
CS 110
Computer Architecture

Lecture 2: Introduction to C I

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• Pointers & Arrays

2

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• Pointers & Arrays

3

BIG IDEA: Bits can represent anything!!
• Characters?

– 26 letters Þ 5 bits (25 = 32)

– upper/lower case + punctuation
Þ 7 bits (in 8) (“ASCII”)

– standard code to cover all the world’s languages Þ 8,16, 32 bits
(“Unicode”)
www.unicode.com

• Logical values?
– 0 ® False, 1 ® True

• colors ? Ex:

• locations / addresses? commands?

• MEMORIZE: N bits Û at most 2N things

Red (00) Green (01) Blue (11)

Key Concepts
• Inside computers, everything is a number
• But numbers usually stored with a fixed size
– 8-bit bytes, 16-bit half words, 32-bit words, 64-bit

double words, …

• Integer and floating-point operations can lead
to results too big/small to store within their
representations: overflow/underflow

5

Number Representation

• Value of i-th digit is d × Basei where i starts at 0
and increases from right to left:

• 12310 = 110 x 1010
2 + 210 x 1010

1 + 310 x 1010
0

= 1x10010 + 2x1010 + 3x110
= 10010 + 2010 + 310

= 12310

• Binary (Base 2), Hexadecimal (Base 16), Decimal
(Base 10) different ways to represent an integer
– We use 1two, 5ten, 10hex to be clearer

(vs. 12, 48, 510, 1016)

6

Number Representation

• Hexadecimal digits:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• FFFhex = 15tenx 16ten
2 + 15tenx 16ten

1 + 15tenx 16ten
0

= 3840ten + 240ten + 15ten
= 4095ten

• 1111 1111 1111two = FFFhex = 4095ten

• May put blanks every group of binary, octal, or
hexadecimal digits to make it easier to parse, like
commas in decimal

7

Signed and Unsigned Integers

• C, C++, and Java have signed integers, e.g., 7, -255:
int x, y, z;

• C, C++ also have unsigned integers, e.g. for
addresses

• 32-bit word can represent 232 binary numbers
• Unsigned integers in 32 bit word represent

0 to 232-1 (4,294,967,295) (4 Gig)

8

Unsigned Integers
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten

... ...
0111 1111 1111 1111 1111 1111 1111 1101two = 2,147,483,645ten
0111 1111 1111 1111 1111 1111 1111 1110two = 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = 2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = 2,147,483,649ten
1000 0000 0000 0000 0000 0000 0000 0010two = 2,147,483,650ten

... ...
1111 1111 1111 1111 1111 1111 1111 1101two = 4,294,967,293ten
1111 1111 1111 1111 1111 1111 1111 1110two = 4,294,967,294ten
1111 1111 1111 1111 1111 1111 1111 1111two = 4,294,967,295ten

9

Signed Integers and
Two’s-Complement Representation

• Signed integers in C; want ½ numbers <0, want ½
numbers >0, and want one 0

• Two’s complement treats 0 as positive, so 32-bit
word represents 232 integers from
-231 (–2,147,483,648) to 231-1 (2,147,483,647)
– Note: one negative number with no positive version
– Book lists some other options, all of which are worse
– Every computer uses two’s complement today

• Most-significant bit (leftmost) is the sign bit,
since 0 means positive (including 0), 1 means
negative
– Bit 31 is most significant, bit 0 is least significant

10

Two’s-Complement Integers
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten

... ...
0111 1111 1111 1111 1111 1111 1111 1101two = 2,147,483,645ten
0111 1111 1111 1111 1111 1111 1111 1110two = 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000two = –2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = –2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = –2,147,483,646ten

... ...
1111 1111 1111 1111 1111 1111 1111 1101two = –3ten
1111 1111 1111 1111 1111 1111 1111 1110two = –2ten
1111 1111 1111 1111 1111 1111 1111 1111two = –1ten

