
CS 110
Computer Architecture

Lecture 3: Introduction to C II

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

2

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

3

Address vs. Value
• Consider memory to be a single huge array
– Each cell of the array has an address associated

with it
– Each cell also stores some value
– For addresses do we use signed or unsigned

numbers? Negative address?!

• Don’t confuse the address referring to a
memory location with the value stored there

4

23 42 101 102 103 104 105 ...

Pointers
• An address refers to a particular memory

location; e.g., it points to a memory location
• Pointer: A variable that contains the address

of a variable

5

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

Pointer Syntax

• int *x;
– Tells compiler that variable x is address of an int

• x = &y;
– Tells compiler to assign address of y to x
– & called the “address operator” in this context

• z = *x;
– Tells compiler to assign value at address in x to z
– * called the “dereference operator” in this context

6

Creating and Using Pointers

7

• How to create a pointer:
& operator: get address of a variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

•How get a value pointed to?
“*” (dereference operator): get the value that the pointer points to

printf(“p points to value %d\n”,*p);

Note the “*” gets used
2 different ways in this
example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

Using Pointer for Writes

• How to change a variable pointed to?
– Use the dereference operator * on left of

assignment operator =

8

p x 5*p = 5;

p x 3

Pointers and Parameter Passing

• C passes parameters “by value”
– Procedure/function/method gets a copy of the

parameter, so changing the copy cannot change the
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains equal to 3

9

Pointers and Parameter Passing

• How can we get a function to change the value
held in a variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is now equal to 4

10

What would you use in C++?

Call by reference:
void add_one (int &p) {

p = p + 1; // or p += 1;
}

Types of Pointers

• Pointers are used to point to any kind of data
(int, char, a struct, etc.)

• Normally a pointer only points to one type
(int, char, a struct, etc.).
– void * is a type that can point to anything

(generic pointer)
– Use void * sparingly to help avoid program bugs,

and security issues, and other bad things!

11

More C Pointer Dangers
• Declaring a pointer just allocates space to hold

the pointer – it does not allocate the thing
being pointed to!

• Local variables in C are not initialized, they
may contain anything (aka “garbage”)

• What does the following code do?

12

void f()
{

int *ptr;
*ptr = 5;

}

Pointers and Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr).x;

/* This works too */
p1 = p2;

13

Note: C structure assignment is not a ”deep copy”.
All members are copied, but not things pointed to
by members.

Pointers in C
• Why use pointers?
– If we want to pass a large struct or array, it’s easier /

faster / etc. to pass a pointer than the whole thing
– In general, pointers allow cleaner, more compact code

• So what are the drawbacks?
– Pointers are probably the single largest source of bugs

in C, so be careful anytime you deal with them
• Most problematic with dynamic memory management—

coming up next week
• Dangling references and memory leaks

14

Why Pointers in C?

• At time C was invented (early 1970s), compilers
often didn’t produce efficient code
– Computers 100,000 times faster today, compilers

better
• C designed to let programmer say what they want

code to do without compiler getting in way
– Even give compilers hints which registers to use!

• Today’s compilers produce much better code, so
may not need to use pointers in application code

• Low-level system code still needs low-level access
via pointers

15

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

16

C Arrays

• Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};

declares and initializes a 2-element integer array

17

C Strings
• String in C is just an array of characters

char string[] = "abc";

• How do you tell how long a string is?
– Last character is followed by a 0 byte

(aka “null terminator”)

18

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array Name / Pointer Duality
• Key Concept: Array variable is a “pointer” to the first

(0th) element
• So, array variables almost identical to pointers
– char *string and char string[] are nearly

identical declarations
– Differ in subtle ways: incrementing, declaration of filled

arrays, sizeof
• Consequences:
– ar is an array variable, but works like a pointer
– ar[0] is the same as *ar
– ar[2] is the same as *(ar+2)
– Can use pointer arithmetic to conveniently access arrays

19

Changing a Pointer Argument?

• What if want function to change a pointer?
• What gets printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

Pointer to a Pointer

• Solution! Pass a pointer to a pointer, declared
as **h

• Now what gets printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

C Arrays are Very Primitive
• An array in C does not know its own length,

and its bounds are not checked!
– Consequence: We can accidentally access off the

end of an array
– Consequence: We must pass the array and its size

to any procedure that is going to manipulate it

• Segmentation faults and bus errors:
– These are VERY difficult to find;

be careful!

