3
+ (-2)

1 1 0001

0111
0001

7
+1
-8 1000
Overflow!

1101
1110

-3
+ (-2)

-5 1 1011

1000
1111

-8
+ (-1)

+7 1 0111
Carry into MSB =
Carry Out MSB

Carry into MSB =
Carry Out MSB

Overflow!

Overflow when
magnitude of result
too big small to fit
into result
representation

Carry in = carry from less significant bits
Carry out = carry to more significant bits

0 to +31

-16 to +15

-32 to +31�

�

�

�

41

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

0 to +31

-16 to +15

-32 to +31�

�

�

�

42

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

Conclusion
• Floating Point lets us:
– Represent numbers containing both integer and fractional parts; makes

efficient use of available bits.

– Store approximate values for very large and very small #s.

• IEEE 754 Floating-Point Standard is most widely accepted attempt to
standardize interpretation of such numbers (Every desktop or server
computer sold since ~1997 follows these conventions)

•Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

•Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)

Can
store
NaN,
± ∞

www.h-schmidt.net/FloatApplet/IEEE754.html

Float: Special Numbers Summary

•Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

C Programming

45

Quiz: Pointers
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

46

A: a=3 b=2 c=1
B: a=1 b=2 c=3
C: a=1 b=3 c=2
D: a=3 b=3 c=3
E: a=1 b=1 c=1

Result is:

47

Arrays and Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)
{

int a[10], b[5];
int c[] = {1, 3, 2, 5, 6};
… foo(a, 10)… foo(c, 5) …
printf(“%d\n”, sizeof(c));

}

What does this print (64bit) ?

What does this print?

8

40

... because array is really
a pointer (and a pointer is
architecture dependent, but
8 on 64bit machines!)

C Memory
Management

• Program’s address space
contains 4 regions:
– stack: local variables inside

functions, grows downward
– heap: space requested for

dynamic data via malloc();
resizes dynamically, grows
upward

– static data: variables declared
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified.

– code: loaded when program
starts, does not change

code

static data

heap

stack~ FFFF FFFFhex

~ 0000 0000hex

4848

Memory Address
(32 bits assumed here)

The Stack
• Every time a function is called, a new frame

is allocated on the stack
• Stack frame includes:

– Return address (who called me?)
– Arguments
– Space for local variables

• Stack frames contiguous
blocks of memory; stack pointer
indicates start of stack frame

• When function ends, stack frame is tossed
off the stack; frees memory for future stack
frames

• We’ll cover details later for RISC-V processor fooD frame

fooB frame

fooC frame

fooA frame

Stack Pointer
49

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { fooD(); }

Faulty Heap Management

• What is wrong with this code?
• Memory leak!

int foo() {
int *value = malloc(sizeof(int));
*value = 42;
return *value;

}

50

And In Conclusion, …
• Pointers are an abstraction of machine memory

addresses
• Pointer variables are held in memory, and pointer

values are just numbers that can be manipulated
by software

• In C, close relationship between array names and
pointers

• Pointers know the type of the object they point
to (except void *)

• Pointers are powerful but potentially dangerous

51

RISC-V

52

Addition and Subtraction of Integers (3/4)

• How to do the following C statement?

a = b + c + d - e; // a: x10; b: x1; c: x2, e: x3; f: x4

• Break into multiple instructions

add x10, x1, x2 # a_temp = b + c
add x10, x10, x3 # a_temp = a_temp + d
sub x10, x10, x4 # a = a_temp - e
• Notice: A single line of C may break up into

several lines of RISC-V.

• Notice: Everything after the hash mark on each

line is ignored (comments).
53

Question:
We want to translate *x = *y +1 into RISC-V
(x, y int pointers stored in: s0 s1)

A: addi s0, s1, 1
B: lw s0, 1(s1)

sw s1, 0(s0)
C: lw t0, 0(s1)

addi t0, t0, 1
sw t0, 0(s0)

D: sw t0, 0(s1)
addi t0, t0, 1
lw t0, 0(s0)

E: lw s0, 1(t0)
sw s1, 0(t0)

54

Processor

Control

Datapath

Executing a Program

55

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory

BytesInstruction
Address

Read
Instruction
Bits

Program

Data

• The PC (program counter) is internal register inside processor holding byte
address of next instruction to be executed.

