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Quiz for D Flip Flop

Piazza: “Video Lecture 25 FPGA”
 Which is the correct wave for the Q with regard to
the following clock and the wave of D?
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Agenda

* Warehouse Scale Computing

* Request-level Parallelism

e.g. Web search

* Data-level Parallelism
— MapReduce
— Hadoop, Spark



New-School Machine Structures

Assigned to computer
e.g., Search “cats”
Harness

 Parallel Threads parallelism &

Assigned to core Achieve High
e.g., Lookup, Ads Performance

e Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

 Parallel Data

Memory _.-

Inp,ut«/Oﬁtput

>1 data item @ one time nstruction Unit(s) Bl:\rl\tc’;i)onal
e.g., Deep Lear.n.ing.for %ﬂ /K+B% +B% +B% +B/
image classification Heotel
* Hardware descriptions Cache Memory -~ ﬂ
All gates @ one time [ ~ ' Logic Gates

* Programming Languages 4




Google’s WSCs
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Containers in WSCs
Inside WSC Inside Container




, Array

r, Rack

Serve

pp»pp.»;p?ppgw

: zE::EE

P

VA J}\.v

¢\J




Google Server Internals




Open Compute Project

Share designs of data center products =
— Facebook, Intel, Nokia, Google, Apple, R

Microsoft, Seagate Technology, Dell, Cisco,
Goldman Sachs, Lenovo, ...

Design and enable the delivery of the

most efficient server, storage and data

center hardware designs for scalable

computing.

Openly sharing ideas, specifications and

other intellectual property is the key to

maximizing innovation and reducing

operational complexity

All Facebook Data Centers are 100% OCP [



Warehouse-Scale Computers

Datacenter
— Collection of 10,000 to 100,000 servers
— Networks connecting them together
Single gigantic machine

Very large applications (Internet service):
search, email, video sharing, social networking

Very high availability

“...WSCs are no less worthy of the expertise of computer
systems architects than any other class of machines”
Barroso and Hoelzle, 2009
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Unique to WSCs

* Ample Parallelism
— Request-level Parallelism: e.g., web search
— Data-level Parallelism: e.g., image classifier training

* Scale and its Opportunities/Problems
— Scale of economy: low per-unit cost

— Cloud computing: rent computing power with low costs
(e.g., AWS)

— High # of failures

e.g.: 4 disks/server, annual failure rate: 4%
- WSC of 50,000 servers: 1 disk fail/hour

* Operation Cost Count
— Longer life time (>10 years)
— Cost of equipment purchases << cost of ownership



WSC Architecture

1U Server:
8 cores,
16 GB DRAM,
Ax1 TB disk Array (aka cluster):
16-32 racks
Rack: Expensive switch
40-80 severs, (10X bandwidth = 100x cost)

Local Ethernet (1-10Gbps) switch
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WSC Storage Hierarchy

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

1U Server:
DRAM: 16GB, 0.1us, 20GB/s

Rack(80 severs):

DRAM: 1TB, 100MB/s

Disk: 160TB, 11ms, 100MB/s

Array(30 racks):
DRAM: 30TB, 500us, 10MB/s

‘gt_.fisk: 4.80PB, 12ms, 10MB/s
’.‘ 13




Workload Variation

2X

Workload

Noon Midnight

* Online service: Peak usage 2X off-peak
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Impact on WSC software

Latency, bandwidth = Performance

— Independent data set within an array

— Locality of access within server or rack
High failure rate - Reliability, Availability
— Preventing failures is expensive

— Cope with failures gracefully

Varying workloads - Availability

— Scale up and down gracefully

More challenging than software for single computers!
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Power Usage Effectiveness

* Energy efficiency

— Primary concern in the design of WSC

— Important component of the total cost of ownership

Power Usage Effectiveness (PUE):

Total Building Power

IT Equipment Power

— A power efficiency measure for WSC

— Not considering efficiency of servers, networking
— Perfection=1.0

— Google WSC's PUE=1.2

16



PUE in the Wild (2007)