22

Use Defined Constants
• Array size n; want to access from 0 to n-1, so you should use

counter AND utilize a variable for declaration & incrementation
– Bad pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE SOURCE OF TRUTH
– You’re utilizing indirection and avoiding maintaining two copies of the

number 10
– DRY: “Don’t Repeat Yourself”

23

Pointing to Different Size Objects
• Modern machines are “byte-addressable”

– Hardware’s memory composed of 8-bit storage cells, each has a
unique address

• A C pointer is just abstracted memory address
• Type declaration tells compiler how many bytes to fetch on

each access through pointer
– E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

24

424344454647484950515253545556575859

int *x

32-bit integer
stored in four bytes

short *y

16-bit short stored
in two bytes

char *z

8-bit character
stored in one byte

Byte address

sizeof() operator

• sizeof(type) returns number of bytes in object
– But number of bits in a byte is not standardized
• In olden times, when dragons roamed the earth, bytes

could be 5, 6, 7, 9 bits long

• By definition, sizeof(char)==1
• Can take sizeof(arr), or sizeof(structtype)
• We’ll see more of sizeof when we look at

dynamic memory management

25

26

Pointer Arithmetic
pointer + number pointer – number
e.g., pointer + 1 adds 1 something to a pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In each, p now points to b
(Assuming compiler doesn’t
reorder variables in memory.

Never code like this!!!!)

Adds 1*sizeof(char)
to the memory address

Adds 1*sizeof(int)
to the memory address

Pointer arithmetic should be used cautiously

27

Arrays and Pointers

• Array » pointer to the initial (0th) array
element

a[i] º *(a+i)

• An array is passed to a function as a pointer
– The array size is lost!

• Usually bad style to interchange arrays and
pointers
– Avoid pointer arithmetic!

Really int *array

int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays:

28

Arrays and Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)

{
int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What does this print (32bit)?

What does this print (32bit)?

4

40

... because array is really
a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

29

Arrays and Pointers

int i;
int array[10];

for (i = 0; i < 10; i++)
{

array[i] = …;
}

int *p;
int array[10];

for (p = array; p < &array[10]; p++)
{

*p = …;
}

These code sequences have the same effect!

C Strings
• String in C is just an array of characters

char string[] = "abc";

• How do you tell how long a string is?
– Last character is followed by a 0 byte

(aka “null terminator”)

31

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Concise strlen()
int strlen(char *s)
{

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

What happens if there is no zero character
at end of string?

32

Point past end of array?

• Array size n; want to access from 0 to n-1, but
test for exit by comparing to address one
element past the array
int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;
– Is this legal?
• C defines that one element past end of array

must be a valid address, i.e., not cause an error

Valid Pointer Arithmetic

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array)
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that the

pointer points to nothing)

Everything else illegal since makes no sense:
• adding two pointers
• multiplying pointers
• subtract pointer from integer

Arguments in main()

• To get arguments to the main function, use:
– int main(int argc, char *argv[])

• What does this mean?
– argc contains the number of strings on the

command line (the executable counts as one, plus
one for each argument). Here argc is 2:

unix% sort myFile

– argv is a pointer to an array containing the
arguments as strings

35

Example

• foo hello 87
• argc = 3 /* number arguments */
• argv[0] = "foo",
argv[1] = "hello",
argv[2] = "87"

–Array of pointers to strings

36

Summary

• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is more overhead for
the programmer.

• “C gives you a lot of extra rope but be careful not to
hang yourself with it!”

ADMIN

38

Admin
• HW 1 due tomorrow!!!
• Discussion session today:
– Monday 20:30-21:30. 教学中心 201
– 2nd: Wednesday 20:30-21:30 ?

But how about the “Situation and Policy”
lectures?

39

Leaving Early?

40

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

41

C Memory Management
• How does the C compiler determine where to

put all the variables in machine’s memory?
• How to create dynamically sized objects?
• To simplify discussion, we assume one

program runs at a time, with access to all of
memory.

• Later, we’ll discuss virtual memory, which lets
multiple programs all run at same time, each
thinking they own all of memory.

42

C Memory
Management

• Program’s address space
contains 4 regions:
– stack: local variables inside

functions, grows downward
– heap: space requested for

dynamic data via malloc();
resizes dynamically, grows
upward

– static data: variables declared
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified.

– code: loaded when program
starts, does not change

code

static data

heap

stack~ FFFF FFFFhex

~ 0000 0000hex

4343

Memory Address
(32 bits assumed here)

Where are Variables Allocated?

• If declared outside a function,
allocated in “static” storage

• If declared inside function,
allocated on the “stack”
and freed when function
returns
– main() is treated like

a function

int myGlobal;
main() {
int myTemp;

}

44

The Stack
• Every time a function is called, a new frame

is allocated on the stack
• Stack frame includes:

– Return address (who called me?)
– Arguments
– Space for local variables

• Stack frames contiguous
blocks of memory; stack pointer
indicates start of stack frame

• When function ends, stack frame is tossed
off the stack; frees memory for future stack
frames

• We’ll cover details later for RISC-V processor fooD frame

fooB frame

fooC frame

fooA frame

Stack Pointer
45

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { fooD(); }

Stack Animation

• Last In, First Out (LIFO) data structure
main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}
void d (int p)
{
}

stack

Stack PointerStack
grows
down

46

Managing the Heap

C supports five functions for heap management:

• malloc() allocate a block of uninitialized memory
• calloc() allocate a block of zeroed memory
• free() free previously allocated block of memory
• realloc() change size of previously allocated block

• careful – it might move!