11

Sign Bit

Ways to Make Two’s Complement
• For N-bit word, complement to 2ten

N

– For 4 bit number 3ten=0011two, two’s complement

(i.e. -3ten) would be

16ten-3ten=13ten or 10000two – 0011two = 1101two

12

• Here is an easier way:
– Invert all bits and add 1

– Computers actually do it like this, too

0011two

1100two
+ 1two

3ten

1101two

Bitwise complement

-3ten

Two’s-Complement Examples

• Assume for simplicity 4 bit width, -8 to +7
represented

13

0011
0010

3
+2
5 0101

0011
1110

3
+ (-2)

1 1 0001

0111
0001

7
+1
-8 1000
Overflow!

1101
1110

-3
+ (-2)

-5 1 1011

1000
1111

-8
+ (-1)

+7 1 0111
Carry into MSB =
Carry Out MSB

Carry into MSB =
Carry Out MSB

Overflow!

Overflow when
magnitude of result
too big to fit into
result representation

Carry in = carry from less significant bits
Carry out = carry to more significant bits

0 to +31

-16 to +15

-32 to +31

B

C

D

14

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

A

0 to +31

-16 to +15

15

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

B

C

D

A -32 to +31

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• And in Conclusion, …

16

Processor

Control

Datapath

Components of a Computer

17

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Great Idea: Levels of
Representation/Interpretation

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

18

We are here!

Introduction to C
“The Universal Assembly Language”

19

Intro to C
• C is not a “very high-level” language, nor a

“big” one, and is not specialized to any
particular area of application. But its absence
of restrictions and its generality make it more
convenient and effective for many tasks than
supposedly more powerful languages.

– Kernighan and Ritchie

• Enabled first operating system not written in
assembly language: UNIX - A portable OS!

20

Intro to C

• Why C?: we can write programs that allow us
to exploit underlying features of the
architecture – memory management, special
instructions, parallelism

• C and derivatives (C++/Obj-C/C#) still one of
the most popular application programming
languages after >40 years!

21

Disclaimer

• You will not learn how to fully code in C in
these lectures! You’ll still need your C
reference for this course
– K&R is a must-have
• Check online for more sources

• Key C concepts: Pointers, Arrays, Implications
for Memory management

• We will use ANSI C89 – original ”old school” C
– Because it is closest to Assembly

22

Compilation: Overview

• C compilers map C programs into architecture-
specific machine code (string of 1s and 0s)
– Unlike Java, which converts to architecture-

independent bytecode
– Unlike Python environments, which interpret the code
– These differ mainly in exactly when your program is

converted to low-level machine instructions (“levels of
interpretation”)

– For C, generally a two part process of compiling .c files
to .o files, then linking the .o files into executables;

– Assembling is also done (but is hidden, i.e., done
automatically, by default); we’ll talk about that later

23

C Compilation Simplified Overview
(more later in course)

24

foo.c bar.c

Compiler Compiler

foo.o bar.o

Linker lib.o

a.out

C source files (text)

Machine code object files

Pre-built object
file libraries

Machine code executable file

Compiler/assembler
combined here

Compilation: Advantages

• Excellent run-time performance: generally
much faster than Scheme or Java for
comparable code (because it optimizes for a
given architecture)

• Reasonable compilation time: enhancements
in compilation procedure (Makefiles) allow
only modified files to be recompiled

25

Compilation: Disadvantages

• Compiled files, including the executable, are
architecture-specific, depending on processor
type (e.g., ARM vs. RISC-V) and the operating
system (e.g., Windows vs. Linux)

• Executable must be rebuilt on each new system
– I.e., “porting your code” to a new architecture

• “Change ® Compile ® Run [repeat]” iteration
cycle can be slow during development
– but Make tool only rebuilds changed pieces, and can

do compiles in parallel (linker is sequential though ->
Amdahl’s Law)

26

C Pre-Processor (CPP)

• C source files first pass through macro processor, CPP, before
compiler sees code

• CPP replaces comments with a single space
• CPP commands begin with “#”
• #include “file.h” /* Inserts file.h into output */
• #include <stdio.h> /* Looks for file in standard location */
• #define M_PI (3.14159) /* Define constant */
• #if/#endif /* Conditional inclusion of text */
• Use -save-temps option to gcc to see result of preprocessing
• Full documentation at: http://gcc.gnu.org/onlinedocs/cpp/

27

foo.c CPP foo.i Compiler

http://gcc.gnu.org/onlinedocs/cpp/

CPP Macro
Which one is the correct way?