• Instruction is fetched from memory, then control unit executes instruction
using datapath and memory system, and updates program counter (default is
add +4 bytes to PC, to move to next sequential instruction)

Question!

What is the code above?
A: while loop
B: do … while loop
C: for loop
D: A or C
E: Not a loop

addi s0,zero,0
Start: slt t0,s0,s1

beq t0,zero,Exit
sll t1,s0,2
add t1,t1,s5
lw t1,0(t1)
add s4,s4,t1
addi s0,s0,1
j Start

Exit:

56

Question
• What value does x12 have at the end?
• Answer:

x12 = 16

57

addi x10, x0 , 0x07
add x12, x0 , x0

label_a:
andi x14, x10, 1
beq x14, x0 , label_b
add x12, x10, x12

label_b:
addi x10, x10, -1
bne x10, x0 , label_a

RISC-V Function Call Conventions
• Registers faster than memory, so use them

• Give names to registers, conventions on how to use them

• a0–a7 (x10-x17): eight argument registers to pass
parameters and return values (a0-a1)

• ra: one return address register to return to the point of
origin (x1)

• Also s0-s1 (x8-x9) and s2-s11 (x18-x27):
saved registers (more about those later)

58

Instruction Support for Functions (1/4)

... sum(a,b);... /* a, b: s0, s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000
1004
1008
1012
1016
…
2000
2004

C

In RV32, instructions are 4
bytes, and stored in memory
just like data. So here we show
the addresses of where the
programs are stored.

59

RI
SC
-V

Instruction Support for Functions (2/4)

... sum(a,b);... /* a, b: s0, s1 */
}
int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000 add a0, s0, x0 # x = a
1004 mv a1, s1 # y = b
1008 addi ra, zero, 1016 # ra=1016
1012 j sum # jump to sum
1016 … # next instruction
…
2000 sum: add a0, a0, a1
2004 jr ra # new instr. “jump register”

C

60

RI
SC
-V

Instruction Support for Functions (3/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}
int sum(int x, int y) {
return x+y;

}

2000 sum: add a0, a0, a1
2004 jr ra # new instr. “jump register”

• Question: Why use jr here? Why not use j?

• Answer: sum might be called by many places, so we can’t
return to a fixed place. The calling proc to sum must be able
to say “return here” somehow.

C

61

RI
SC
-V

Instruction Support for Functions (4/4)
• Single instruction to jump and save return address:

jump and link (jal)
• Before:

1008 addi ra, zero, 1016 # $ra=1016
1012 j sum # goto sum

• After:
1008 jal sum # ra=1012, goto sum

• Why have a jal?
– Make the common case fast: function calls very common.
– Reduce program size
– Don’t have to know where code is in memory with jal!

62

Stack Before, During, After Function

sp

Before call
sp

During call

Saved argument
registers (if any)

Saved return
address (if needed)

Saved saved
registers (if any)

Local variables
(if any)

sp

After call

Using the Stack (1/2)

• We have a register sp which always points to
the last used space in the stack.

• To use stack, we decrement this pointer by the
amount of space we need and then fill it with
info.

• So, how do we compile this?
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

64

Using the Stack (2/2)

sumSquare:
addi sp, sp, -8 # space on stack
sw ra, 4(sp) # save ret addr
sw a1, 0(sp) # save y
mv a1, a0 # mult(x,x)
jal mult # call mult
lw a1, 0(sp) # restore y
add a0, a0, a1 # mult()+y
lw ra, 4(sp) # get ret addr
addi sp, sp, 8 # restore stack
jr ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

Basic Structure of a Function

entry_label:
addi sp,sp, -framesize
sw ra, framesize-4(sp) # save ra
save other regs if need be

...

restore other regs if need be
lw ra, framesize-4(sp) # restore $ra
addi sp, sp, framesize
jr ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

66

RV32 Memory Allocation

RISC-V ISA so far…
• Registers we know so far (All of them!)

– a0-a7 for function arguments, a0-a1 for return values

– sp, stack pointer, ra return address

– s0-s11 saved registers

– t0-t6 temporaries

– zero

• Instructions we know:
– Arithmetic: add, addi, sub

– Logical: sll, srl, slli, srli, slai, and, or, xor, andi, ori, xori

– Decision: beq, bne, blt, bge

– Unconditional branches (jumps): j, jr

– Functions called with jal, return with jr ra.