47

Malloc()
• void *malloc(size_t n):

– Allocate a block of uninitialized memory
– NOTE: Subsequent calls might not yield blocks in contiguous addresses
– n is an integer, indicating size of allocated memory block in bytes
– size_t is an unsigned integer type big enough to “count” memory bytes
– sizeof returns size of given type in bytes, produces more portable code
– Returns void* pointer to block; NULL return indicates no more memory
– Think of pointer as a handle that describes the allocated block of memory;

Additional control information stored in the heap around the allocated
block!

• Examples:
int *ip;
ip = (int *) malloc(sizeof(int));

typedef struct { … } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

48

“Cast” operation, changes type of a variable.
Here changes (void *) to (int *)

Managing the Heap
• void free(void *p):

– Releases memory allocated by malloc()
– p is pointer containing the address originally returned by malloc()

int *ip;
ip = (int *) malloc(sizeof(int));
...
free((void*) ip); /* Can you free(ip) after ip++ ? */

typedef struct {… } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

...
free((void *) tp);

– When insufficient free memory, malloc() returns NULL pointer; Check for it!
if ((ip = (int *) malloc(sizeof(int))) == NULL){

printf(“\nMemory is FULL\n”);
exit(1); /* Crash and burn! */

}

– When you free memory, you must be sure that you pass the original address
returned from malloc() to free(); Otherwise, system exception (or worse)!

49

Using Dynamic Memory
typedef struct node {

int key;
struct node *left;
struct node *right;

} Node;

Node *root = 0;

Node *create_node(int key, Node *left, Node *right)
{

Node *np;
if ((np = (Node*) malloc(sizeof(Node))) == NULL)
{ printf("Memory exhausted!\n"); exit(1); }
else
{ np->key = key;

np->left = left;
np->right = right;
return np;

}
}

void insert(int key, Node **tree)
{

if ((*tree) == NULL)
{ (*tree) = create_node(key, NULL, NULL); return; }

if (key <= (*tree)->key)
insert(key, &((*tree)->left));

else
insert(key, &((*tree)->right));

} 50

Root

Key=10

Left Right

Key=5

Left Right
Key=16

Left Right

Key=11

Left Right

Observations

• Code, Static storage are easy: they never grow
or shrink

• Stack space is relatively easy: stack frames are
created and destroyed in last-in, first-out
(LIFO) order

• Managing the heap is tricky: memory can be
allocated / deallocated at any time

51

52

Bugs
• Line 9: comparison with strlen instead of sizeof (for 0-

terminator)
• Line 10: strlen instead of sizeof (or +1) for malloc =>
– Line 13: write past end of array (if malloc was used)

• Line 4: Ownership of pointer str not clear =>
– Line 10: Potential memory leak

• Line 4: New pointer is not returned/ no pointer to
pointer is used

• Line 20: memcpy over length of CA
• Line 20: 0-terminator is not copied!
• Line 22 &23: better: call with array size
• Line 14 & 27: return missing!

53

How are Malloc/Free implemented?

• Underlying operating system allows malloc
library to ask for large blocks of memory to
use in heap (e.g., using Unix sbrk() call)

• C standard malloc library creates data
structure inside unused portions to track free
space

54

Simple Slow Malloc Implementation

55

Initial Empty Heap space from Operating System

Free Space

Malloc library creates linked list of empty blocks (one block initially)

FreeObject 1

Free

First allocation chews up space from start of free space

After many mallocs and frees, have potentially long linked list of odd-sized blocks
Frees link block back onto linked list – might merge with neighboring free space

Faster malloc implementations

• Keep separate pools of blocks for different
sized objects

• “Buddy allocators” always round up to power-
of-2 sized chunks to simplify finding correct
size and merging neighboring blocks:

56

Power-of-2 “Buddy Allocator”

57

free

used

Malloc Implementations

• All provide the same library interface, but can
have radically different implementations

• Uses headers at start of allocated blocks and
space in unallocated memory to hold
malloc’s internal data structures

• Rely on programmer remembering to free
with same pointer returned by malloc

• Rely on programmer not messing with internal
data structures accidentally!