// Magnitude (Length) of Vector (x, y)
1) #define mag(x, y) = sqrt(x*x + y*y);
2) #define mag(x, y) = sqrt(x*x + y*y)
3) #define mag(x, y) = (sqrt(x*x + y*y))
4) #define mag(x, y) sqrt(x*x + y*y);
5) #define mag(x, y) sqrt(x*x + y*y)
6) #define mag(x, y) (sqrt(x*x + y*y))
7) #define mag(x, y) = sqrt((x)*(x) + (y)*(y))
8) #define mag(x, y) = sqrt((x*x) + (y*y));
9) #define mag(x, y) sqrt((x*x) + (y*y))
10)#define mag(x, y) (sqrt((x*x) + (y*y));)
11)#define mag((x), (y)) (sqrt((x*x) + (y*y)))

28

• Correct answer:
• Most correct solution:
#define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))

• Rules:
– Convention: macros are CAPITALIZED
– Put parenthesis around arguments – if missing:
– #define MAG(x, y) (sqrt((x*x) + (y*y)))
– MAG(a+2, 1-b) =>
sqrt((a+2*a+2) + (1-b*1-b) =>
sqrt((3*a+2) + (1-2*b))

29

CPP Macro

NONE

• More Pitfalls:
– Put the whole macro body in parentheses:

• #define ADD(a, b) (a) + (b)
• int result = 3 * ADD(2, 3); // is 15!? =>
• int result = 3 * 2 + 3; // is 9

– => Convention: put parenthesis EVERYWHERE!
– Never put a semicolon after the macro:

• #define MAG(x, y) (sqrt((x)*(x) + (y)*(y)));
• May work for:
• double len = MAG(a+2, 1-b);

• But not, for example, here:
• printf(“Magnitude: %f “, MAG(a, b));

30

CPP Macro

– Most Correct version:
– #define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))
– int val = 3;
– double len = MAG(++val, 4);
– Printf(“ val: %d len^2: %f \n”, val, len*len);

A: val: 3 len^2: 25 B: val: 4 len^2: 25 C: val: 5 len^2: 25
D: val: 3 len^2: 32 E: val: 4 len^2: 32 F: val: 5 len^2: 32
G: val: 3 len^2: 36 H: val: 4 len^2: 36 I: val: 5 len^2: 36
J: val: 3 len^2: 41 K: val: 4 len^2: 41 L: val: 5 len^2: 41

M: val: 6 len^2: 25 N: val: 6 len^2: 32 O: val: 6 len^2: 36
P: val: 6 len^2: 41

31

CPP Macro II

– Most Correct version:
– #define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))
– int val = 3;
– double len = MAG(++val, 4);
– Printf(“ val: %d len^2: %f \n”, val, len*len);

– Answer: I: val: 5 len^2: 36:
double len = (sqrt((++val)*(++val) + (4)*(4)));
double len = (sqrt((4)*(5) + (4)*(4)));

32

CPP Macro II

• Avoid using macros whenever possible
• NO or very tiny speedup.
• Instead use C functions – e.g. inline function:

double mag(double x, double y);
double inline mag(double x, double y)
{ return sqrt(x*x + y*y); }

• Read more…
• https://chunminchang.gitbooks.io/cplusplus-learning-

note/content/Appendix/preprocessor_macros_vs_inline_functions.html 33

CPP Macro II

https://chunminchang.gitbooks.io/cplusplus-learning-note/content/Appendix/preprocessor_macros_vs_inline_functions.html

