CA Discussion 3

ZiviYu Bif1%

C Memory .~
Management

* Program’s address space
contains 4 regions:

— stack: local variables inside
functions, grows downward

— heap: space requested for
dynamic data viamalloc ();
resizes dynamically, grows
upward

— static data: variables declared
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified.

— code: loaded when program
starts, does not change

emory Address
assumed here)

~ FFFF FFFF,

stack

I

heap

static data

code

~ 0000 00005

|]

fdefine MAX_NAME_LEN 50
int num_people = 0;
void add_people (char =xlist) {
char nameZ[] = "Van";
list [num_people] = calloc (MAX_NAME_LEN,
strcpy(list [num_people], name2);
num_people += 1;
}
int main{() {
const int list_size = 100;
char *+*name_list = malloc(sizeof (char «)
char =namel = "Billy";
add_pecople (name_list);
add_people (name_list);
return 0;

sizeof (char));

* list_size);

E (a) Fill in <, >, = or can’t decide for these four questions based on what the given C
expressions evaluate to. You cannot assume malloc return heap address sequentially in

C standard.
name_list &list_size
&name_list &num_people
name_list [1] name_list
&namel &list
Solution: 1. <
2.0
3. can’t decide
4. >
(b) Fill in static, stack, heap or code for these three questions according to their

address type in memory.

namel

*name._list

& (name2[1])

Solution: |. static
2. heap
3. stack

Observations

* Code, Static storage are easy: they never grow or
shrink

 Stack space is relatively easy: stack frames are
created and destroyed in last-in, first-out (LIFO)
order

* Managing the heap is tricky: memory can be
allocated / deallocated at any time

sizeof() v.s. strlen()

#include <stdio.h>
#include <string.h>

int main(){
char*®
char

char

printf("%d\n
printf("%d\n",s

printf("%d\n"
printf ("%d\n
printf ("%d\n

printf("%d\n"
printf("%d\n

printf("%d\n
moy

printf ("%d\n

return @;

<libc.h>

int make_ca(char x str, size_t length){

char awesome[] = "CA is so awesome!";

(length < strlen(awesome)){
str = malloc((char) x strlen(awesome));
}

strcpy(str, awesome);

main(int argc, char *xargv[]){
char cal] = "CA is OK.";

char x CA = malloc(6);
memcpy(CA, ca, strlen(ca));

make_ca(ca, strlen(ca));
make_ca(CA, strlen(CA));

printf(" %s %s

Line 9: comparison with strlen instead of sizeof
(for O-terminator)

Line 10: strlen instead of sizeof (or +1) for malloc
=>
* Line 13: write past end of array (if malloc was used)

Line 4: Ownership of pointer str not clear =>
* Line 10: Potential memory leak

Line 4: New pointer is not returned/ no pointer to
pointer is used

Line 20: memcpy over length of CA
Line 20: O-terminator is not copied!
Line 22 &23: better: call with array size
Line 14 & 27: return missing!

Agenda

* CBugs

Common Memory Problems

e Using uninitialized values

e Using memory that you don’t own
* Deallocated stack or heap variable
e Out-of-bounds reference to stack or heap array
* Using NULL or garbage data as a pointer

* Improper use of free/realloc by messing with the
pointer handle returned by malloc/calloc

* Memory leaks (you allocated something you forgot
to later free)

Using Memory You Don’t Own

* What is wrong with this code?

* Using pointers beyond the range that had been malloc’d

—May look obvious, but what if mem refs had been result of pointer arithmetic that
erroneously took them out of the allocated range?

int *ipr, *ipw;

void ReadMem () {
int 1, 37
ipr = (*int) malloc (4 * sizeof (int));

i = *(ipr - 1000); j = *(ipr + 1000);

free (ipr);
}
void WriteMem () {
ipw = (*int) malloc (5 * sizeof (int));
*(ipw - 1000) = 0; *(ipw + 1000) = O;

free (ipw) ;

Faulty Heap Management

* What is wrong with this code?

int *pi;
void foo () {
pi = malloc(8*sizeof (int));

free(pi);

}

void main () {
pli = malloc(4*sizeof (int))

foo();

Faulty Heap Management

 Memory leak: more mallocs than frees

int *pi;
void foo () {
pi = malloc(8*sizeof (int));

/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */

free(pi); /* foo() is done with pi, so free it */
}
void main () {

pi = malloc(4*sizeof (int))
foo(); /* Memory leak: foo leaks it */

Faulty Heap Management

* What is wrong with this code?

int *plk = NULL;
void genPLK () {
plk = malloc (2 * sizeof(int));

plk++;

Faulty Heap Management

* Potential memory leak — handle has been changed,
do you still have copy of it that can correctly be
used in a later free?

int *plk = NULL;
void genPLK () {
plk = malloc (2 * sizeof(int));

plk++;

