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Project 4

* Program on a RISC-V CPU!

e Sipeed Longan Nano Development Board with

— RISC-V 32bit CPU!
— Comes with a Screen!
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Gigadevince GD32VF103CBT6 GD32VF103 “Bumblebee Core”

ISA: RV32IMAC

— Integer; Multiplication & Division; Atomic Operations; Compressed
(16bit) instructions

— Single-cycle hardware multiplier and Multi-cycles hardware divider
108MHz

128kb Flash
32kb SRAM

Cache?

— No Cache needed: 0 wait states for Flash and SRAM!
(CPU speed is low while using modern memory)

Supports misaligned memory access operations (Load/Store)
Virtual Memory?

— No Virtual Memory — everything (Flash, SRAM, devices) is mapped to
the 32bit address space.



DMA?
— Yes!

— peripheral to memory, memory to peripheral, memory to memory DMA
modes

Interrupts?
— Yes!

— Supports the RISC-V architecturally defined software, timer and external
interrupts.

— Dozens of external interrupt sources

— Programmable 16 interrupt levels and priorities
Power Saving Modes?

— Yes!

— Sleep (core clock off — interrupts run)

— Deep-Sleep (most interrupts off)

— Standby (SRAM and registers are lost — save state to flash! Few interrupts
available)

Pipelining?
— 2-stage pipeline!
Simple dynamic branch predictor

Instruction fetch unit (IFU) can prefetch the following two instructions to
mask the instruction memory access latency

Support Machine Mode and User Mode
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Pre-defined

. Peripherals 0x4000 5800 - 0x4000 5BFF 12c1
Regions | 0x4000 5400 - 0x4000 57FF 12C0
External | 0x4000 5000 - 0x4000 53FF UART4
devics 0xA000 0000 - 0xAD00 OFFF EXMC - SWREG 3 0x4000 4C00 - 0x4000 4FFF UART3
; 0x4000 4800 - 0x4000 4BFF USART2
0xS8000 0000 - Ox9FFF FFFF Reserved 3 Ox4000 4400 - 0x4000 47FF USARTY
AHB 0x7000 0000 - Ox8FFF FFFF Reserved 3 0x4000 4000 - 0x4000 43FF Reserved
External RAM EXMC - 0x4000 3C00 - 0x4000 3FFF SPI2/1282
0x6000 0000 - OX6FFF FFFF | NOR/PSRAM/SRA | 0x4000 3800 - 0x4000 3BFF SPI1/1251
M N S __.0x4000 3400 - 0x4Q00.37FF ___| ____ Reserved_____
1 0x4000 3000 - 0x4000 33FF FWDGT
0x5000 0000 - 0x5003 FFFF USBFS '
; 0x4000 2C00 - 0x4000 2FFF WWDGT
0x4008 0000 - Ox4FFF FFFF Reserved ; 0x4000 2800 - 0x4000 28FF RTC
Peripheral AHB ;
0x4002 3CO00 - 0x4002 3FFF Reserved : 0x4000 2400 - 0x4000 27FF Reserved
0x4002 3800 - 0x4002 3BFF Reserved |, 0x4000 2000 - 0x4000 23FF Reserved
; 0x4000 1C00 - 0x4000 1FFF Reserved
0x4002 3400 - 0x4002 37FF Reserved '
; 0x4000 1800 - 0x4000 1BFF Reserved
0x4002 3000 - 0x4002 33FF CRC 0x4000 1400 - 0x4000 17FF TIMERS®
UX4uul S3LUU - UX4UU1 SFrE Keservea 3 0x4000 1000 - 0x4000 13FF TIMERS
Az 0x4001 3800 - 0x4001 3BFF USARTO 0x4000 0C00 - 0x4000 OFFF TIMER4
0x4001 3400 - 0x4001 37FF Reserved 3 0x4000 0800 - 0x4000 05FF TIVERS
: 0x4000 0400 - 0x4000 07FF TIMER2
03001 2000 = DN SoFF SPIo 0x4000 0000 - 0x4000 03FF TIMER1
0x4001 2C00 - 0x4001 2FFF TIMERO 0x2007 0000 - Ox3FFF FFFF Reserved
0x4001 2800 - 0x4001 2BFF ADCA1 3 0x2006 0000 - 0x2006 FFFF Reserved
0x4001 2400 - 0x4001 27FF ADCO 3 0x2003 0000 - 0x2005 FFFF REZINEE
Dei007 2000 < Del001 23EF —— SRAM AHB 0x2002 0000 - 0x2002 FFFF Reserved
; 0x2001 CO00 - 0x2001 FFFF Reserved
0x4001 1C00 - 0x4001 1FFF Reserved 0x2001 8000 - 520071 BFFF reRaed
0x4001 1800 - 0x4001 1BFF GPIOE 3 02000 5000 - 0x2001 7TFFF SRAM
0x4001 1400 - 0x4001 17FF GPIOD i [ T T 0x2000 0000 - 02000 4FFF T
0x4001 1000 - 0x4001 13FF GPIOC 3 Ox1FFF F810 - Ox1FFF FFFF Reserved
0x4001 0CO0 - 0x4001 OFFF GPIOB ; 0x1FFF F800 - Ox1FFF F80F Option Bytes
0x4001 0800 - 0x4001 OBFF GPIOA 3
: Ox1FFF BOOO - Ox1FFF F7FF Boot loader
0x4001 0400 - 0x4001 O7FF EXTI '
0x4001 0000 - 0x4001 O3FF AFIO ! O0x1FFF 7A10 - Ox1FFF AFFF Reserved
0x4000 7C00 - 0x4000 7FFF Reserved 3 O0x1FFF 7800 - Ox1FFF 7AQ0F Reserved
0x4000 7800 - 0x4000 7BFF Reserved OxIFFF 0000 - DxIFFF T7FF Reserved
‘ Ox1FFE C010 - Ox1FFE FFFF Reserved
0x4000 7400 - 0x4000 77FF DAC Code AHB 0x1FFE C000 - 0x1FFE COOF Reserved
0x4000 7000 - 0x4000 73FF PMU 0x1001 0000 - Ox1FFE BFFF Reserved
0x4000 6COO0 - 0x4000 6FFF BKP | 0x1000 0000 - 0x1000 FFFF Reserved
0x4000 6800 - 0x4000 6BFF CAN1 3 0x083C 0000 - OxOFFF FFFF Reserved
0X2000 6400 - 0x2000 67FF T 0x0802 0000 - 0x083B FFFF Reserved
: 0x0800 0000 - 0x0801 FFFF Main Flash
0x4000 6000 - 0x4000 63FF Ehared USB/CAN 3 0x0030 0000 - 0x07FF FFFF Reserved

SRAM 512 bytes

0x4000 5C00 - 0x4000 SFFF

USB device FS

registers

0x0010 0000 - 0x002F FFFF

0x0002 0000 - 0x000F FFFF

0x0000 0000 - 0x0001 FFFF

Aliased to Main
Flash or Boot loader

Memory

Map



2.3.1. Flash memory architecture

The flash memory consists of up to 128 KB main flash organized into 128 pages with 1 KB
capacity per page and a 18 KB Information Block for the Boot Loader. The main flash memory
contains a total of up to 128 pages which can be erased individually. The Table 2-1. Base

address and size for flash memory shows the details of flash organization.