• The stack is your friend: Use it to save anything you need. Just
leave it the way you found it!

12 Shift Instructions…
• Two versions of of all shift instructions. Shift amount via:

– Register
– Immediate

• (On RV64: additional “word” version of instruction: only works on first 32bit
of 64bit register)

• Shift Left
• Shift Right Arithmetic: Fill upper bits with msb
• Shift Right Logic: Fill upper bits with 0’s

69

Summary of RISC-V Instruction
Formats

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 821

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
opcodeimm[31:12] rd U-type

R-type

opcodeimm[20|10:1|11]] rdimm[19:12] J-type

Question
• What is correct encoding of add x4, x3, x2 ?

A: 4021 8233hex

B: 0021 82b3hex

C: 4021 82b3hex

D: 0021 8233hex

E: 0021 8234hex

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011

add
sub

0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

31 25 20 15 71224 19 14 11 6 0

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

Branch Example, Determine Offset

0
1
2
3
4

Count
instructions
from branch

• Branch offset =
• (Branch with offset of 0, branches to itself)

4×32-bit instructions = 16 bytes

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

??????? 01010 10011 000 ????? 1100011

BRANCHimmBEQimm rs2=10 rs1=19

Branch Example, Determine Offset

0
1
2
3
4

Count
instructions
from branch

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

??????? 01010 10011 000 ????? 1100011

BRANCHimmBEQimm rs2=10 rs1=19

offset = 16 bytes = 8x2 bytes

Branch Example, Encode Offset

RISC-V Immediate Encoding
Instruction encodings, inst[31:0]

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 8

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

R-type
I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

32-bit immediates produced, imm[31:0]

31 25 12 1524 11 10 4 0
inst[30:25] inst[24:21] inst[20] I-imm.-inst[31]-

inst[30:25] inst[11:8] inst[7] S-imm.-inst[31]-

inst[30:25] inst[11:8] 0 B-imm.-inst[31]- inst[7]

Upper bits sign-extended from inst[31] always Only bit 7 of instruction changes role in
immediate between S and B

Branch Example, complete encoding

0 01010 10011 000 1000 11000110000000

BRANCHBEQrs2=10 rs1=19

beq x19,x10, offset = 16 bytes

13-bit immediate, imm[12:0], with value 16
0000000010000

imm[4:1]

imm[0] discarded,
always zero

imm[10:5]

imm[11]imm[12]

LUI to Create Long Immediates

• LUI writes the upper 20 bits of the destination with the
immediate value, and clears the lower 12 bits.

• Together with an ADDI to set low 12 bits, can create any
32-bit value in a register using two instructions (LUI/ADDI).

LUI x10, 0x87654 # x10 = 0x87654000
ADDI x10, x10, 0x321# x10 = 0x87654321

One Corner Case
How to set 0xDEADBEEF?
LUI x10, 0xDEADB # x10 = 0xDEADB000
ADDI x10, x10, 0xEEF # x10 = 0xDEADAEEF

ADDI 12-bit immediate is always sign-extended, if top bit is set,
will subtract 1 from upper 20 bits

Steps in compiling a C program
§ Compiler converts a single HLL file

into a single assembly language file.
§ Assembler removes pseudo-

instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.
ú Does 2 passes to resolve addresses,

handling internal forward references

§ Linker combines several .o files and
resolves absolute addresses.
ú Enables separate compilation, libraries

that need not be compiled, and
resolves remaining addresses

§ Loader loads executable into memory
and begins execution.

79

Question
At what point in process are all the machine code
bits generated for the following assembly
instructions:

1) add 6, 7, 8
2) jal fprintf

A: 1) & 2) After compilation
B: 1) After compilation, 2) After assembly
C: 1) After assembly, 2) After linking
D: 1) After assembly, 2) After loading
E: 1) After compilation, 2) After linking 80

SDS/ RISC-V Pipline

81

n-channel transitor
off when voltage at Gate is low

on when:
voltage (Gate) > voltage (Threshold)

(High resistance when gate voltage Low,
Low resistance when gate voltage High)

p-channel transistor
on when voltage at Gate is low

off when:
voltage (Gate) > voltage (Threshold)

(Low resistance when gate voltage Low,
High resistance when gate voltage High)