Faulty Heap Management

* What is wrong with this code?

voild FreeMemX () {
int fnh = 0;
free (&fnh) ;
}

void FreeMemY () {
int *fum = malloc (4 * sizeof (int));
free (fum+1) ;
free (fum);
free (fum) ;

Faulty Heap Management

e Can’t free non-heap memory; Can’t free memory
that hasn’t been allocated

voild FreeMemX () {
int fnh = 0;
free (&fnh) ;
}

void FreeMemY () {
int *fum = malloc (4 * sizeof (int));
free (fum+1) ;
free (fum);
free (fum) ;

Using Memory You Haven't
AIIocated

* What is wrong with this code?

void StringManipulate () {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = "\O0';
printf("os\n", str) ;

Using Memory You Haven't
Allocated

* Reference beyond array bounds

void StringManipulate () {
const char *name = “Safety Critical";
char *str = malloc (10);
strncpy(str, name, 10);
str[10] = "\0';
/* Write Beyond Array Bounds */
printf ("%$s\n", str);
/* Read Beyond Array Bounds */
}

Using Memory You Don’t Own

* What’s wrong with this code?

char *append(const char* sl, const char *s2) {

const int MAXSIZE = 128;

char result[128];

int 1=0, 3j=0;

for (3J=0; 1<MAXSIZE-1 && Jj<strlen(sl); i++,J++) {
result[i] = s1[]];

}

for (3J=0; 1i<MAXSIZE-1 && Jj<strlen(s2),; i++,]j++) {
result[i] = s2[]j];

}

result[++i] = '"\0';

return result;

Using Memory You Don’t Own

* Beyond stack read/write

char *append(const char* sl, const char *s2) {

const int MAXSIZE = 128;

char result[1l28]; _

int i=0, j=0;

resultisalocal array name —
stack memory allocated

for (J=0; 1<MAXSIZE-1 && Jj<strlen(sl); i++,J++) {

result[i] = s1[]];
}

for (3J=0; 1i<MAXSIZE-1 && Jj<strlen(s2),; i++,Jj++) {

result[i] = s2[7];

}
result[++1] = "\0"';

return result; \\\\\\\\\

Function returns pointer to stack
memory —won’t be valid after
function returns

21

Using Memory You Don’t Own

* What is wrong with this code?

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue (Node* head) {
while (head->next != NULL) {
head = head->next;
}

return head->val;

Using Memory You Don’t Own

* Following a NULL pointer to mem addr 0!

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue (Node* head) {
while (head->next != NULL) {
head = head->next;
}

return head->val;

Managing the Heap

realloc (p,size) :

Resize a previously allocated block at p to anew size
If pis NULL, then realloc behaves like malloc

If sizeis 0, then realloc behaves like free, deallocating the block from
the heap

Returns new address of the memory block; NOTE: it is likely to have moved!

E.g.: allocate an array of 10 elements, expand to 20 elements later

int *ip;

ip = (int *) malloc(10*sizeof (int))

/* always check for ip == NULL */

ip = (int *) realloc(ip,20*sizeof (int));

/* always check for ip == NULL */

/* contents of first 10 elements retained
*/

realloc (ip,0); /* identical to free(ip) */

Using Memory You Don’t Own

* What is wrong with this code?

int* init array(int *ptr, int new size) {
ptr = realloc(ptr, new size*sizeof (int));
memset (ptr, 0, new size*sizeof (int));

return ptr;

int* fill fibonacci(int *fib, int size) {
int 1i;
init array(fib, size);
/* fib[0] = 0; */ fib[1l] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];

return fib;

Using Memory You Don’t Own

* Improper matched usage of mem handles

int* init array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof (int));
memset (ptr, 0, new size&{sizeof (int));

return ptr;

Remember: realloc may move entire block

int* £ill fibonacci (int *fib, int size) {
int 1i;
/* oops, forgot: fib = */ init array(fib, size);

/* £ib[0] = 0; */ fib[1l] = 1;

for (i=2; i<size; i++) What if array is moved to
f£ib[i] = fib[i-1] + fib[i-2]; new location?

return fib;

And In Conclusion, ...

e All data is in memory

* Each memory location has an address to use to refer to it and
a value stored in it

* Pointer is a C version (abstraction) of a data address
 * “follows” a pointer to its value
e & gets the address of a value
* Arrays and strings are implemented as variations on pointers

* Cis an efficient language, but leaves safety to the
programmer
* Variables not automatically initialized

* Use pointers with care: they are a common source of bugs in
programs

And In Conclusion, ...

* C has three main memory segments in which to
allocate data:

e Static Data: Variables outside functions
e Stack: Variables local to function
* Heap: Objects explicitly malloc-ed/free-d.

* Heap data is biggest source of bugs in C code