Table 2-1. Base address and size for flash memory

Block Name Address Range S1z€
(bytes)

Page 0 0x0800 0000 - 0x0800 03FF 1KB

Page 1 0x0800 0400 - 0x0800 07FF 1KB

Page 2 0x0800 0800 - 0x0800 OBFF 1KB

Main Flash Block

Page 127 0x0801 FCOO - 0x0801 FFFF 1KB

Information Block Boot loader area | Ox1FFF B0O0O- Ox1FFF F7FF 18KB

Option bytes Block Option bytes Ox1FFF F800 - Ox1FFF F80F 16B




Figure 4-2. Typical supply current consumption in Run mode
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Project 4

Program in C and RISC-V on the Logan Nano

Implement Pong Game
— OR some better game if your want

Call C functions from RISC-V!

— Good — we do NOT need to program everything by
nand on hardware — use provided C library!

Lab 11: get familiar with the Logan Nano

Lab 14 in week 18 (“2" final week”): Demo
and checkup of Project 4




We provide each project group with:

1 x Sipeed Logan Nano with screen and housing RMB 34.8
https://item.taobao.com/item.htm?id=601743142093

2 x push buttons https://detail.tmall.com/item.htm?id=554574318222

Sipeed Longan Nano RISC-V GD32VF103CBT6 # Kl F &R

e ¥34.80 388 65

RiHPe XM

25 % JFil: 11.5MM # Bsircen G %

A X

e 2 92T AIE1.047T

[5° IFERINE BSERAR v~ RE8 ¥12.00 ~

= A3 -
Ei=yieS - E ®® = (8 64KB FLASH 20KB RAM

CB 128KB FLASH 32KB RAM ~ »*  0.96lcd+41%

® 1ﬁ:=5/|\ ) [ Longan Nano] ug 1+ wEms

> ]
- RISC-V 32{i3#% REFRIR
ik 7XEEH

You need to provide — -
your own USB-C cable! = :

BREN (493A5)

xft N 5=

You are free to buy your own hardware (e.g. your own Logan
Nano, buttons, potentiometers, speaker!?) for Project 4...

Code still goes to gitlab!
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Links:

https://longan.sipeed.com/en/

https://www.gigadevice.com/microcontroller/gd32vf103cbt6/

https://github.com/nucleisys/Bumblebee Core Doc

https://docs.platformio.org/en/latest/platforms/gd32v.html

Lab 11: https://robotics.shanghaitech.edu.cn/courses/ca/20s/labs/11/
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Midterm

Date: Tuesday, May. 26

Time: 10:15- 12:15 (normal lecture slot++)
— Be there latest 10:00 — we start 10:15 sharp!
Venue: 4 rooms — check on egate which room you are!:

— SPST1-503
SPST1-201
SPST1-501
SIST1A-106

Closed book:

— You can bring two A4 pages with notes (both sides; in English):
Write your Chinese and Pinyin name on the top! Handwritten
by youl!

* Final: you can bring three A4 pages
— You will be provided with the RISC-V “green sheet”

— No other material allowed!




Midterm |

Wear your Corona mask! =>

Switch cell phones off!
(not silent mode — off!)

— Put them in your bags.

Bags under the table. Nothing except paper, pen, 1
drink, 1 snack, your student ID card on the table!

No other electronic devices are allowed!
— No ear plugs, music, smartwatch...

Anybody touching any electronic device will FAIL the
course!

Anybody found cheating (copy your neighbors answers,
additional material, ...) will FAIL the course!
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(" log2timeline PARSING PLUGINS
l lwdiel error - Apache2 error log

- Oromeﬁnon;yme
encase_dirlisting - CSV file that is

exported from encase
- Windows 2k/%P/2k3 Event Log

- Windows Event Log File (EVTX)
- Metadata mlorma't?m from files
uﬂm ExifTool

_buhl-t Firefox bookmark file

Firefox 2 browser history

firefox3 - Firefox 3 history file

SIFT REFERENCE GUIDE (V.1.1) — CREATING TIMELINES WITH THE SIFT WORKSTATION )
(Lvm m”mmumww/m] .;[ 2.BOOTSIFTVM | ’ ’ e [ oomscrlmmj -
- $ sudo su la SIFT
pad: SIFT Workstation VM Appllance ‘ Logm sansforensrcs | 3 \ ‘ p|ug S o ~ s
BT Workstation Installation Q ) ..APa X forenskes L | Rostand sitach to SIFTWM.: |

E

5. HARD DRIVE MOUNTING (if you are using log2timeline-sift and Single DD you can skip to 7-A) J <+

_ SINGLE OR SPLIT IMAGE (2 options): 1

" ?
| -

S
J

p
# mount -t ntfs -0 ro,loop,show_sys_files,streams_interface=winy
offset=##k# /mnt/ewf/<image> /mnt/windows_mount/

ot_ewf.py image.E01 /mnt/ewf

\

For7-A
age.E01 /mnt/ewf/ > [ MOUNT TO MOUNT POINT

SINGLE IN

E PURPOSE OF THIS REFERENCE
IDE 1S TO WALK THROUGH THE
ESS OF BOOTING THE SIFT
DRKSTATION, CREATING A TIMELINE
SUPER” OR "MICRO") AND \:{
REVIEWING IT.

HOW TO CALCULATE THE OFFSET
FOR MOUNTING

#mmis

2. Identify partition and byte offset
3. (Partition byte offset) x (bytes per
sector) = offset #### to use!
Example: 63 X 512 = 32256

1. Run mmis to guery partition layout
image.EO1

4——————J

f
|
|
!
|
|
|
J
| ex Eorled from FTK Imager ddirllstlvg)
|
|
|
ot
|
|
|}
1
|

Sellsting - CSV B that fs il mount -t ntfs -0 sys_files,streams_interface=windows,offset=#### image.dd /ig J gg:r';ignnef;:: i':’ ,:iﬁ,e,‘:off ; re :;::"_
finux - Generic Linux y i /
'—:‘:ﬂn - Sanonc Mmslgp % 8 Gtz A —— — — - J # mkdir /mnt/windows_mount2/
iehistory - index.dat file containg IE ;
:Is-nlg C log file (& affuse image.001 /mnt/aff % 0‘. “‘M €
ISA text export log file \l mount ~t ntfs-3g o loop,ro,show nt/aff/<image> /mnt/windows i | mmeﬁl
_MI CSV output file from —rall
ﬂ'.."i Bodyﬂ'ldn ?7A&7B
e in x 2
format ( 7-A: AUTOMATED SUPER TIMELINE CREATION NUAL “MICRO" TIMELINE CREATION ] 44— -
mecafee - file -
mft - NTFS MFT file i log2timeline-sift -o <z [TIMEZONE] -p [PARTITION #] -I [IMAGE FILE] ONS] [-f FORMAT] [-z TIMEZONE] [-0 OUTPUT MODULE] [-w HELP? OPTIONS? USAGE?
sl mmgngmf e S = _FILE/LOG_DIR [~] [FORMAT FILE OPTIONS] log2timeline -help
| Atuser - NTUSERDAT registry file L ! ( P for s 2 , 90d rum): )‘ METADATA (using log2timeline or fis) \| toxatimeline St -help
oper- Opera’ sgi:hu history file — - - \Lzr._pm:us -help
:: DP“PCAP“I:M ocument pcap XP | # log2timeline-sift -z ESTSEDT - image . stem data w/log2timeline from mounted file system: — OTHER log2timeline Q ™
pdf - Available PDF document WINT (3 " " 2 # log mift -0 mactime ~=r -z ESTSEDT -w OUTPUT FORMATS
# log2timeline-sift -win7 -z ESTSEDT - image
metadata S i i T mit.bd me/ Note: CSV is Default

recycler

restore 0.9 - Restore point directory
safari - Safariliswr‘ file
sam - SAM registry g

