
Computer Architecture I SOL 1

 Computer Architecture I SOL
 Homework 8 Virtual Memory
Name Pinyin):
Email Prefix):

Instructions:
Homework 8 covers the content of virtual memory, please refer to the lecture slides.
You can print
it out, write on it and scan it into a pdf, or you can edit the PDF directly, just remember:
you must
create a PDF and upload it to the Gradescope.

Please assign the questions properly on Gradescope,otherwise you will lose 25% of
points.

Question Set 1. Short answer questions [10 points]
(a) What are 3 specific benefits of using virtual memory? 6 points]

 Adding disks to hierarchy.

 Simplifying memory for Apps.

 Protection between processes.

(b) True / False: 4 points]

 The virtual and physical page number must be the same size. ________

 The virtual and physical page must have the same page size. ________

 Page tables make it possible to store the pages of a program non-contiguously.

 Page tables should be kept in CPU registers. ________

F; T; T; F

Question Set 2. Calculation I [30 points]
Show progress, worth 50% pts)

The virtual memory system is single-processor, single-core computer with

 4 KiB pages

http://www.gradescope.com/

Computer Architecture I SOL 2

 2 MB virtual address space

 2 GB physical address space.

The computer has a single-level TLB that can store 4 entries.
You may assume that the TLB is fully-associative with LRU replacement policy.

(a) Given a virtual address, how many bits are the Virtual Page Number and Offset?
Hint: Think of virtual address space) 15 points]

VPN : 9, Offset: 12.
Virtual address is bits in total.
Each page is 4KB, the offset is bits

Therefore, the virtual page number is 9 bits.

(b) Given a physical address, how many bits are the Physical Page Number and
Offset?
Hint: Think of physical address space) 15 points]

PPN : 19, Offset: 12.
Physical address is bits in total.
Each page is 4KB, the offset is bits

Therefore, the physical page number is 19 bits.

Question Set 3. Calculation II [30 points]
Show progress, worth 50% pts)

The virtual memory system is single-processor, single-core computer with

 4 KiB pages

 28 bits virtual address

 16 MB physical memory

The computer has a single-level TLB that can store 16 entries.
You may assume that the TLB is fully-associative with LRU replacement policy.

log2(2MB) = 21
log2(4KB) = 12

log2(2GB) = 31
log2(4KB) = 12

Computer Architecture I SOL 3

(a) Given a virtual address, how many bits are the Virtual Page Number and Offset?
15 points]

VPN : 16 Offset: 12.
Each page is 4KB, the offset is bits

Therefore, the virtual page number is 16 bits.

(b) Given a physical address, how many bits are the Physical Page Number and
Offset?
15 points]

PPN : 12, Offset: 12.
Physical address is bits in total.
Each page is 4KB, the offset is bit

Therefore, the physical page number is 12 bits.

Question Set 4. TLB [30 points]
The virtual memory system is single-processor, single-core computer with

 256 byte pages

 16 bits addresses

 an 4-entry fully associative TLB with LRU replacement.

The LRU field is 3 bits and encodes the order in which pages were accessed, 0 being
the most recent, and 7 being the least recent. We use decimal to represent it.

At some time instant, the TLB for the current process is the initial state given in the
table below. Assume that all current page table entries are in the initial TLB and all
pages can be read from and written to.

(a) Fill in the final state of the TLB according to the access pattern below. 20 points]

Free Physical Page: 017, 019

Access:

 001f0 Read)

 01301 Write)

 021ae Write)

 020ff Read)

 020ff Write)

log2(4KB) = 12

log2(16MB) = 24
log2(4KB) = 12

Computer Architecture I SOL 4

Initial TLB

Final State of TLB

Answer
After 1, the TLB does not change.

TLB after 2

VPN PPN Valid Dirty LRU

001 011 1 0 1

013 017 or 019 1 1 0

010 013 1 1 2

020 012 1 0 3

TLB after 3

VPN PPN Valid Dirty LRU

001 011 1 0 2

013 017 or 019 1 1 1

010 013 1 1 3

https://www.notion.so/0x01-b6e1faa1ff384e9cac8dce8a6dea0b4d
https://www.notion.so/0x13-7a120d15dbe84add9a0dbb26dc178e6a
https://www.notion.so/0x10-c4d57a41e2d5418fb32d33c6b8d1a4b2
https://www.notion.so/0x20-9755a13885c5438bb54516ea4f396a74
https://www.notion.so/0x01-e24ba148e7764a3b9b1d407cccc8593c
https://www.notion.so/0x13-ea59a247102c4431b15c5ee2e8cb2c13
https://www.notion.so/0x10-86c65a8492b64c13981a664299d68497

Computer Architecture I SOL 5

VPN PPN Valid Dirty LRU

021 019 or 017 1 1 0

TLB after 4

VPN PPN Valid Dirty LRU

001 011 1 0 3

013 017 or 019 1 1 2

020 012 1 0 0

021 019 or 017 1 1 1

TLB after 5

VPN PPN Valid Dirty LRU

001 011 1 0 3

013 017 or 019 1 1 2

020 012 1 1 0

021 019 or 017 1 1 1

(b) Short answer questions 10 points]

//Let src, dst be char*
//10 < strlen(dst) <= strlen(src)
int random[10];
for(int i=0;i < 10; i++){
random[i] = rand();
}// rand is initialized with random unsigned ints.
for(int j = 0; j < 10; j++){
dst[rand[j]] = src[rand[j]];
}

Assuming all of code fits in 1 page, TLB currently has a pointer to the code, the strings
are page-aligned (starting on a page memory). You do not need an TLB entry for the
address translation of random.
How many page faults would occur?

 In the best case. ______

 In the worst case. ______

0, 20

https://www.notion.so/0x21-7388c74b7edb4e7ca4d8c994152f41ca
https://www.notion.so/0x01-581ca818488f480b86a3e7f599d28885
https://www.notion.so/0x13-abf20d3681ac4ef4b65ff9098075713f
https://www.notion.so/0x20-65ef0c6a7c654954906b2af241f0e8b8
https://www.notion.so/0x21-748d77ca85eb4360b44c64172e766b34
https://www.notion.so/0x01-8e0e97f40b984c07a222580283c26c52
https://www.notion.so/0x13-cf85c9c57eba4a478adc97618d8e4279
https://www.notion.so/0x20-b7e9160e2b444a96b5f544a57fd40551
https://www.notion.so/0x21-b490b2e267f14a30ad1733de6463f654