I BT 000 —

i 1.0 = Best Value .
_ Possible

i 2 3 4 &5 & ¥ & 4 110 41 42 13 14 415 46 47 18 40 M 2 @ I3 24

FIGURE 5.1: LBNL survey of the power usage efficiency of 24 datacenters, 2007 (Greenberg et al.)
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Where Data Center Power Goes

Electricity Lighting, etc.
Transformer/ 3%
S \ f
10“!"& I"-

\

Air Movement
12%

Cooling
25%

IT Equipment
50%

18



Fraction of Time

Load Profile of WSCs

0.025 | i It 1

0.015 [i|||[ P8 i

0.01 | i i T .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
CPU Utilization

* Average CPU utilization of 5,000 Google servers, 6 month period

e Servers rarely idle or fully utilized, operating most of the time at
10% to 50% of their maximum utilization
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Energy-Proportional Computing:
Design Goal of WSC

Energy = Power x Time, Efficiency = Computation / Energy

Desire:
— Consume almost no power when idle (“Doing nothing well”)
— Gradually consume more power as the activity level increases

IDEALSYSTEM EFFICIENCY

Relative Povwer and Efficiency

0 20 40 60 g0 100

System Utilization
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Cause of Poor Energy Proportionality

ECPU  mDRAM Disk Other

100.00
90.00
% 80.00 —
3 70.00
« 60.00
0
s 50.00
= 4000 -
3 30.00 —
3 .
o 2000 -
10.00 -
0007 I I I I I I T T I I I I
ldle 7 14 21 29 36 43 50 57 64 71 79 86 93 100

Compute load (%)

e CPU:50% at peek, 30% at idle
 DRAM, disks, networking: 70% at idle!
* Need to improve the energy efficiency of peripherals
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Cloud Computing: Scale of Econom

Network

Linux On

Memory vCPUs Storage Arch Performance Demand
M1 General Purpose Small 1.7GB 1 160 GB 32/64-bit Low $0.044 hourly
M1 General Purpose Medium  3.75GB 1 410 GB 32/64-bit  Moderate  $0.087 hourly
M1 General Purpose Extra
Large 15.0GB 4 1680GB  64-bit High $0.35 hourly
C1 High-CPU Medium 1.7GB 2 350 GB 32/64-bit Moderate $0.13 hourly
C1 High-CPU Extra Large 7.0GB 8 1680 GB  64-bit High $0.52 hourly
12 Extra Large 305GB 4 800 GB  64-bit Moderate  $0.853 hourly
12 Double Extra Large 61.0GB 8 1600GB  64-bit Moderate  $1.705 hourly
M4 Large 8.0GB 2 EBSonly 64-bit Moderate  $0.108 hourly
M4 Extra Large 16.0GB 4 EBSonly 64-bit High $0.215 hourly
M4 16xlarge 256.0GB 64 EBSonly 64-bit 20 Gigabit $3.447 hourly
General Purpose GPU Extra
Large 61.0GB 4 EBSonly 64-bit High $0.9 hourly
General Purpose GPU 16xlarge 732.0GB 64 EBSonly 64-bit 20 Gigabit $14.4 hourly
X1 Extra High-Memory 16xlarge 976.0GB 64 1920GB  64-bit 10 Gigabit  $6.669 hourly

* May 2017 AWS Instances & Prices
* Closest computer in WSC example is Standard Extra
* At these low rates, Amazon EC2 can make money!

— even if used only 50% of time

e Virtual Machine (VM) plays an important role




Agenda

* Request-level Parallelism

e.g. Web search
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Request-Level Parallelism (RLP)

 Hundreds of thousands of requests per sec.

— Popular Internet services like web search, social
networking, ...

— Such requests are largely independent
e Often involve read-mostly databases
* Rarely involve read-write sharing or synchronization
across requests
 Computation easily partitioned across different
requests and even within a request
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Google Query-Serving Architecture

l

Google Web server ~ -#—— Spell checker

\\ Ad server
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Index servers Document servers
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Anatomy of a Web Search

In the news

cats

Web Images Videos MNews Shopping More - Search tools

I About 650,000,000 results (0.29 seconds) I

Black Cats are Good Luck - berkeleyhumane.org
www.berkeleyhumane.org/adopt-a-cat ~
In October, Adopt a Black Cat For only $10. Save a Life Today!