2,
Windows S!’ioﬂiout file {or

WMiprow - wmipr file
.M-XPF&:"M log

List plugins f log2timeline -f list
...HELP EXPAND THIS LIST. BUILD

PLUGINS!!! 1)

BY DAVID NIDES (12/16/2011) <,
TWITTER: @DAVNADS A
BLOG: DAVNADS.BLOGSPOT.COM

WESTTONS/FEED&ACK—CONTACT al

Red text — image/source

Blue text — mount point

Purple text - output file

Green text - log2timeline plugins
Brown text - TimeZone

8
!
|
l
|
|
|
|
|
|
|
|
[
|
|
v

OR Extract N

# fls -m "* -0 off

Convert body file fo
\ ¥ mactime ~b fis.body

e using Sleuthkit:
dd > fis.body
prmat w/ mactime:

| FOR PARTITION (mount and run using all applicable p

xp | # log2timeline-sift -z ESTSEDT -p 0-i partig

WIN7 | # log2timeline-sift -win7 -z ESTSEDT,
L

{:AINIFALTS (run 12| on mounted file'

Lm USAGE EXAMPLES: (Extract artifacts w/ log2timeline and rul

=5 # log2timeline -f firefox3, chrome -0 macti
web.body /mnt/volume/

Convert body file format to CSV format w/ mactimes

\_# mactime -b log2timeline.body ~d > log2timeline.csv

' Display list of available p
# log2timeline -f list
Run log2timeline usg
# log2timeline-sif

Help (man pag

. #log2time

‘use only specific plugins:
eftch =z ESTSEDT -i image.dd

9
e

9. FILTER TIMELINE

i plugins recursively)

gd file system:
E0T -w

-BeeDocs - Mac 05 X visualization tool
-CEF - Common Event Format - ArcSight
<CFTL - XML file- CyberForensics TimeLab
visualization tool
-CSV - comma separated value file
J -Mactime - Both older and newer version of
- the format supported for use by TSK's
i mactime
-SIMILE - XML file - SIMILE timeline
visualization widget
-S0lLite - SQLite database
-TLN - Tab Delimited File
-TLN - Format used by some of H Carvey
tools, expressed as a ASCH output
-TLNX - Format used by some of H Carvey
tools, expressed as a XML document

8.CSVE (/cases/timeline-output-folder) ) ‘
& event, in the format of MM/DD/YYYY

Bf day, expressed in a 24h format, HH:MM:S5

: the timezone that was wsed to call the tool with.

MACE meaning of the fields, comp w/ mactime format.

ce: Source short name (i.e. registry entries are REG)

burcetype: Desc of the source (“Internet Explorer” instead of WEBHIST)
-type: Timestamp type (iLe. “Last Accessed”, “Last Written”)

-user: Usernarme associated with the entry, if one is availabdle.

-host: HoStname associated with the entry, it one is available.

-short: Contains less text than the full description field.

-desc: where majority info is stored, the actual parsed desc of the entry.
-wersion: Version number of the timestamp object.

filename: Filename with the full path that contained the entry

Filter timeline with date range to include only:

Filter timeline with keyword list (one term per line in keywords. txt):
12t_process -b timeline.csv -k keywords.txt > filtered.csv

What sources are in your timeline?

awk-F , ‘{print $6;) timeline.csv| grep-v sourcetype|sort | uniq
Find all LNK files that reference E Drive

grep”Shortcut LNK” timeline.csv| grep”E:”

FiindMountPoints2 entries that reference E Drive
grep”MountPoints2 key” timeline.csv} | grep”E drive”

grepUSB timeline.csv| grep“SetupAPILog”

12t_process -b timeline.csv MM-DD-YYYY..MM-DD-YYYY > filtered.csv

0. CONNECTTOSIFT |

SETTINGS -> OPTIONS -> Shared
5 -» Always Enabled (Check)

.
/ 2.SIFT Desktop > VMware-Shared-Drive

7 Access from a Win Machine
\\SIFTWORKSTATION

Ill

11 REVIEW TIMELINE |

e[

-inode: inode number of the file being parsed. (TFile ~ | A (s B . - - -

-notes: Some input modules insert additional information in the form of a File System M = I Review timelines using:

note, which comes here. Or it can be used during the review. Ext2/3 Modified Accessed  Changed N/A - Open, Soft, Filter with Excel
Hormat: Input module name used to parse the file. FAT Written Accessed N/A Created - - Import into SPLUNK

-extra: Additional information parsed is joined together and put here. NTFS File Modified Accessed MFT Modified Created SIMILE

\UFS_ Modified Accessed Changed  N/A

L

Tapestry



Content

Main topics: Everything till (including) Lecture 16
— Number representation (int & float (Lecture 17!) )

— C

— CALL

— RISC-V

— SDS; Datapath & Control

— Pipelining & Superscalar

— Caches

Plus general "Computer Architecture” knowledge

Disclaimer: In this review, important topics for CA are
covered. It does not indicate that other topics from lectures
1-16 will not covered in the exams, nor does it mean that
everything written here will be covered.



Personal
Mobile
Devices
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Old Machine Structures

Application (ex: browser)

Circuit Design

transistors

26



New-School Machine Structures
(It's a bit more compllcated')

Software Hardware
Parallel Requests
. Warehouse
Assigned to computer Scale B
e.g., Search “Katz” Computer g

Leverage
Parallel Threads Parallelism &

Assigned to core Achieve High
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words
Hardware descriptions

All gates functioning in
parallel at same time

/ / Logic Gates
Programming Languages y Project 2

\
ry Projact 3
\
nput/Output / Core \\

[ - Functional \
uction Unit(s

,A,+BOA +B]A +B% +B

Cache Memory




CA is NOT about C Programming

e |t's about the hardware-software interface

— What does the programmer need to know to
achieve the highest possible performance

* Languages like C are closer to the underlying
hardware, unlike languages like Python!

— Allows us to talk about key hardware features in
higher level terms

— Allows programmer to explicitly harness
underlying hardware parallelism for high
performance: “programming for performance”



Great Ideas in Computer Architecture

1.

5.

6.

Design for Moore’s Law

-- Higher capacities caches and DRAM
Abstraction to Simplify Design
Make the Common Case Fast
Dependability via Redundancy

-- Parity, SEC/DEC

Memory Hierarchy
-- Caches, TLBs

Performance via Parallelism/Pipelining/Prediction
-- Data-level Parallelism

29



2: Moore’s Law

10°
HUMAN
1o BRAIN
ELECTROMECHANICAL SOLID- VACUUM TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
10 F RELAY
MOUSE
CORE i7 QUAD ) BRAIN
10" [~ 1 .
g Predicts: pENTIUM 4. ‘@ T CORE 2 DUO
> . . PENTIUM m'
A 2X Transistors / chip PENTIUM gemcaL,
& COMPAQ DNA
DESKPRO 386 COMPUTING?
210 every 2 years - & -
o ALTAIR 8800 ‘ PENTIUM
@ IBM 1130 L Q
w104 p~ z
IBM AT-802
p DEC PDP-1 \ ’x 80286
2 ' « IBM PC
e 107 =
< UNIVAC | @ ©occ ArPLEN
3 PDP-10
a] 0 1 1 1 1 1 1 = 1 1 1 1 1 1 1 1 1
o COLOSSUS
IBM
IBM 704
102 = TABULATOR IBM SSEC
HOLLERITH "
TABIxTOR A L ,
104 [ €  naTioNAL CALCULATOR Gordon Moore
ELLIS 3000 MODEL 1 ‘
ANALYTICAL ENGINE Intel Cofounder
(=] g o w o wn o wn o wn o w o wn o wn o wn o wn = wn o wn (=] w
: 85 85588388 838558888 3E;E EQE

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 30
2012 REPRESENT BCA ESTIMATES.



