Discussion 9

Pipeling & Superscalar

Chenyu Wang
wangchy4@shanghaitech.edu.cn

mailto:wangchy4@shanghaitech.edu.cn

Outline

Midterm | number representation

Pipeling

Superscalar

Q&A

Number representation

(b) A quarter is a single byte split into the following fields (1 sign, 3 exponent, 4
mantissa): SEEEMMMM. It has all the properties of IEEE 754 (including denormal
numbers, NaNs and +o00) just with different ranges, precision and representations.

For a quarter, the bias of the exponent is 3, and the implicit exponent for denormal
numbers are —2.

What is the largest number smaller than oco?

In binary

In decimal

Which negative denormal number is closest to 07

In binary

In decimal

Solution: 01101111; 15.5; 10000001; — ;.

1) Largest number smaller than infinity...

In quarter (floating point), infinity's representation is 0b01110000, where the
exponent field is maxed out and the fraction is 0.

The largest number smaller than infinity? Subtract 1! The result: 0b01101111. Now
translate to decimal for the second column.

11111 *223=1111.1=15.5

2) Negative denorm closest to 0 (but not -0)...

In a quarter, -0's representation is 0b10000000.

The smallest number of higher magnitude than -0? Add 1!
The result: 0b10000001.

(c) What is the value of q1, g2, c, d?

Hint Rounding mode: round toward even/0.

1 quarter ql, 92, q3, c, d;

2 ql = -0.25;

392 = -4.0;

4 q3 = 0.125;
5¢c=0ql + (g2 + q3);
6d= (gl + gq2) + qg3;

gl in binary

g2 in binary

c in decimal

d in decimal

Solution: 10010000; 11010000; =—cietm—g——g,

-4.0

-4.0

-4.0's representation is 0b11010000. Its least significant bit's value:

2/2 * 274 = 27-2 = 0.25.

The problem in the LSB of the quarter occurs when we try to add -0.125 that we have to deal with
rounding.

Adding -0.125 will put you exactly half-way between two numbers with exponent 2.

c) 92 + q3 happens first. -3.875

-3.875 -0.25 = -4.125puts me exactly half-way between -4.0 and -4.25.

-4.0 = 0b11010000

-4.125 falls right in between

-4.25 = 0b11010001

Round toward even tells us that we should round toward the quarter with a 0 in the LSB, so we round
to -4.0.

Answer: -4.0

d) q1 + g2 = -4.25. No problems there
add on g3 (0.125) puts us exactly half-way between -4.0 and -4.25.

Answer: -4.0

Pipeling

Single Cycle Datapath

-
<«

d s
(- r () >
| & |3 g rs1. 1z -
S € | & > ALU ['lS
s 0 rs2, ‘ cDU <IEJ
cE £
_|+4 imm]
\ }‘ > = —> ¢ > < — * >
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Write
Fetch Back

Register Read

souanbas uononJsul

add t0, t1, t2
or t3, t4, t5
sll t6, t0, t3
sw t0, 4(t3)
lw t0, 8(t3)

addi t2, t2, 1

RISC-V Pipeline

Resource use of
instruction over

tcyc/e
= 200 ps

w t0, 8(t3) | sw t0, 4(t3) : sli16,10,t3 | ort3, t4,15 I?oddt
] I | W,

Reg(]
ataD

ddrD

ddrA Dataj
Datah

I —)tddrB :
ir'StD

Pipeline registers separate stages, hold data for each instruction in flight

Pipelining Hazards

A hazard is a situation that prevents starting the
next instruction in the next clock cycle

1) Structural hazard

— A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard

— Data dependency between instructions

— Need to wait for previous instruction to complete its
data read/write

3) Control hazard
— Flow of execution depends on previous instruction

Structural Hazard

Problem: Two or more instructions in the
pipeline compete for access to a single
physical resource

Solution 1: Instructions take it in turns to use
resource, some instructions have to stall

Solution 2: Add more hardware to machine

Can always solve a structural hazard by adding
more hardware

@ouanbas uononJsul

<

Data Hazard: ALU Result

Value of sO

add s0, t0, t1

sub t2, s0, t0

or t6, s0, t3

xor t5, t1, sO

sw s0, 8(t3)

Without some fix, sub and or will calculate wrong result!

Time (in clock cycles)

Program
execution
order

(in instructions)

Iw $2, 20($1)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

} sits1,s6, 87

Load Data Hazard

CcC1 cc2

CCs CcCe6

cCc7

ccs cCco9o

1 cycle stall
unavoidable

forward

"l unaffected |

Control Hazards

beq 10, t1, label E'I-Ii‘l‘l',lil-l
sub t2, s0, t5 E'I—I-‘*

executed regardless of
branch outcome!