Cat - Wikipedia, the free encyclopedia
https:/fen.wikipedia.org/wiki/Cat ~ Wikipedia ~

The domestic cat (Felis catus or Felis silvestris catus) is a small, typically furry,
domesticated, and carnivorous mammal. They are often called house cats when ...
African wildcat - Creme Puff - List of cat breeds - Human interaction with cats

Cats (musical) - Wikipedia, the free encyclopedia
https:/fen.wikipedia.org/wiki/Cats_(musical) ~ Wikipedia -

Cats is a musical composed by Andrew Lloyd Webber, based on Old Possum's Book of

Practical Cats by T. 5. Elict, and produced by Cameron Mackintosh.

Music: Andrew Lloyd Webber
Lyrics: T. S. Eliot; Trevor Munn (addition...

Premiere: 11 May 1981 — New London ...

Cats - Mashable

mashable.com/category/cats/ » Mashable -

The domestic cat (Felis catus or Felis silvestris catus) is a small, usually furry,
domesticated, camivorous mammal. It is often called the housecat when kept as an ...

Cat Health Center | Cat Care and Information from WebMD
pets.webmd.com/cats/ ~ WebMD -

WebMD veterinary experts provide comprehensive information about cat health care,
offer nutrition and feeding tips, and help you identify ilinesses in cats.

Awards: 1981 Laurence Olivier Award for .

Cat killer on the loose? Police think so

Detroit Free Press - 17 hours ago

Police say someone has been beating cats to death in Hazel Park
two blocks north of Detroit ..

Mew Study Finds Cats Have The Surface Area Of A Ping Pang Table
Popular Science - 18 hours ago

This breed of cats makes them loak just like werewolves
AOL News - 2 days ago

More news for cats

Cats - Reddit

https:/’www.reddit.com/r/cats/ ~ Reddit ~

Your reddit account must be at least 15 days of age to post in /rfeats. Redditors ... The
mom cat has a very special mark on her coat that | think you all would like.

Cats: Pictures, Videos, Breaking News - Huffington Post
www.huffingtonpost.com/news/cats/ » The Huffington Post ~
Big News on Cats. Includes blogs, news, and community conversations about Cats.

Cats on About.com - All About Cats and Kittens

cats.about.com » About Home

Learn all about the care and feeding of cats. Free articles on cat behavior, cat health,
pregnancy and birth, vet care and the human bond with cats.

Funny Cats Big Compilation 2015! [NEW] - YouTube
hitps:/hwww.youtube.com/watch?v=eVo3LbVWWc

Dec 2, 2014 - Uploaded by Funny Animals Channel

Mew Crazy compilation of 2014. ENJOY and SUBSCRIBE, Merry
Christmas!



Anatomy of a Web Search (1/3)

* Google “cats”
— Direct request to “closest” Google WSC

— Front-end load balancer directs request to one of many
arrays (cluster of servers) within WSC

— Within array, select one of many Goggle Web Servers (GWS)
to handle the request and compose the response pages

— GWS communicates with Index Servers to find documents
that contains the search word, “cats”

— Return document list with associated relevance score
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Anatomy of a Web Search (2/3)

* In parallel,

— Ad system: run ad auction for bidders on search terms
e Use docids (Document IDs) to access indexed documents
e Compose the page

— Result document extracts (with keyword in context)
ordered by relevance score

— Sponsored links (along the top) and advertisements (along
the sides)
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Anatomy of a Web Search (3/3)

* Implementation strategy
— Randomly distribute the entries
— Make many copies of data (a.k.a. “replicas”)

— Load balance requests across replicas

* Redundant copies of indices and documents
— Breaks up search hot spots, e.g., “Tony Stark”
— Increases opportunities for request-level parallelism

— Makes the system more tolerant of failures
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Agenda