Great Idea #3: Principle of Locality/

Memory Hierarchy

EXPENSIVE

Processor SUPER FAST
SUPER EXPENSIVE
. TINY CAPACITY
/m FASTER
, LEVEL 1 (L1) CACHE

Yy

SMALL CAPACITY

EDO, SD-RAM, DDR-SDRAM, RD-RAM , PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY
SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
\ PRICED REASONABLY
y \\ AVERAGE CAPACITY

£

y N

Mechanical Hard Drives VIRTUAL MEMORY

N
N

SLOW
CHEAP
LARGE CAPACTITY

,- s na ] \




Great Idea #4: Parallelism

Jane

Research

Composing Typing

<

Sue

Research

Composing Typing

Tom

<

_— -
— —

Research

Composing  Typing

<

NN NE NN NN

IININININENE NN

1

w
N




Great Idea #5: Performance
Measurement and Improvement

* Tuning application to underlying hardware to
exploit:
— Locality
— Parallelism
— Special hardware features, like specialized instructions
(e.g., matrix manipulation)
* Latency
— How long to set the problem up
— How much faster does it execute once it gets going
— It is all about time to finish

33



Great |dea #6:
Dependability via Redundancy

 Redundancy so that a failing piece doesn’t
make the whole system fail

2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy
34



Key Concepts

* |[nside computers, everything is a number

 But numbers usually stored with a fixed size

— 8-bit bytes, 16-bit half words, 32-bit words, 64-bit
double words, ...

* Integer and floating-point operations can lead
to results too big/small to store within their

representations: overflow/underflow



Number Representation



Signed Integers and
Two’s-Complement Representation

Signed integers in C; want 2 numbers <0, want 2
numbers >0, and want one O

Two’s complement treats 0 as positive, so 32-bit
word represents 232 integers from
-231(-2,147,483,648) to 23%-1 (2,147,483,647)

— Note: one negative number with no positive version
— Book lists some other options, all of which are worse
— Every computer uses two’s complement today
Most-significant bit (leftmost) is the sign bit,

since 0 means positive (including 0), 1 means
negative

— Bit 31 is most significant, bit O is least significant

37



Sign
0

0
0

Two’s-Complement Integers

Bit

D00 0000 0000 0000 0000 0000 0000 0000, = Oen
D00 0000 0000 0000 0000 0000 0000 0001, = 1ten
D00 0000 0000 0000 0000 0000 0000 0010, =

2

ten

111 1111171111111 171111111 1111 1101, = 2,147,483,645,,
111 1111171111111 17111 1111 1111 1110, = 2,147,483,646,,,,
111 1111171111111 1111 1111 1111 1111, = 2,147,483,647

P, P RO O O

D00 0000 0000 0000 0000 0000 0000 0000, =
D00 0000 0000 0000 0000 0000 0000 0001, =
D00 0000 0000 0000 0000 0000 0000 0010y, =

111 111117111 1111 1111 1111 1111 1101,,, =
111111117111 1111 1711111111111 1110, =
1111171117111 1171117111 11711171171 11171

=

two

=2,147,483,648,.
—2,147,483,647,.,
—2,147,483,646,,,

3
-2,
-1,

38



Ways to Make Two’s Complement

* For N-bit word, complement to 2, N

ten

— For 4 bit number 3,,,=0011,,,, two’s complement
(i.e. -3.,) would be

16,.,-3¢en=13., OF 10000,,,, — 0011,,, = 1101,,,

* Here is an easier way: 3., 0011,

— Invert all bits and add 1 o
Bitwise complement 1100,,,,

+ 1two

— Computers actually do it like this, too -3ten 1101,

39




Two’s-Complement Examples

* Assume for simplicity 4 bit width, -8 to +7

represented
3 0011 3 0011 -3 1101
+2 0010 +(-2) 1110 +(-2) 1110
5 0101 110001 -5 11011

Overflow when

magnitude of result

too big small to fit 7 0111 -8 100
+1 0001 +(-1) 1111

into result —_— Carry into MSB =
representation -8 1000 +7 10111 Carry Out MSB

Overflow! Overflow!
Carry into MSB #
Carry in = carry from less significant bits Carry Out MS%
4

Carry out = carry to more significant bits



Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

O Oto+31

O =15 to +1.6



Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

O Oto+31

(e oo ]

O =15 to +1.6
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Conclusion

* Floating Point lets us:

— Represent numbers containing both integer and fractional parts; makes
efficient use of available bits.

— Store approximate values for very large and very small #s.

* |EEE 754 Floating-Point Standard is most widely accepted attem
standardize interpretation of such numbers (Every desktop or server
computer sold since ~1997 follows these conventions)

 Summary (single precision):
3130 23 22
S| Exponent | Significand

1 bit 8 bits 23 bits
*(-1)° x (1 + Significand) x 2(Exponent-127)

* Double precision identical, except with
exponent bias of 1023 (half, quad similar)




Float: Special Numbers Summary

* Reserve exponents, significands:

Exponent
0

0

1-254
255

255

Significand Obiject

0 0
nonzero Denorm
anything +/- fl. pt. #
0 +/- 00
nonzero NaN




C Programming



void foo
{ int t
if (
}
int a=3,
foo(&a,
foo (&b,
foo(&a,
printf ("

Result is:

Quiz: Pointers

(int *x, int *y)

7

*x > *y ) { t = *y; *y = *x;
b=2, c=1;

&b) ;

&c) ;

&b) ;

a=%d b=%d c=%d\n", a, b, c);

A:a=3 b=2 c=1
B:a=1 b=2 c¢=3
C:a=1 b=3 c¢c=2
D:a=3 b=3 c¢=3
E:a=1 b=1 c=1

*xX

t;

}



Arrays and

int
foo(int array][],

unsigned int size)

{

printf (“%d\n”, sizeof (array)); « |
}
int

main (void)
{
int a[10], b[5];
{1, 3, 2, 5, 6};
10).. foo(c, 5) ..
printf (“*%d\n”, sizeof(c));

int c[]

.. foo(a,

/

Pointers

. 1 o
- What does this print (64bit) ? 8

... because array is really

a pointer (and a pointer is
architecture dependent, but
8 on 64bit machines!)

What does this print? 40
_—

47



C M emOry Memory Address

(32 bits assumed here)

Management ~ FEFF FFEF
5 hex stack
* Program’s address space /77 _1_ 700
contains 4 regions:
— stack: local variables inside
functions, grows downward
— heap: space requested for T
dynamic dataviamalloe();, @ p———'—m ——
resizes dynamically, grows heap
upward
— static data: variables declared static data
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified. code

— code: loaded when program ~ 0000 0000,
starts, does not change

48



The Stack

Every time a function is called, a new frame

is allocated on the stack
fooA() { fooB(); }

Stack frame includes: fooB() { fooC(); }
— Return address (who called me?) fooC() { fooD(); }
— Arguments

— Space for local variables fooA frame
Stack frames contiguous

blocks of memory; stack pointer fooB frame

indicates start of stack frame

When function ends, stack frame is tossed
off the stack; frees memory for future stack
frames

We'll cover details later for RISC-V processor

fooC frame

fooD frame

Stack Pointer »



Faulty Heap Management

 What is wrong with this code?
e Memory leak!

int foo() {
int *value = malloc(sizeof(int));
*value = 42;
return *value;

}

50



And In Conclusion, ...