58

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

59

Common Memory Problems

• Using uninitialized values
• Using memory that you don’t own
– Deallocated stack or heap variable
– Out-of-bounds reference to stack or heap array
– Using NULL or garbage data as a pointer

• Improper use of free/realloc by messing with the
pointer handle returned by malloc/calloc

• Memory leaks (you allocated something you
forgot to later free)

60

Using Memory You Don’t Own

int *ipr, *ipw;
void ReadMem() {

int i, j;
ipr = (*int) malloc(4 * sizeof(int));
i = *(ipr - 1000); j = *(ipr + 1000);
free(ipr);

}

void WriteMem() {
ipw = (*int) malloc(5 * sizeof(int));
*(ipw - 1000) = 0; *(ipw + 1000) = 0;
free(ipw);

}
61

•What is wrong with this code?
• Using pointers beyond the range that had been malloc’d

–May look obvious, but what if mem refs had been result of pointer arithmetic that
erroneously took them out of the allocated range?

Faulty Heap Management

• What is wrong with this code?
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
…
free(pi);

}

void main() {
pi = malloc(4*sizeof(int));
foo();
…

}

62

Faulty Heap Management

• Memory leak: more mallocs than frees
int *pi;
void foo() {

pi = malloc(8*sizeof(int));
/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */
…
free(pi); /* foo() is done with pi, so free it */

}

void main() {
pi = malloc(4*sizeof(int));
foo(); /* Memory leak: foo leaks it */
…

}

63

Faulty Heap Management

• What is wrong with this code?

64

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++;

}

Faulty Heap Management

• Potential memory leak – handle has been
changed, do you still have copy of it that can
correctly be used in a later free?

65

int *plk = NULL;
void genPLK() {

plk = malloc(2 * sizeof(int));
… … …
plk++;

}

Faulty Heap Management

• What is wrong with this code?

66

void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

Faulty Heap Management

• Can’t free non-heap memory; Can’t free
memory that hasn’t been allocated

67

void FreeMemX() {
int fnh = 0;
free(&fnh);

}

void FreeMemY() {
int *fum = malloc(4 * sizeof(int));
free(fum+1);
free(fum);
free(fum);

}

Using Memory You Haven’t Allocated

• What is wrong with this code?

68

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
printf("%s\n", str);

}

Using Memory You Haven’t Allocated

• Reference beyond array bounds

69

void StringManipulate() {
const char *name = “Safety Critical";
char *str = malloc(10);
strncpy(str, name, 10);
str[10] = '\0';
/* Write Beyond Array Bounds */
printf("%s\n", str);
/* Read Beyond Array Bounds */

}

Using Memory You Don’t Own

70

• What’s wrong with this code?

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}

Using Memory You Don’t Own

71

• Beyond stack read/write

char *append(const char* s1, const char *s2) {
const int MAXSIZE = 128;
char result[128];
int i=0, j=0;
for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {
result[i] = s1[j];
}
for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {
result[i] = s2[j];
}
result[++i] = '\0';
return result;

}
Function returns pointer to stack

memory – won’t be valid after
function returns

result is a local array name –
stack memory allocated

Using Memory You Don’t Own

• What is wrong with this code?

72

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

Using Memory You Don’t Own

• Following a NULL pointer to mem addr 0!

73

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue(Node* head) {
while (head->next != NULL) {

head = head->next;
}
return head->val;

}

Managing the Heap
• realloc(p,size):

– Resize a previously allocated block at p to a new size
– If p is NULL, then realloc behaves like malloc
– If size is 0, then realloc behaves like free, deallocating the block from the

heap
– Returns new address of the memory block; NOTE: it is likely to have moved!
E.g.: allocate an array of 10 elements, expand to 20 elements later

int *ip;
ip = (int *) malloc(10*sizeof(int));
/* always check for ip == NULL */
… … …
ip = (int *) realloc(ip,20*sizeof(int));
/* always check for ip == NULL */
/* contents of first 10 elements retained */
… … …
realloc(ip,0); /* identical to free(ip) */

74

Using Memory You Don’t Own

• What is wrong with this code?

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
75

Using Memory You Don’t Own

• Improper matched usage of mem handles

int* init_array(int *ptr, int new_size) {
ptr = realloc(ptr, new_size*sizeof(int));
memset(ptr, 0, new_size*sizeof(int));
return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int i;
/* oops, forgot: fib = */ init_array(fib, size);
/* fib[0] = 0; */ fib[1] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

}
76

What if array is moved to
new location?

Remember: realloc may move entire block

And In Conclusion, …
• All data is in memory

– Each memory location has an address to use to refer to it and a
value stored in it

• Pointer is a C version (abstraction) of a data address
– * “follows” a pointer to its value
– & gets the address of a value
– Arrays and strings are implemented as variations on pointers

• C is an efficient language, but leaves safety to the
programmer
– Variables not automatically initialized
– Use pointers with care: they are a common source of bugs in

programs

77

And In Conclusion, …

• C has three main memory segments in which
to allocate data:
– Static Data: Variables outside functions
– Stack: Variables local to function
– Heap: Objects explicitly malloc-ed/free-d.

• Heap data is biggest source of bugs in C code

78

