
CS 110
Computer Architecture

Lecture 6:
RISC-V Instruction Formats

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

RISC-V ISA so far…
• Registers we know so far (All of them!)

– a0-a7 for function arguments, a0-a1 for return values
– sp, stack pointer, ra return address
– s0-s11 saved registers
– t0-t6 temporaries
– zero

• Instructions we know:
– Arithmetic: add, addi, sub
– Logical: sll, srl, slli, srli, slai, and, or, xor, andi, ori, xori
– Decision: beq, bne, blt, bge
– Unconditional branches (jumps): j, jr
– Functions called with jal, return with jr ra.

• The stack is your friend: Use it to save anything you need. Just
leave it the way you found it!

12 Shift Instructions…
• Two versions of of all shift instructions. Shift amount via:

– Register
– Immediate

• (On RV64: additional “word” version of instruction: only works on first 32bit
of 64bit register)

• Shift Left
• Shift Right Arithmetic: Fill upper bits with msb
• Shift Right Logic: Fill upper bits with 0’s

3

Stack

• Stack frame includes:
• Return “instruction” address
• Parameters
• Space for other local variables

• Stack frames contiguous
blocks of memory; stack pointer tells where
bottom of stack frame is

• When procedure ends, stack frame is tossed off
the stack; frees memory for future stack frames

frame

frame

frame

frame

$sp

0xBFFFFFF0

Leaf Function Example
int Leaf
(int g, int h, int i, int j)

{
int f;
f = (g + h) – (i + j);
return f;

}
• Parameter variables g, h, i, and j in argument

registers a0, a1, a2, and a3, and f in s0
• Assume need one temporary register s1

5

RISC-V Code for Leaf()

6

Leaf:
addi sp, sp, -8 # adjust stack for 2 items
sw s1, 4(sp) # save s1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0, a0, a1 # f = g + h
add s1, a2, a3 # s1 = i + j
sub a0, s0, s1 # return value (g + h) – (i + j)

lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi sp, sp, 8 # adjust stack to delete 2 items
jr ra # jump back to calling routine

Nested Procedures (1/2)

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}
• Something called sumSquare, now
sumSquare is calling mult

• So there’s a value in ra that sumSquare
wants to jump back to, but this will be
overwritten by the call to mult

7

Need to save sumSquare return address
before call to mult

Nested Procedures (2/2)

• In general, may need to save some other info in
addition to ra.

• When a C program is run, there are 3 important
memory areas allocated:
– Static: Variables declared once per program, cease to

exist only after execution completes - e.g., C globals
– Heap: Variables declared dynamically via malloc
– Stack: Space to be used by procedure during

execution; this is where we can save register values

8

The "ABI" Conventions &
Mnemonic Registers

• The "Application Binary Interface" defines our 'calling
convention’
– How to call other functions

• A critical portion is "what do registers mean by
convention”
– We have 32 registers, but how are they used

• Who is responsible for saving registers?
– ABI defines a contract: When you call another function,

that function promises not to overwrite certain registers
• We also have more convenient names based on this
– So going forward, no more x3, x6... type notation

9

Register Conventions (1/2)

• CalleR: the calling function
• CalleE: the function being called
• When callee returns from executing, the caller

needs to know which registers may have changed
and which are guaranteed to be unchanged.

• Register Conventions: A set of generally accepted
rules as to which registers will be unchanged
after a procedure call (jal) and which may be
changed.

Register Conventions (2/2)

To reduce expensive loads and stores from spilling
and restoring registers, RISC-V function-calling
convention divides registers into two categories:

1. Preserved across function call
– Caller can rely on values being unchanged
– sp, gp, tp, “saved registers” s0- s11 (s0 is also fp)

2. Not preserved across function call
– Caller cannot rely on values being unchanged
– Argument/return registers a0-a7,ra,

“temporary registers” t0-t6

RISC-V Symbolic Register Names
Numbers: hardware understands

Human-friendly symbolic names in assembly code

RISC-V Green Card

13

Question

• Which statement is FALSE?