Pointers are an abstraction of machine memory
addresses

Pointer variables are held in memory, and pointer
values are just numbers that can be manipulated
oy software

n C, close relationship between array names and
pointers

Pointers know the type of the object they point
to (except void *)
Pointers are powerful but potentially dangerous




RISC-V



Addition and Subtraction of Integers (3/4)

 How to do the following C statement?
a=b+c+d-e;//a:x10; b:x1:c:x2, e:x3;f: x4

* Break into multiple instructions

add x10, x1, x2 # a temp = b + cC

add x10, x10, x3 # a temp = a temp + d

sub x10, x10, x4 # a = a temp - e

* Notice: A single line of C may break up into
several lines of RISC-V.

* Notice: Everything after the hash mark on each
line is ignored (comments).



Question:

We want to translate *x = *y +1 into RISC-V
(¢, y int pointers stored in: s1)
A: addi , s1, 1
B: 1w , 1251;
SW sl, O
C: lw = €0, Oésli
addi t0, tO,
SW t0, 0(s0)
D: t0

SwW , 0
addi t0, t
1w t0, O
E: 1w , 1

SW sl, O



Executing a Program

Memory
Processor
Read
Instruction
Control A Bits
v 4 \\ Program
Datapath v
PC L—TTnstruction Bytes
Address
Registers——
Arithmetic &' Logic Unit Data

The PC (program counter) is internal register inside processor holding byte
address of next instruction to be executed.

Instruction is fetched from memory, then control unit executes instruction

using datapath and memory system, and updates program counter (default is
add +4 bytes to PC, to move to next sequential instruction)




Start:

Exit:

Question!

addi s0,zero,0
slt t0,s0,sl

beqg t0,zero,Exit
sll +t1,s0,2

add t1,tl,s5

lw  t1,0(tl)

add s4,s4,tl
addi s0,s0,1

j Start

What is the code above?

A: while loop

do ... while loop
. for loop

: AorC
Not a loop

mo oW
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Question

e What value does x12 have at the end?

* Answer:
x12 =16
| <stdio.h>
.
3 int main (){ ,
4 int x10 addi x10, x0 , O0x07
5 int x12 add x12, x0 , x0
‘ { label a:
int x14 = x10 & 1; andi x14, x10, 1
(x14) beq x14, x0 , label b
x12 += x10; add x12, x10, x12
label b:
X10—; addi x10, x10, -1
} (x10 != 0); bne x10, x0 , label a

printf("sd", x12);
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RISC-V Function Call Conventions

Registers faster than memory, so use them

Give names to registers, conventions on how to use them

al0—-a7 (x10-x17):eight argument registers to pass
parameters and return values (a0-al)

ra: one return address register to return to the point of
origin (x1)

Also s0-s1 (x8-x9) ands2-s11 (x18-x27):
saved registers (more about those later)
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Instruction Support for Functions (1/4)

... sum(a,b);... /¥ a, b: s0, sl */

}
C int sum(int x, int y) {
return x+y;

}
address (shown in decimal)

1000 . .

1004 n RV32, instructions are 4
= 1008 oytes, and stored in memory
s igiz just like data. So here we show
e the addresses of where the

2000 programs are stored.

2004

59



C

RISC-V

Instruction Support for Functions (2/4)

}

.. sum(a,b);...

int sum(int x, int y) {
return x+y;

}

address (shown

1000
1004
1008
1012

add
mv
addi
J

1016 ..

2000
2004

sum:
jr

ao,
al,
ra,
sum

add
ra

in decimal)
sO, xO0

sl

zero, 1016

a0, a0, al
# new instr.

“jump register”
60



Instruction Support for Functions (3/4)

... sum(a,b);... /* a,b:$s0,$s1 */

}
C int sum(int x, int y) {
return x+y;

}
e Question: Why use jx here? Why not use j?

e Answer: sum might be called by many places, so we can’t

>l return to a fixed place. The calling proc to sum must be able
@ to say “return here” somehow.

4,

oc

2000‘ add aO a0, al

2004 jr ra new instr. “jump register”
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Instruction Support for Functions (4/4)

* Single instruction to jump and save return address:
jump and link (Jal)

e Before:
1008 addi ra, zero, 1016 # Sra=1016
1012 j sum # goto sum
e After:

1008 jal sum # ra=1012, goto sum
* Why have a jal?
— Make the common case fast: function calls very common.

— Reduce program size
— Don’t have to know where code is in memory with jal!
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Stack Before, During, After Function

Saved return
address (if needed)

Saved argument
registers (if any)

Saved saved
registers (if any)

Local variables
(if any)

Sp—s>

Before call During call After call




Using the Stack (1/2)

* We have a register sp which always points to
the last used space in the stack.

* To use stack, we decrement this pointer by the
amount of space we need and then fill it with
info.

* So, how do we compile this?

int sumSquare(int x, int y) {
return mult(x,x)+ vy;

}



Using the Stack (2/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

sumSquare:

“vush” addi sp, sp, -8 # space on stack
SW ra, 4(sp) # save ret addr
SW al, O0(sp) # save y
mv al, a0 # mult(x,x)
jal mult # call mult
1w al, O(sp) # restore y

“pop” add a0, a0, al # mult()+y
1w ra, 4(sp) # get ret addr
addi sp, sp, 8 # restore stack

jr ra
mult:



Basic Structure of a Function

Prologue

entry label:

addi sp,sp, -framesize

SW ra, framesize-4(sp) # save ra
save other regs 1if need be

ra

Body --- (call other functions...)

memory

Epilogue

restore other regs if need be

1w ra, framesize-4(sp) # restore Sra
addi sp, sp, framesize
jr ra
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RV32 Memory Allocation

sp = bfff fffOpey

Stack

'

Dynamic data

Static data

1000 0000pex
Text

pc = 0001 0000pey

Reserved
0




RISC-V ISA so far...

* Registers we know so far (All of them!)
— a0-a7 for function arguments, a0-al for return values
— sp, stack pointer, ra return address
— s0-s11 saved registers
— t0-t6 temporaries
— zero
* Instructions we know:
— Arithmetic: add, addi, sub
— Logical: sll, srl, slli, srli, slai, and, or, xor, andi, ori, xori
— Decision: beq, bne, blt, bge
— Unconditional branches (jumps): j, jr
— Functions called with jal, return with jr ra.
 The stack is your friend: Use it to save anything you need. Just
leave it the way you found it!