Data-level Parallelism
— MapReduce
— Hadoop, Spark
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Data-Level Parallelism (DLP)

SIMD
— Supports data-level parallelism in a single machine
— Additional instructions & hardware

e.g., Matrix multiplication in memory

DLP on WSC

— Supports data-level parallelism across multiple machines

— MapReduce & scalable file systems
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Problem Statement

 How to process large amounts of raw data (crawled
documents, request logs, ...) every day to compute
derived data (inverted indices, page popularity, ...),
when computation is conceptually simple but input
data is large and distributed across 100s to 1000s of
servers, so as to finish in reasonable time?

e Challenge: Parallelize computation, distribute data,
tolerate faults without obscuring simple computation
with complex code to deal with issues



Solution: MapReduce

Simple data-parallel programming model and
implementation for processing large datasets
Users specify the computation in terms of

— a map function, and

— a reduce function

Underlying runtime system

— Automatically parallelize the computation across large
scale clusters of machines

— Handles machine failure

— Schedule inter-machine communication to make efficient
use of the networks
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What is MapReduce used for?

* At Google:

— Index construction for Google Search

— Article clustering for Google News

— Statistical machine translation

— For computing multi-layers street maps

At Yahoo!:

— “Web map” powering Yahoo! Search
— Spam detection for Yahoo! Mail

At Facebook:
— Data mining
— Ad optimization
— Spam detection
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Inspiration: Map & Reduce Functions,
ex: Python

4
Calculate : Enz 1 2
n—=1

3 4

A = [1) 2, 3, 4]

def square(x): L 4 - -
return x * Xx

def sum(x, y): @ ‘

return x + vy

5 25

reduce(sum, @
map(square, A))

30
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MapReduce Programming Model

* Map: (in_key, in_value) - list(interm_key, interm_val)

map(in_key, in val):
// DO WORK HERE
emit(interm_key, interm_val)

— Slice data into “shards” or “splits” and distribute to workers
— Compute set of intermediate key/value pairs

* Reduce: (interm_key, list(interm value)) = list(out_value)
reduce(interm key, list(interm val)):
// DO WORK HERE
emit(out _key, out _val)

— Combines all intermediate values for a particular key
— Produces a set of merged output values (usually just one)
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MapReduce Word Count Example

Distribute

that that is|is that thatlis not is notlis that it it is
Map 1 Map 2 Map 3 Map 4

that ihdbat dhds 1 Is1, that 1, that1 | is1, ivot, ot 1,met 1 [is 3, that kit b it dhiz 1| Local Sort

Shuffle
is1,1,1,1,1,1 that 1,1,1,1,1
itl,1 nhotl1,1
Reduce 1 Reduce 2
is6;it 2 not 2; that 5

Collect \ /

is 6;it 2; not 2; that 5
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MapReduce Word Count Example

User-written Map function reads the document data and

parses out the words. For each word, it writes the (key, value)
pair of (word, 1). That is, the word is treated as the intermediate
key and the associated value of 1 means that we saw the word

once.

Map phase: (doc name, doc contents) =2 list(word, count)
// “I do I learn” - [(“I”,1),(“do”,1),(“I”,1),(“learn”,1)]
map (key, value):
for each word w in value:
emit(w, 1)
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MapReduce Word Count Example

The intermediate data is then sorted by MapReduce by keys and
the user’s Reduce function is called for each unique key. In this
case, Reduce is called with a list of a "1" for each occurrence of
the word that was parsed from the document. The function adds
them up to generate a total word count for that word.