14

B: jal saves PC+1 in ra

C: The callee can use temporary registers
(ti) without saving and restoring them

D: The caller can rely on save registers (si)
without fear of callee changing them

A: RISC-V uses jal to invoke a function and
jr to return from a function

Leaf() from before:

15

Leaf:
addi sp, sp, -8 # adjust stack for 2 items
sw s1, 4(sp) # save s1 for use afterwards
sw s0, 0(sp) # save s0 for use afterwards

add s0, a0, a1 # f = g + h
add s1, a2, a3 # s1 = i + j
sub a0, s0, s1 # return value (g + h) – (i + j)

lw s0, 0(sp) # restore register s0 for caller
lw s1, 4(sp) # restore register s1 for caller
addi sp, sp, 8 # adjust stack to delete 2 items
jr ra # jump back to calling routine

We could have optimized…

• We could have just as easily used t0 and t1
instead…

16

Leaf:
add t0, a0, a1 # t0 = g + h
add t1, a2, a3 # t1 = i + j
sub a0, t0, t1 # return value (g + h) – (i + j)
ret # short for jalr x0 ra

Allocating Space on Stack

• C has two storage classes: automatic and static
– Automatic variables are local to function and

discarded when function exits
– Static variables exist across exits from and entries to

procedures
• Use stack for automatic (local) variables that

don’t fit in registers
• Procedure frame or activation record: segment

of stack with saved registers and local variables

17

Stack Before, During, After Function

sp

Before call

sp

During call

Saved argument
registers (if any)

Saved return
address (if needed)

Saved saved
registers (if any)

Local variables
(if any)

sp

After call

Using the Stack (1/2)

• We have a register sp which always points to
the last used space in the stack.

• To use stack, we decrement this pointer by the
amount of space we need and then fill it with
info.

• So, how do we compile this?
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

19

Using the Stack (2/2)

sumSquare:
addi sp, sp, -8 # space on stack
sw ra, 4(sp) # save ret addr
sw a1, 0(sp) # save y
mv a1, a0 # mult(x,x)
jal mult # call mult
lw a1, 0(sp) # restore y
add a0, a0, a1 # mult()+y
lw ra, 4(sp) # get ret addr
addi sp, sp, 8 # restore stack
jr ra

mult: ...

int sumSquare(int x, int y) {
return mult(x,x)+ y; }

“push”

“pop”

Basic Structure of a Function

entry_label:
addi sp,sp, -framesize
sw ra, framesize-4(sp) # save ra
save other regs if need be

...

restore other regs if need be
lw ra, framesize-4(sp) # restore $ra
addi sp, sp, framesize
jr ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

21

Where is the Stack in Memory?
• RV32 convention (RV64 and RV128 have different memory layouts)
• Stack starts in high memory and grows down

– Hexadecimal: bfff_fff0hex

– Stack must be aligned on 16-byte boundary (not true in examples
above)

• RV32 programs (text segment) in low end
– 0001_0000hex

• static data segment (constants and other static variables) above
text for static variables
– RISC-V convention global pointer (gp) points to static
– RV32 gp = 1000_0000hex

• Heap above static for data structures that grow and shrink ; grows
up to high addresses

RV32 Memory Allocation

Frame Pointer!?
• As a reminder, we shove all the C local variables etc. on the

stack...
– Combined with space for all the saved registers
– This is called the "activation record" or "call frame" or "call

record”
• But a naive compiler may cause the stack pointer to bounce

up and down during a function call
– Can be a lot simpler to have a compiler do a bunch of pushes

and pops when it needs a bit of temporary space: more so on a
CISC rather than a RISC however

• Plus: not all programming languages can store all activation
records on the stack:
– The use of lambda in Scheme, Python, Go, etc. requires that

some call frames are allocated on the heap since variables may
last beyond the function call!

24

Convention: Use s0 as a
Frame Pointer (fp)

• At the start, save s0 (x8) and then have the Frame pointer point to
one below the sp when you were called...
addi sp sp -20 # Initially grabbing 5 words of space
sw ra 16(sp) #
sw fp 12(sp) # save fp/s0/x8
addi fp sp 20 # Points to the start of this call record

...

• Now we can address local variables off the frame pointer rather
than the stack pointer
– Simplifies the compiler

• Since it can now move the stack up and down easily

– Simplifies the debugger

25

But note…
• It isn't necessary in C...
– Most C compilers has a -f-omit-frame-pointer option on

most architectures
• It just fubars debugging a bit

• So for our hand-written assembly, we will generally
ignore the frame pointer

• The calling convention says it doesn't matter if you use
a frame pointer or not!
– It is just a callee saved register, so if you use it as a frame

pointer...
It will be preserved just like any other saved register
But if you just use it as s0, that makes no difference!