12 Shift Instructions...

 Two versions of of all shift instructions. Shift amount via:
— Register
— Immediate

* (On RV64: additional “word” version of instruction: only works on first 32bit

of 64bit register)

» Shift Left

« Shift Right Arithmetic: Fill upper bits with msb

« Shift Right Logic: Fill upper bits with 0’s
sll,sllw R Shift Left (Word) R[rd] = R[rs1] << R[rs2]
slli,slliw [ Shift Left Immediate (Word) R[rd] = R[rsl] << imm
sra,sraw R  Shift Right Arithmetic (Word) R[rd] = R[rs1] >> R[rs2]
srai,sraiw [ Shift Right Arith Imm (Word) R[rd] = R[rsl] >> imm
srl,srlw R Shift Right (Word) R[rd] = R[rs1] >> R[rs2]

srli,srliw [  Shift Right Inmediate (Word) R[rd] = R[rsl] >> imm

Notes: 1) The Word version only operates on the rightmost 32 bits of a 64-bit registers
J) Replicates the sign bit to fill in the lefimost bits of the result during right shift

)

1)
1,5)

1,5)
D
1)



Summary of RISC-V Instruction

Formats
31 30 25 24 21 2019 1514 12 11 8 76 0
| funct7 rs2 rsl funct3 rd opcode |R-type
| imm[11:0] rsl funct3 rd opcode |I-type
Iimm|11:5| rs2 rsl funct3 | imm[4:0 opcode | S-type
Iimm|12|10:5]| rs2 rsl funct3 |i.mm[4:1|11]_ opcode |B-type
| imm[31:12] rd opcode |U-type
| imm[20]10:1[11]] imm[19:12] rd opcode | J-type
CORE INSTRUCTION FORMATS
31 27 26 25 24 20 19 15 14 12 11 7 6 0

R funct? rs2 sl funct3 rd Opcode

I mmm|[11:0] sl funct3 rd Opcode

S mmm|11:5] rs2 sl funct3 imm|4:0] opcode

SB mmm| 12|10:5] rs2 sl funct3 imm[4:1/11] | opcode

U mmm|31:12] rd opcode

uJ mmm|20|10:1/11|19:12] rd opcode




 What is correct encoding of add x4, x3, x2 ?

A: 4021 8233, .,
B: 0021 82b3, .,
C: 4021 82b3,,,
D: 0021 8233, .,
E: 0021 8234,

Question

31 25 24 20 19 1514 1211 7
0000000 rs2 rsl 000 rd 0110011
0100000 rs2 rsl 000 rd 0110011
0000000 rs2 rsl 100 rd 0110011
0000000 rs2 rsl 110 rd 0110011
0000000 rs2 rsl 111 rd 0110011

add
sub

XOor
or

and



Branch Example, Determine Offset

e RISC-V Code:

Loop: beq x19,x10,
add x18,x18,x10
addi x19,x19,-1

J
End: # target instruction

Count
instructions
from branch

H W N = O

* Branch offset = 4x32-bit instructions = 16 bytes
* (Branch with offset of 0, branches to itself)



Branch Example, Determine Offset

e RISC-V Code:

Loop: beq x19,x10,
add x18,x18,x10
addi x19,x19,-1

J
End: # target instruction

Count
instructions
from branch

H W N = O

??2?27?2?2?2? | 01010 | 10011 000 ???2?2? | 1100011

imm rs2=10 rsl=19 BEQ imm BRANCH




Branch Example, Encode Offset

e RISC-V Code:

Loop: beq x19,x10,
add x18,x18,x10
addi x19,x19,-1

J
End: # target instruction

offset = 16 bytes = 8x2 bytes

??2?27?2?2?2? | 01010 | 10011 000 ???2?2? | 1100011

imm rs2=10 rsl=19 BEQ imm BRANCH



RISC-V Immediate Encoding

Instruction encodings, inst[31:0]
30 25 24 20 19

31 1514 1211 8 76 0

| funct7 rs2 rsl funct3 rd opcode | R-type
| imm[11:0] rsl funct3 rd opcode | I-type
Iimm|11:5| rs2 rsl funct3 | imm[4:0] | opcode |S-type
[imm[12/10:5]] rs2 rsl funct3 [imm[4:1]11]] opcode | B-type

32-bit immediates produced, imm[31:0]

31 25 24 12 11 10 5 4 1 0

| -inst[31] - inst[30:25]|inst[24:21]] inst[20] | |-imm
| -inst[31] - inst[30:25]| inst[11:8]ly inst[7] | S-imm.
L -inst[31] - ihnstmli nst[30:25] inst[11:8] 0 |B-imm.

Upper bits sign-extended from inst[31] always

Only bit 7 of instruction changes role in

immediate between S and B



Branch Example, complete encoding

beqg x19,x10,

13-bit immediate, imm[12:0], with value 16
imm|[0] discarded,

0 0000001000|0 > always zero

imm[11]

000 10000 1100011

imm[10:5] rs2=10 rsl=19 BEQ imm[4:1] BRANCH



LUl to Create Long Immediates

* LUI writes the upper 20 bits of the destination with the
immediate value, and clears the lower 12 bits.

* Together with an ADDI to set low 12 bits, can create any
32-bit value in a register using two instructions (LUI/ADDI).

LUI x10, 0x87654
ADDI x10, x10, 0x321



One Corner Case

How to set OxDEADBEEF?
LUI x10, OxDEADB
ADDI x10, x10, OxEEF A

ADDI 12-bit immediate is always sign-extended, if top bit is set,
will subtract 1 from upper 20 bits



Steps in compiling a C program

Compiler converts a single HLL file
into a single assembly language file.

C program: foo.c

"
Compiler

Assembler removes pseudo-
instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.

g

Assembly program: foo.s

e
Assembler
/.
o Does 2 passes to resolve addresses, Object (machiangmoanE e

handling internal forward references |
/

Linker combines several . o files and
resolves absolute addresses.

o Enables separate compilation, libraries
_ Executable (mach lang pgm): a.out
that need not be compiled, and l
]

resolves remaining addresses 7/

Linker

Loader loads executable into memory Loader
and begins execution. '

Memory
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Question

At what point in process are all the machine code
bits generated for the following assembly
instructions:

1l)add 6, 7, 8
2) jal fprintf

A: 1) & 2) After compilation

B: 1) After compilation, 2) After assembly
C: 1) After assembly,  2) After linking

D: 1) After assembly, 2) After loading
E: 1) After compilation, 2) After linking




SDS/ RISC-V Pipline



CMOS Transistors |Gate

Source —e Drain

 Three terminals: source, gate, and drain

— Switch action:
if voltage on gate terminal is (some amount) higher/lower
than source terminal then conducting path established

between drain and source terminals (switch is closed)
Note circle symbol

Gate Gate to indicate “NOT”
1 or “complement”
Source —— — Drain Source Drain
n-channel transitor p-channel transistor
off when voltage at Gate is low on when voltage at Gate is low
on when: off when:
voltage (Gate) > voltage (Threshold) voltage (Gate) > voltage (Threshold)

(High resistance when gate voltage Low, (Low resistance when gate voltage Low,
Low resistance when gate voltage High) High resistance when gate voltage High)

Field-Effect Transistor (FET) => CMOS circuits use a combination of p-type and n-type
metal-oxide—semiconductor field-effect transistors =>
MOSFET



1V

Question

wi

X Y
D
OVolt 0OVolt q
OVolt 1 Volt 1
1Volt 0 Volt 1
1Volt 1Volt 0

Volts

Volts
Volts

Volts
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Representations of Combinational
Logic (groups of logic gates)

Enumerate
Enumerate Sum of Inputs
Inputs Products,
Product of Sums
Methods

Use Equivalency between
Boolean Expression boolean operators and Gate Diagram
gates




Laws of Boolean Algebra

XX=0
X0=0
X1=X
XX=X
XY=YX
(XY)Z=X(Y?2)
X(Y+Z)=XY+XZ
XY+ X=X
XY+X=X+Y
XY=X+Y

X+X=1
X+1=1
X+0=X
X+X=X
X+Y=Y+X
(X+Y)+Z=X+(Y+2)
X+YZ=(X+Y)(X+2)
(X+Y)X=X
(X +Y) X
X+Y-=

XY
Y

>| 1

Complementarity
Laws of O’s and 1’s
Identities
ldempotent Laws
Commutativity
Associativity
Distribution
Uniting Theorem
Uniting Theorem v. 2
DeMorgan’s Law
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Question

Piazza: “Lecture 9 Freq Poll”

Clock->Q 1ns
Setup 1ns
Hold 1ns

AND delay 1ns

What is maximum clock frequency?
e A:5GHz

 B:500 MHz

e C:200 MHz

e D: 250 MHz

e E:1/6 GHz
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Keywords

Mux

Register

FlipFlop

Adder

ALU

AND; OR; XOR; NOT
NAND; NOR
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Complete RV32| Datapath!