Reduce phase: (word, list(counts)) =2 (word, count_sum)
// (“T”, [1,1]) = (“I”,2)
reduce(key, values):

result = ©

for each v in values:
result += v

emit(key, result)
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MapReduce Processing Example:
Count Word Occurrences

* Pseudo Code: for each word in input, generate <key=word, value=1>
* Reduce sums all counts emitted for a particular word across all mappers

map (String input key, String input value):
// input key: document name
// input value: document contents
for each word w 1n iInput value:
EmitIntermediate(w, "1"); // Produce count of words

reduce (String output key, Iterator intermediate values):
// output key: a word
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += Parselnt(v); // get integer from key-value
Emit (output key, result);
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MapReduce Implementation

split 0 output
split 1 file O
split 2

split 3

split 4 file 1
Input Map Intermediate files Reduce Output

files phasr {on local disks) phase files



MapReduce Execution

Lo 4 )
(1) Split inputs, User
Program
start up programs Diork ) fork
on a cluster of o ek )
machines o "
@, 2
as-slgn asslgn
reduce
— /,“—»
split0 |- /( output
Ll (4) local write file 0
split 2 () read @
split3 |
split4 || file 1
— G -
Input Map Intermediate files Reduce Output
files phasr {on local disks) phase files
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MapReduce Execution

. Ll
(2) Assign map & Program
reduce tasks to R

idle workers

split 0 output

split 1 file 0

split 2 |

split 3

split4 | file 1
Input Map Intermediate files Reduce Output
files phasr {on local disks) phase files
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MapReduce Execution

(3) Perform a map task,

User
generate intermediate | \IT¥T/
key/value pairs 0 ek
(4) Write to the buffers s
4 2) .~ ~, @)
assign assign -
/ i I'mﬂn \"Ed“‘-f "
5|]|i[ﬂ [ it l]llﬂ:llt
split 1 ____,,,/ . O} et 2 > e
P 3 d 4) local write
split 2 - .
split 3 — output
it4 | file 1
sp \ ,;'___d_d____ e
Input Map Intermediate files Reduce Output
files phasr {on local disks) phase files
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MapReduce Execution

(5) Read intermediate

User
Program .
Do /s KeY/value pairs,

Mok ™. sort them by its key.

split 0 output

split 1 file 0

split 2 |

split 3

split4 | file 1
Input Map Intermediate files Reduce Output
files phasr {on local disks) phase files
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MapReduce Execution

User (6) Perform a reduce task

e for each intermediate key,
(1) fork : '-,__{1J fork ]
© merk ™ write the result to the
o ~, output files
2) .~ ~, @) K
assign assign -
y .-Mmap reduce K 4 N
5|]|i[ﬂ u [ it l]llipllt
lit1 . Y )L }W"E’" file 0
Sp 3 d 4) local write
2 (s >
split 3 — utput
- S
split4 | file 1
.= \_ _/
Input Map Intermediate files Reduce Output
files phasr {on local disks) phase files
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Big Data Framework: Hadoop & Spark

* Apache Hadoop A
— Open-source MapReduce Framework DIDZIQ]
— Hadoop Distributed File System (HDFS)
— Hadoop YARN Resource Management

— MapReduce Java APIs
— more than half of the Fortune 50 used Hadoop (2013)&

* Apache Spark SpQrK

— Fast and general engine for large-scale
data processing.
— Running on HDFS

— Provides Java, Scala, Python APIs for
e Database
* Machine learning
* Graph algorithm "




Word Count in Spark’s Python API

// RDD: primary abstraction of a distributed
collection of items

file = sc.textFile(“hdfs://..”)

// Two kinds of operations:

// Actions: RDD -2 Value

// Transformations: RDD - RDD

// e.g. flatMap, Map, reduceByKey

file.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)
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And, in Conclusion ...

Warehouse-Scale Computers (WSCs)

— New class of computers

— Scalability, energy efficiency, high failure rate
Cloud Computing

— Benefits of WSC computing for third parties

— “Elastic” pay as you go resource allocation
Request-Level Parallelism

— High request volume, each largely independent of other

— Use replication for better request throughput, availability
MapReduce Data Parallelism

— Map: Divide large data set into pieces for independent parallel processing

— Reduce: Combine and process intermediate results to obtain final result
— Hadoop, Spark
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Quiz on WSC

Piazza: “Video Lecture 26 WSC”

 Among following sort algorithms, which one has the
closest idea to that of MapReduce?

— A. Bubble sort
— B. Merge sort
— C. Selection sort

— D. Insertion sort

50
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