
Chenyu Wang
wangchy4@shanghaitech.edu.cn

Discussion 9
Pipeling & Superscalar

mailto:wangchy4@shanghaitech.edu.cn

Outline
• Midterm I number representation

• Pipeling

• Superscalar

• Q & A

Number representation

1) Largest number smaller than infinity...
In quarter (floating point), infinity's representation is 0b01110000, where the

exponent field is maxed out and the fraction is 0.
The largest number smaller than infinity? Subtract 1! The result: 0b01101111. Now

translate to decimal for the second column.
1.1111 * 2 ^ 3 = 1111.1 = 15.5

2) Negative denorm closest to 0 (but not -0)...
In a quarter, -0's representation is 0b10000000.
The smallest number of higher magnitude than -0? Add 1!
The result: 0b10000001.

-4.0's representation is 0b11010000. Its least significant bit's value:
2^2 * 2^-4 = 2^-2 = 0.25.
The problem in the LSB of the quarter occurs when we try to add -0.125 that we have to deal with

rounding.
Adding -0.125 will put you exactly half-way between two numbers with exponent 2.

c) q2 + q3 happens first. -3.875
-3.875 -0.25 = -4.125puts me exactly half-way between -4.0 and -4.25.
-4.0 = 0b11010000
-4.125 falls right in between
-4.25 = 0b11010001
Round toward even tells us that we should round toward the quarter with a 0 in the LSB, so we round

to -4.0.
Answer: -4.0

d) q1 + q2 = -4.25. No problems there
add on q3 (0.125) puts us exactly half-way between -4.0 and -4.25.

Answer: -4.0

Pipeling

The issue with the above code is the use of a register (aka we get the value during the
decode phase) before we have written back the value of the previous instruction.

This is a data hazard as the data which we want is not restored to the regfile. This
means that we would have the current instruction in the execute phase while we
have the previous in decode.

This means that the next cycle, we would have to forward the execute output to the
execute input to make sure the value is the correct, updated one. Inserting a nop
when you realize this error happens will allow the system to do the write back. The
other forwards in this problem are necessary for the given code above. Flushing the
pipeline does not work as it means that we will no longer execute the instructions
which were flushed. This means we would just drop instructions which would not get
the correct value instead of just waiting till they can get the correct value.

The issue with the code above is we do not clear/flush the instructions if the branch
determines it is taken. Remember that we are running on a five stage pipeline CPU
which just assumes PC + 4 unless an instruction says otherwise.

This means that we will not determine if the branch is taken until the branch is in the
execute phase. This means that we will have the next two instructions already in the
pipeline (one in instruction fetch, the other in instruction decode). So we have a Control
Hazard as we are not executing the correct instructions.

Some ways how to fix it: insert nops if you detect a branch instruction in the instruction
fetch stage OR flush the pipeline if the branch is in the opposite direction of what was
predicted. Forwarding data in this case will not help at all.

There are four hazards: between instructions 1 and 2 (data hazard from t1),
instruction 2 and 3 (data hazard from s0), instructions 2 and 4 (from s0),
and instructions 4 and 5 (a control hazard).

Assuming that we can read and write to the RegFile on the same cycle, two
stalls are needed between instructions 1 and 2, and two stalls are needed
between instructions 2 and 3. No stalls are needed for the control hazard,
because it can be handled with branch prediction/flushing the pipeline.

Superscalar