CMOS Transistors
• Three terminals: source, gate, and drain
– Switch action:

if voltage on gate terminal is (some amount) higher/lower
than source terminal then conducting path established
between drain and source terminals (switch is closed)

Gate

Source Drain

Gate

Source Drain

82

Note circle symbol
to indicate “NOT”
or “complement”

Gate

DrainSource

Field-Effect Transistor (FET) => CMOS circuits use a combination of p-type and n-type
metal–oxide–semiconductor field-effect transistors =>

MOSFET

X Y

0 Volt

1 Volt

0 Volt

1 Volt

0 Volt

0 Volt

1 Volt

1 Volt

Question

1V

X Y

0v

Z

83

Volts

Volts

Volts

Volts

Z

0 0 1

0 1 0

0 1 0 1

1 1 0 0

A B C

Representations of Combinational
Logic (groups of logic gates)

Truth Table

Gate DiagramBoolean Expression

Sum of
Products,
Product of Sums
Methods

Enumerate
Inputs

Enumerate
Inputs

Use Equivalency between
boolean operators and

gates

Laws of Boolean Algebra

85

X X = 0
X 0 = 0
X 1 = X
X X = X

X Y = Y X
(X Y) Z = X (Y Z)

X (Y + Z) = X Y + X Z
X Y + X = X

X Y + X = X + Y
X Y = X + Y

X + X = 1
X + 1 = 1
X + 0 = X
X + X = X

X + Y = Y + X
(X + Y) + Z = X + (Y + Z)
X + Y Z = (X + Y) (X + Z)

(X + Y) X = X
(X + Y) X = X Y

X + Y = X Y

Complementarity
Laws of 0’s and 1’s

Identities
Idempotent Laws

Commutativity
Associativity
Distribution

Uniting Theorem
Uniting Theorem v. 2

DeMorgan’s Law

Question

What is maximum clock frequency?
• A: 5 GHz
• B: 500 MHz
• C: 200 MHz
• D: 250 MHz
• E: 1/6 GHz

Clock->Q 1ns
Setup 1ns
Hold 1ns
AND delay 1ns

86

Piazza: “Lecture 9 Freq Poll”

Keywords

• Mux
• Register
• FlipFlop
• Adder
• ALU
• AND; OR; XOR; NOT
• NAND; NOR

87

Complete RV32I Datapath!

+4

Add

addr
inst

IMEM

pc+4

pc+4

wb

pcwb

Inst[24:20]
ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn ALUSel

Asel

MemRW

0

1

Imm[31:0]
Imm.
Gen

Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC

Inst
[31:7]

1

0

2

clk

WBSel

Branch
Comp

1

0

ImmSel

1

0

PCSel BrUn

BrEq

BrLT

Control logic

Bsel

mem

alu

alu

88

Control Block Design

Combinatorial Logic
Functions

Inst[30,14:12,6:2] BrEq
9

PCSel

ALUSel[3:0]4

11-bit address (inputs)

15 data bits (outputs)

BrLT

ImmSel[2:0]3
BrUn
ASel
BSel

MemRW
RegWEn
WBSel[1:0]2

89

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rs2
rs1
rd

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

Single Cycle Datapath

90

Pipelining with RISC-V

91

Phase Pictogram tstep Serial
Instruction Fetch 200 ps
Reg Read 100 ps
ALU 200 ps
Memory 200 ps
Register Write 100 ps
tinstruction 800 ps

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

instruction sequence

tcycle

tinstruction

tcycle Pipelined
200 ps
200 ps
200 ps
200 ps
200 ps

1000 ps

Pipelining with RISC-V

92

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3
tcycle

instruction sequence

tinstruction

Single Cycle Pipelining
Timing tstep = 100 … 200 ps tcycle = 200 ps

Register access only 100 ps All cycles same length
Instruction time, tinstruction = tcycle = 800 ps 1000 ps
CPI (Cycles Per Instruction) ~1 (ideal) ~1 (ideal), >1 (actual)
Clock rate, fs 1/800 ps = 1.25 GHz 1/200 ps = 5 GHz
Relative speed 1 x 4 x

Sequential vs Simultaneous

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

tcycle
= 200 ps

instruction sequence

tinstruction = 1000 ps

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

What happens sequentially, what happens simultaneously?