+4
c+4
wb pc P I 2
»iDataD Reg[rsl] alu > 1
alu Inst[11:7] o J wb
> addr Inst[19:15] AddrD DataR £
pc+4 inst »IAddrA DataA dd mem
Inst[24:20] »f addr
»lAddrB DataB
DatawW
IMEM g
Reg[] A DMEM A
A 1 A 1
clk Reg[rs2] clk
Imm[31:0]
\ 4 JV \ 4
PCSel Inst[31:0] ImmSel RegWEn Brun BriT Bsel  ALUSel MemRW WBSel

Asel

Control logic BrEq
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Control Block Design

> 11-bit address (inputs) —

Inst[30,14:12,6:2] BrEq BrlLT

PCSel
ImmSel[2:0]
BrUn

Combinatorial Logic Asel

BSel
ALUSel[3:0]

MemRW

Functions

RegWEn
WBSel[1:0]

15 data bits (outputs)
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Single Cycle Datapath

&
(- rd R .'G_)‘
O ] & = o BRE
o | 5 o |rsl Qo -
S £ > v > ALU 8 O
5 9 |rs2. - c £
8 = > > 0O o
= S
+4 imm ‘
\ ) ¢ —_— ¢ > ¢ —

1. Instruction

Fetch

5. Write

2. Decode/ 3. Execute 4. Memory
Back

Register Read
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dduanbas uoljonuisul

Pipelining with RISC-V
Phase | Pictogram |ty Serial [ty Pipelined

Instruction Fetch 200 ps 200 ps
Reg Read E:R:I' 100 ps 200 ps
ALU = 200 ps 200 ps
Memory 200 ps 200 ps
Register Write e 100 ps 200 ps
t; i L B o e 800 ps 1000 ps
Instruction H-F%OH p p
<
add t0, t1, t2
ort3, t4, t5
+ slite, 10,13

A
\ 4
A
\ 4

tcyc/e 91



Pipelining with RISC-V

add t0, t1, t2 Erl—"-‘«r |”|—lg
or t3, t4, t5 El—l-%«r |‘H|—.|I—l»
4 slit6, t0,t3 I-“*I‘"'HI—IQ

I Single Cycle Pipelining

92uanbas uonoNJISUl

Timing tstep = 100 ... 200 ps teycle = 200 ps
Register access only 100 ps All cycles same length

Instruction time, ti,struction = teyce = 800 ps 1000 ps

CPI (Cycles Per Instruction) ~1 (ideal) ~1 (ideal), >1 (actual)

Clock rate, f, 1/800 ps = 1.25 GHz 1/200 ps =5 GHz

Relative speed 1x 4 x
92



2Juanbas uollonJisul

Sequential vs Simultaneous

What happens sequentially, what happens simultaneously?

add t0, t1, t2
ort3, t4, t5
sl t6, 0, t3
sw t0, 4(t3)
lw t0, 8(t3)

addit2,t2,1

<

tinstruction = 1000 pS

-

tcyc/e
=200 ps
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2Juanbas uollonJisul

add t0, t1, t2
ort3, t4, t5
sl t6, 0, t3
sw t0, 4(t3)
lw t0, 8(t3)

addit2,t2,1

RISC-V Pipeline

t

instruction —

1000 ps

tcyc/e
=200 ps

Resource use in a
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Hazards!

* Keywords:
— Structural Hazards
— Data Hazards
— Control Hazards

— Forwarding/ Bypassing

— Stall/ nop/ load delay slot
— Kill instruction

— Branch prediciton



Hyper-threading (simplified)

Alim
| -
g O _ c—_— + o >
” A » + O 1 e e]0) L
(@) rs OD q_) > ] O o
S5 £ Q = +
S o [s2)|] = © £
8 = I O o
L &
= . N
_)‘ > | Yo > To > le - .
. [ 5. Write
1. Instruction 2. Qecode/ 3. Execute 4. Memory
Fetch Register Read Back

Duplicate all elements that hold the state (registers)
Use the same CL blocks
Use muxes to select which state to use every clock cycle

=>run 2 independent processes

— No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, ...)

Speedup?

— No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable
resources (e.g. wait for memory)



Superscalar

* “Iron Law” of Processor Performance to
estimate speed

* Complex Pipelines
* Multiple Functional Units => Parallel execution
— Static Multiple Issues (VLIW)
e E.g. 2 instructions per cycle
— Dynamic Multiple Issues (Superscalar)
* Re-order instructions

* |ssue Buffer; Re-order Buffer; Commit Unit
* Re-naming of registeres



“Iron Law” of Processor Performance

CPI = Cycles Per Instruction

'

Time = Instructions>< Cycles X Time

Program Program Instruction  Cycle
cpl= _Cycles = Time . Instructions X Time )

Instruction Program Program Cycle
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Example (RISC processor)

Op Freg, CPl. Prod (% Time)
ALU 50% 1 5 (23%)
Load 20% 5 1.0 (45%)
Store 10% 3 3 (14%)
Branch | 20% 2 4 (18%)

Instruction Mix 2.2 (Where time spent)
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Superscalar Processor

Instruction fetch
and decode unit

l

l

Reservation
station

Reservation
station

Functional

units Integer

Integer

l

l

In-order issue

Reservation

Reservation

station station
Floating Load-
point store

l

Commit
unit

Out-of-order execute

In-order commit
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Phases of Instruction Execution

PC
L4
|-cache
- ¢

Fetch: Instruction bits retrieved from
instruction cache.

Fetch Buffer

v

Decode/Rename

v

Decode: Instructions dispatched to
appropriate issue buffer

Issue Buffer

]

[

Execute: Instructions and operands issued to

Functional Units] functional units. When execution completes,

*

all results and exception flags are available.

Result Buffer

-
[ Commit ]
¥

Architectural

Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

State
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Intro to Caches



Adding Cache to Computer

Processor
Enable?

Read/Write

NEePISLEeTrS:
(S i

Arithmetic &Logic Unit
(ALU)

g J \ )

Processor-Memory Interface |/0-Memory Interfaces
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Big Idea: Memory Hierarchy

Processor

Inner .Increasing
distance from
. Level 1 processor,
Levels in decreasing
memory / Level 2 speed
hierarchy Level 3
Outer
Level n
< >

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down. Why?




Big Idea: Locality

e Temporal Locality (locality in time)

— Go back to same book on desktop multiple times

— If a memory location is referenced, then it will tend to
be referenced again soon

* Spatial Locality (locality in space)

— When go to book shelf, pick up multiple books on J.D.
Salinger since library stores related books together

— |If a memory location is referenced, the locations with
nearby addresses will tend to be referenced soon



Memory Reference Patterns

w
ro

Tempor;i
Locality

(0]
o

'l-'\
* .,I——-—.Jva*u aucn-su PP

i - - ) ‘ . ‘. . : : . u:.'nrn""-

(O T e pe—.