Typed Variables in C
int variable1 = 2;

float variable2 = 1.618;

char variable3 = 'A';

• Must declare the type of
data a variable will hold
– Types can't change

34

Type Description Examples
int integer numbers, including negatives 0, 78, -1400
unsigned int integer numbers (no negatives) 0, 46, 900
long larger signed integer -6,000,000,000
char single text character or symbol 'a', 'D', '?’
float floating point decimal numbers 0.0, 1.618, -1.4
double greater precision/big FP number 10E100

Integers: Python vs. Java vs. C

• C: int should be integer type that target
processor works with most efficiently

• Only guarantee: sizeof(long long)
≥ sizeof(long) ≥ sizeof(int) ≥ sizeof(short)
– Also, short >= 16 bits, long >= 32 bits
– All could be 64 bits 35

Language sizeof(int)
Python >=32 bits (plain ints), infinite (long ints)
Java 32 bits
C Depends on computer; 16 or 32 or 64

Consts and Enums in C

• Constant is assigned a typed value once in the declaration;
value can't change during entire execution of program
const float golden_ratio = 1.618;
const int days_in_week = 7;

• You can have a constant version of any of the standard C
variable types

• Enums: a group of related integer constants. Ex:
enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};
enum color {RED, GREEN, BLUE};

36

B: Can assign to “PI” but not “pi”

C: Code runs at same speed using “PI” or “pi”

A: Constants “PI” and “pi” have same type

37

Compare “#define PI 3.14” and
“const float pi=3.14” – which is true?

C Syntax: Variable Declarations

• All variable declarations must appear before they
are used (e.g., at the beginning of the block)

• A variable may be initialized in its declaration;
if not, it holds garbage!

• Examples of declarations:
– Correct: {

int a = 0, b = 10;
...

−Incorrect: for (int i = 0; i < 10; i++)
}

38
Newer C standards are more flexible about this…

C Syntax: True or False

• What evaluates to FALSE in C?
– 0 (integer)
– NULL (a special kind of pointer: more on this later)
– No explicit Boolean type

• What evaluates to TRUE in C?
– Anything that isn’t false is true
– Same idea as in Python: only 0s or empty

sequences are false, anything else is true!

39

C operators

• arithmetic: +, -, *, /, %
• assignment: =
• augmented assignment:

+=, -=, *=, /=, %=, &=,
|=, ^=, <<=, >>=

• bitwise logic: ~, &, |, ^
• bitwise shifts: <<, >>
• boolean logic: !, &&, ||
• equality testing: ==, !=

• subexpression
grouping: ()

• order relations: <, <=, >,
>=

• increment and
decrement: ++ and --

• member selection: ., ->
• conditional evaluation:

? :

40

ADMIN

41

HW 1

• HW 1 is due March 02 (23:59)
– The Homepage will always have the latest due

date:
– https://robotics.shanghaitech.edu.cn/courses/ca/21s/

– Autolab accounts are created – it should work
now!

– https://autolab.sist.shanghaitech.edu.cn/courses/CS110-21s

• We will find a solution regarding the discussion
session…

42

https://robotics.shanghaitech.edu.cn/courses/ca/21s/
https://autolab.sist.shanghaitech.edu.cn/courses/CS110-21s

iPhone 11 Pro Max Teardown
ifixit.com

43

Get logic board out
dual layer design

44

• Apple 64bit System on a chip (SoC); A13:
– Hexa core (2 high performance (up to 2.66 GHz), 4 low power)
– Apple designed GPU
– Motion Processor; Image Processor; Neural Engine
– 4 GB LPDDR4X (memory)
– L1 cache: 128 KB instruction, 128 KB data (fast cores)
– L2 cache: 8 MB; (fast cores; 4MB slow cores)
– L3 cache : yes, 16MB, shared with other cores (e.g. GPU)

45

46

47

48

RF board

49