93

RISC-V Pipeline

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

tcycle
= 200 ps

instruction sequence

tinstruction = 1000 ps

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

Resource use of
instruction over time

Resource use in a
particular time slot

94

Hazards!

• Keywords:
– Structural Hazards
– Data Hazards
– Control Hazards

– Forwarding/ Bypassing
– Stall/ nop/ load delay slot
– Kill instruction
– Branch prediciton

95

imm

Hyper-threading (simplified)

• Duplicate all elements that hold the state (registers)
• Use the same CL blocks
• Use muxes to select which state to use every clock cycle
• => run 2 independent processes

– No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, …)

• Speedup?
– No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable

resources (e.g. wait for memory) 96

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

re
gi

st
er

s

PC
PC

rs2
rs1
rd

Superscalar

• “Iron Law” of Processor Performance to
estimate speed

• Complex Pipelines
• Multiple Functional Units => Parallel execution

– Static Multiple Issues (VLIW)
• E.g. 2 instructions per cycle

– Dynamic Multiple Issues (Superscalar)
• Re-order instructions
• Issue Buffer; Re-order Buffer; Commit Unit
• Re-naming of registeres

97

“Iron Law” of Processor Performance

98

Time = Instructions Cycles Time
Program Program Instruction Cycle

CPI = Cycles Per Instruction

× ×
Can time Can count Can look up

CPI = Cycles = Time Instructions Time
Instruction Program Program Cycle()÷ ×

Example (RISC processor)

Op Freqi CPIi Prod (% Time)
ALU 50% 1 .5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 .3 (14%)
Branch 20% 2 .4 (18%)

2.2Instruction Mix (Where time spent)

99

Superscalar Processor

100

Phases of Instruction Execution

101

Fetch: Instruction bits retrieved from
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to
functional units. When execution completes,
all results and exception flags are available.

Decode: Instructions dispatched to
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

PC

Commit

Decode/Rename

Intro to Caches

102

Processor

Control

Datapath

Adding Cache to Computer

103

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Big Idea: Memory Hierarchy
Processor

Size of memory at each level

Increasing
distance from

processor,
decreasing

speed

Level 1

Level 2

Level n

Level 3

. . .

Inner

Outer

Levels in
memory
hierarchy

As we move to outer levels the latency goes up
and price per bit goes down. Why?

104

Big Idea: Locality

• Temporal Locality (locality in time)
– Go back to same book on desktop multiple times
– If a memory location is referenced, then it will tend to

be referenced again soon
• Spatial Locality (locality in space)
– When go to book shelf, pick up multiple books on J.D.

Salinger since library stores related books together
– If a memory location is referenced, the locations with

nearby addresses will tend to be referenced soon

105

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y

Ad
dr

es
s (

on
e

do
t p

er
 a

cc
es

s)

Spatial
Locality

Temporal
Locality

Principle of Locality

• Principle of Locality: Programs access small
portion of address space at any instant of time
(spatial locality) and repeatedly access that
portion (temporal locality)

• What program structures lead to temporal
and spatial locality in instruction accesses?

• In data accesses?

107

Cache Philosophy
• Programmer-invisible hardware mechanism to

give illusion of speed of fastest memory with
size of largest memory
– Works fine even if programmer has no idea what a

cache is
– However, performance-oriented programmers

today sometimes “reverse engineer” cache design
to design data structures to match cache

108

Cache Terms I
• Cache:
– A small and fast memory used to increase the performance

of accessing a big and slow memory
– Uses temporal locality: The tendency to reuse data in the

same space over time
– Uses spacial locality: The tendency to use data at

addresses near
• Cache hit: The address being fetched is in the cache
• Cache miss: The address being fetched is not in the

cache
• Valid bit: Is a particular entry valid
• Cache flush: Invalidate all entries

109

CPU-Cache Interaction
(5-stage pipeline)

110

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

bubble

hit?

PCen

Decode,
Register
Fetch

wdata
R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

YYALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

Cache Terms II
• Cache level:
– The order in the memory hierarchy: L1$ is closest to the

processor
– L1 caches may only hold data (Data-cache, D$) or

instructions (Instruction Cache, I$)
• Most L2+ caches are "unified", can hold both instructions and data

• Cache capacity:
– The total # of bytes in the cache

• Cache line or cache block:
– A single entry in the cache

• Cache block size:
– The number of bytes in each cache line

111

Cache Terms III
Associativity

• Number of cache lines:
– Cache capacity / block size:

• Cache associativity:
– The number of possible cache lines a given address may exist in.
– Also the number of comparison operations needed to check for an

element in the cache
– Direct mapped: A data element can only be in one possible location

(N=1)
– N-way set associative: A data element can be in one of N possible

positions
– Fully associative: A data element can be at any location in the cache.