Memory Address (one dot per access)

22+ . SRl -
=y otk B - ... Spatial

20' -~ lh.ﬂﬁl “QW'M‘O“#MM.HH“' l "y ‘ﬂll.l:'_d' !lr B . f - < . L
‘J LR Es '.-o ottt e ® .-ldz antA, -l Locallty \
’1‘.!rﬂ\""l?ll‘.lﬂﬂﬁlﬂllﬂltﬂll'll“llll'lﬂll RN NTTHIEE ll||.|ﬁ" 1 I “w - =

18 L

Donald J. Hatfield, Jeanette Gerald: Progr-gll[me
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)



Principle of Locality

* Principle of Locality: Programs access small
portion of address space at any instant of time

(spatial locality) and repeatedly access that
portion (temporal locality)

* What program structures lead to temporal
and spatial locality in instruction accesses?

 |n data accesses?
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Cache Philosophy

* Programmer-invisible hardware mechanism to
give illusion of speed of fastest memory with
size of largest memory

— Works fine even if programmer has no idea what a
cache is

— However, performance-oriented programmers
today sometimes “reverse engineer” cache design
to design data structures to match cache



Cache Terms |

Cache:

— A small and fast memory used to increase the performance
of accessing a big and slow memory

— Uses temporal locality: The tendency to reuse data in the
same space over time

— Uses spacial locality: The tendency to use data at
addresses near

Cache hit: The address being fetched is in the cache

Cache miss: The address being fetched is not in the
cache

Valid bit: |s a particular entry valid
Cache flush: Invalidate all entries



CPU-Cache Interaction

0x4 ”

(5-stage pipeline)

PCen‘

:

3

bubble_l—_D_I gec?de,
egister
*laddr inst Fetch
hit»
Primary
Instruction|
Cachq

|

To Memory Control

Cache Refill Data from Lower Levels of

Memory Hierarchy

3
M

A | vV we

A w v|4—]addr

B Al Primary

Al Data rdata >

— — Cache

»| wdata hitz |

A A 2

MD1 MD?2
Stall entire
CPU on data
cache miss
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Cache Terms ||

Cache level:

— The order in the memory hierarchy: L1S is closest to the
processor

— L1 caches may only hold data (Data-cache, DS) or
instructions (Instruction Cache, 1S)

* Most L2+ caches are "unified", can hold both instructions and data
Cache capacity:
— The total # of bytes in the cache
Cache line or cache block:
— A single entry in the cache

Cache block size:
— The number of bytes in each cache line



Cache Terms llI
Associativity

Number of cache lines:

Cache capacity / block size:

Cache associativity:

The number of possible cache lines a given address may exist in.

Also the number of comparison operations needed to check for an
element in the cache

Direct mapped: A data element can only be in one possible location
(N=1)

N-way set associative: A data element can be in one of N possible
positions

Fully associative: A data element can be at any location in the cache.
e Associativity == # of lines

Total # of cache lines == capacity of cache/line size

Total # of lines in a set == # ways == N == associativity
Total # of sets == # of cache lines / associativity

112



Victim Cache

Conflict misses are a pain, but...

— Perhaps a little associativity can help without having
to be a fully associative cache

In addition to the main cache...

— Optionally have a very small (16-64 entry) fully
associative "victim" cache

Whenever we evict a cache entry
— Don't just get rid of it, put it in the victim cache

Now on cache misses...

— Check the victim cache first, if it is in the victim cache
you can just reload it from there



Cache Terms IV

Parts of the Address

Address is divided into | TAG|INDEX | OFFSET |
Offset:

— The lowest bits of the memory address which say where data
exists within the cache line.

— Itis log2(line/block size)
— So for a cache with 64B blocks it is 6 bits
Index:

— The portion of the address which says where in the cache an
address may be stored

— Takes log2(# of cache lines / associativity) bits

— So for a 4 way associative cache with 512 lines it is 7 bits

Tag: The portion of the address which must be stored in
the cache to check if a location matches

— # of bits of address - (# of bits for index + # of bits for offset)

— So with 64b addresses it is 51b... "



Cache Terms V
Writing

Eviction:
— The process of removing an entry from the cache
Write Back:

— A cache which only writes data up the hierarchy when a cache line is
evicted

— Instead set a dirty bit on cache entries
— All'i7 caches are write back
Write Through:
— A cache which always writes to memory
Write Allocate:
— If writing to memory not in the cache fetch it first
— i7 L2 is Write Allocate
No Write Allocate:
— Just write to memory without a fetch
— i7 L1 is no write allocate
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Replacement Policy

In an associative cache, which line from a set should be
evicted when the set becomes full?

® Random

e Least-Recently Used (LRU)

e LRU cache state must be updated on every access
e True implementation only feasible for small sets (2-way)
e Pseudo-LRU binary tree often used for 4-8 way

e First-In, First-Out (FIFO) a.k.a. Round-Robin
e Used in highly associative caches

e Not-Most-Recently Used (NMRU)
e FIFO with exception for most-recently used line or lines

This is a second-order effect. Why?

Replacement only happens on misses
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Cache Terms VI

Cache Performance

Hit Time:

— Amount of time to return data in a given cache: depends
on the cache

— i7 L1 hit time: 4 clock cycles
Miss Penalty:

— Amount of additional time to return an element if its not
in the cache: depends on the cache

Miss Rate:

— Fraction of a particular program’s memory requests which
miss in the cache

Average Memory Access Time (AMAT):
— Hit time + Miss Rate * Miss Penalty
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Understanding Cache Misses:
The 3Cs

 Compulsory (cold start or process migration, 15 reference):

— First access to block impossible to avoid; small effect for long
running programs

— Solution: increase block size (increases miss penalty; very large
blocks could increase miss rate)

* Capacity:
— Cache cannot contain all blocks accessed by the program
— Solution: increase cache size (may increase access time)
* Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size
— Solution 2: increase associativity (may increase access time)
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Typical Memory Hierarchy

I’

Secondary
Memory
(Disk
Or Flash)

1,000,000’s

On-Chip Components R -
Control -
=" | Third-
-~ Level )
Second- Cache Main
I Ll Level Memory
Datapath é’ Cache (DRAM)
M
o)
Speed (cycles): %'s 1’s 10’s 100’s
Size (bytes): 100’s 10K’s M’s G’s

Cost/bit: highest <

T’s

5> lowest

* Principle of locality + memory hierarchy presents programmer with
= as much memory as is available in the cheapest technology at the
= speed offered by the fastest technology
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Local vs. Global Miss Rates

Local miss rate — the fraction of references to one
level of a cache that miss

Local Miss rate L2S = SL2 Misses / L1S Misses

Global miss rate — the fraction of references that
miss in all levels of a multilevel cache

* L2S local miss rate >> than the global miss rate

Global Miss rate = L2S Misses / Total Accesses

= (L2S Misses / L1S Misses) x (L1S Misses / Total Accesses)
= Local Miss rate L2S x Local Miss rate L1S

AMAT = Time for a hit + Miss rate x Miss penalty

AMAT = Time for a L1S hit + (local) Miss rate L1S x
(Time for a L2S hit + (local) Miss rate L2S x L2S Miss penalty)



In Conclusion, Cache Design Space

Cache Size

e Several interacting dimensions
— Cache size
— Block size
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write-allocation

* Optimal choice is a compromise

— Depends on access characteristics
* Workload
* Use (I-cache, D-cache)

— Depends on technology / cost Good | FactorA Factor B
* Simplicity often wins Less More

Associativity

Block Size

Bad
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