.—I—’.I.-I_Q;,; executed regardless of

or t6, s0, 13 ~ branch outcome!!!
|j]—|-i«|—|-’-|-.|-| PC updated

xor t5, t1, s0 reflecting branch

sw s0, 8(t3) Erl—l—wl‘l"—l—..l—l outcome

Case 1: Assume the address of an array with all different values is stored in s@.

addi to x0 1
slli t1 te 2
add t1 so t1
1w t2 o(t1)

Each time you run this test, there is the same incorrect output for t2. All the commands work individually on
the single-stage pipeline.
Pro tip: you shouldn’t even need to understand what the code does to answer this.

a) What caused the failure? |b) How could you fix it? (select all that apply)

(select ONE) B Insert a nop 3 times if you detect this specific error condition

O Control Hazard [] Forward execute to write back if you detect this specific error condition
O Structural Hazard [] Forward execute to memory if you detect this specific error condition
@ Data Hazard B Forward execute to execute if you detect this specific error condition

(O None of the above [_] Flush the pipeline if you detect this specific error condition

The issue with the above code is the use of a register (aka we get the value during the
decode phase) before we have written back the value of the previous instruction.

This is a data hazard as the data which we want is not restored to the redfile. This
means that we would have the current instruction in the execute phase while we
have the previous in decode.

This means that the next cycle, we would have to forward the execute output to the
execute input to make sure the value is the correct, updated one. Inserting a nop
when you realize this error happens will allow the system to do the write back. The
other forwards in this problem are necessary for the given code above. Flushing the
pipeline does not work as it means that we will no longer execute the instructions
which were flushed. This means we would just drop instructions which would not get
the correct value instead of just waiting till they can get the correct value.

Case 2: After fixing that hazard, the following case fails:

addi so x0 4

slli t1 so 2

bge s0 x0 greater

xori t1 t1 -1

addi t1 t1 1
greater:

mul to tl1 so

When this test case is run, t0 contains @xFFFFFFC®O, which is not what it should have been.
Pro tip: you shouldn’t even need to understand what the code does to answer this.

¢) What caused the failure? |d) How could you fix it? (select all that apply)

(select ONE) B Insert a nop 3 times if you detect this specific error condition

@ Control Hazard [] Forward execute to write back if you detect this specific error condition
O Structural Hazard [] Forward execute to memory if you detect this specific error condition
(O Data Hazard [] Forward execute to execute if you detect this specific error condition

O None of the above M Flush the pipeline if you detect this specific error condition

The issue with the code above is we do not clear/flush the instructions if the branch
determines it is taken. Remember that we are running on a five stage pipeline CPU
which just assumes PC + 4 unless an instruction says otherwise.

This means that we will not determine if the branch is taken until the branch is in the
execute phase. This means that we will have the next two instructions already in the
pipeline (one in instruction fetch, the other in instruction decode). So we have a Control
Hazard as we are not executing the correct instructions.

Some ways how to fix it: insert nops if you detect a branch instruction in the instruction
fetch stage OR flush the pipeline if the branch is in the opposite direction of what was
predicted. Forwarding data in this case will not help at all.

Extra for Experience
Given the RISC-V code above and a pipelined CPU with no forwarding, how many
hazards would there be? What types are each hazard? Consider all possible hazards

from all pairs of instructions.

How many stalls would there need to be in order to fix the data hazard(s)? What

about the control hazard(s)?

Instruction C1 C2 C3 C4 ChH C6 C7 C8 C9
1. sub t1, s@, s1 || IF ID EX MEM | WB

2. or s@, to, ti IF ID EX MEM | WB

3. sw s1, 100(s0Q) IF ID EX MEM | WB

4. bgeu s0, s2, 1 IF ID EX MEM | WB

5. add t2, x0, x0 IF ID EX MEM | WB

There are four hazards: between instructions 1 and 2 (data hazard from t1),
instruction 2 and 3 (data hazard from s0), instructions 2 and 4 (from s0),
and instructions 4 and 5 (a control hazard).

Assuming that we can read and write to the RegFile on the same cycle, two
stalls are needed between instructions 1 and 2, and two stalls are needed
between instructions 2 and 3. No stalls are needed for the control hazard,
because it can be handled with branch prediction/flushing the pipeline.

Superscalar

Superscalar Processor

Instruction fetch
and decode unit

\ 4

Y

Reservation
station

Reservation
station

Functional

units Integer

Integer

Y

l

In-order issue

Reservation

Reservation

station station
Floating Load-
point store

Y

Commit
unit

Out-of-order execute

In-order commit

Superscalar = Multicore?

https://en.wikipedia.org/wiki/Superscalar processor

* NO!
* Superscalar: More than one Instruction per clock cycle!
— Computing not a different thread!

— Computing instructions from the same program!
=> Higher throughput

* In Flynn's taxonomy (later in course):

— asingle-core superscalar processor is classified as an SISD processor
(Single Instruction stream, Single Data stream)

— But: most superscalar processors support short vector operations =>
those are then SIMD (Single Instruction stream, Multiple Data
streams).

— And: nowadays most superscalar processors are multicore, too.

“Iron Law” of Processor
Performance

CPI = Cycles Per Instruction

Cantime Can count ‘ Can look up
Time = Instructions Cycles Time
Program Program Instruction Cycle

S A

cpl= _Cycles = Time _(Instructions y¢ Time)
Instruction Program” Program Cycle