• Associativity == # of lines
• Total # of cache lines == capacity of cache/line size

• Total # of lines in a set == # ways == N == associativity
• Total # of sets == # of cache lines / associativity

112

Victim Cache

• Conflict misses are a pain, but...
– Perhaps a little associativity can help without having

to be a fully associative cache
• In addition to the main cache...
– Optionally have a very small (16-64 entry) fully

associative "victim" cache
• Whenever we evict a cache entry
– Don't just get rid of it, put it in the victim cache

• Now on cache misses...
– Check the victim cache first, if it is in the victim cache

you can just reload it from there

113

Cache Terms IV

Parts of the Address
• Address is divided into |TAG|INDEX|OFFSET|

• Offset:
– The lowest bits of the memory address which say where data

exists within the cache line.

– It is log2(line/block size)

– So for a cache with 64B blocks it is 6 bits

• Index:
– The portion of the address which says where in the cache an

address may be stored

– Takes log2(# of cache lines / associativity) bits

– So for a 4 way associative cache with 512 lines it is 7 bits

• Tag: The portion of the address which must be stored in
the cache to check if a location matches
– # of bits of address - (# of bits for index + # of bits for offset)

– So with 64b addresses it is 51b... 114

Cache Terms V
Writing

• Eviction:
– The process of removing an entry from the cache

• Write Back:
– A cache which only writes data up the hierarchy when a cache line is

evicted
– Instead set a dirty bit on cache entries
– All i7 caches are write back

• Write Through:
– A cache which always writes to memory

• Write Allocate:
– If writing to memory not in the cache fetch it first
– i7 L2 is Write Allocate

• No Write Allocate:
– Just write to memory without a fetch
– i7 L1 is no write allocate

115

Replacement Policy

116

In an associative cache, which line from a set should be
evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• True implementation only feasible for small sets (2-way)
• Pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• Used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used line or lines

This is a second-order effect. Why?

Replacement only happens on misses

Cache Terms VI
Cache Performance

• Hit Time:
– Amount of time to return data in a given cache: depends

on the cache
– i7 L1 hit time: 4 clock cycles

• Miss Penalty:
– Amount of additional time to return an element if its not

in the cache: depends on the cache
• Miss Rate:
– Fraction of a particular program's memory requests which

miss in the cache
• Average Memory Access Time (AMAT):
– Hit time + Miss Rate * Miss Penalty

117

Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block impossible to avoid; small effect for long

running programs
– Solution: increase block size (increases miss penalty; very large

blocks could increase miss rate)
• Capacity:

– Cache cannot contain all blocks accessed by the program
– Solution: increase cache size (may increase access time)

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)

118

Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

RegFile

Main
Memory
(DRAM)D

ata
Cache

Instr
Cache

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

119

• Principle of locality + memory hierarchy presents programmer with
≈ as much memory as is available in the cheapest technology at the
≈ speed offered by the fastest technology

Cost/bit: highest lowest

Third-
Level
Cache

(SRAM)

Local vs. Global Miss Rates
• Local miss rate – the fraction of references to one

level of a cache that miss
• Local Miss rate L2$ = $L2 Misses / L1$ Misses
• Global miss rate – the fraction of references that

miss in all levels of a multilevel cache
• L2$ local miss rate >> than the global miss rate

• Global Miss rate = L2$ Misses / Total Accesses
= (L2$ Misses / L1$ Misses) × (L1$ Misses / Total Accesses)
= Local Miss rate L2$ × Local Miss rate L1$

• AMAT = Time for a hit + Miss rate × Miss penalty
• AMAT = Time for a L1$ hit + (local) Miss rate L1$ ×

(Time for a L2$ hit + (local) Miss rate L2$ × L2$ Miss penalty)
120

In Conclusion, Cache Design Space
• Several interacting dimensions

– Cache size
– Block size
– Associativity
– Replacement policy
– Write-through vs. write-back
– Write-allocation

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

121