26

The Stack Is Also
For Local Variables...

• e.g. char[20] foo;

• Requires enough space on the stack
– May need padding

• So then to pass foo to something in a0...
addi a0 sp offset-for-foo-off-sp
addi a0 fp offset-for-foo-off-fp

• If you are using the frame pointer...

27

The Stack Is Also For Arguments
• Arguments 1-8 are passed in a0-a7
• But what about a 9th argument or more?
• But what about complex structs as arguments?

– Pass those on the stack!
– When the function is called,

• 0(sp) -> arg #9
4(sp) -> arg #10...

• ALWAYS keep sp the lowest address used!
– Because: Interrupts

may use your stack!
– => Arguments are in

the frame of the
caller!

• Don’t need to
memorize this
for exams

28

Stack Before, During, After Function

sp

Before call

sp

During call

Saved argument
registers (if any)

Saved return
address (if needed)

Saved saved
registers (if any)

Local variables
(if any)

sp

After call

Arguments on
stack (if needed)

Arguments on
stack (if needed)

Arguments (may
have changed!)fp

Register Allocation

• We have some set of registers that are useful for
local variables, temporaries that last across
function calls, etc...

• We have some other set of registers that are just
for temporary use

• Which ones do we use? What do we instead save
on the stack?

• This is the "Register Allocation" problem
– Experience it in great detail in CS 131 Compilers ...

• Can either be trivial or NP-complete!

30

Levels of
Representation/Interpretation

lw xt0, 0(x2)
lw xt1, 4(x2)
sw xt1, 0(x2)
sw xt0, 4(x2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

31

Logic Circuit Description
(Circuit Schematic Diagrams)

Big Idea:
Stored-Program

Computer

• Instructions are represented as bit patterns - can think
of these as numbers

• Therefore, entire programs can be stored in memory to
be read or written just like data

• Can reprogram quickly (seconds), don’t have to rewire
computer (days)

• Known as the “von Neumann” computers after widely
distributed tech report on EDVAC project
– Wrote-up discussions of Eckert and Mauchly
– Anticipated earlier by Turing and Zuse

First Draft of a Report on the EDVAC
by

John von Neumann
Contract No. W–670–ORD–4926

Between the
United States Army Ordnance Department and the

University of Pennsylvania
Moore School of Electrical Engineering

University of Pennsylvania

June 30, 1945

32

Consequence #1: Everything Addressed

• Since all instructions and data are stored in memory,
everything has a memory address: instructions, data
words
– both branches and jumps use these

• C pointers are just memory addresses: they can point to
anything in memory
– Unconstrained use of addresses can lead to nasty bugs; up to

you in C; limited in Java by language design
• One register keeps address of instruction being executed:

“Program Counter” (PC)
– Basically a pointer to memory: Intel calls it Instruction Pointer (a

better name)

33

Consequence #2: Binary Compatibility

• Programs are distributed in binary form
– Programs bound to specific instruction set
– Different version for ARM (phone) and PCs

• New machines want to run old programs (“binaries”)
as well as programs compiled to new instructions

• Leads to “backward-compatible” instruction set
evolving over time

• Selection of Intel 8086 in 1981 for 1st IBM PC is major
reason latest PCs still use 80x86 instruction set; could
still run program from 1981 PC today

34

Instructions as Numbers (1/2)

• Currently most data we work with is in words (32-
bit chunks):
– Each register is a word.
– lw and sw both access memory one word at a time.

• So how do we represent instructions?
– Remember: Computer only understands 1s and 0s, so

“add x10,x11,x0” is meaningless.
– RISC-V seeks simplicity: since data is in words, make

instructions be fixed-size 32-bit words, too
• Same 32-bit instructions used for RV32, RV64, RV128

35

Instructions as Numbers (2/2)
• One word is 32 bits, so divide instruction word into “fields”.
• Each field tells processor something about instruction.
• We could define different fields for each instruction, but RISC-

V seeks simplicity, so define 6 basic types of instruction
formats:

– R-format for register-register arithmetic operations
– I-format for register-immediate arithmetic operations and loads
– S-format for stores
– B-format for branches (minor variant of S-format, called SB before)
– U-format for 20-bit upper immediate instructions
– J-format for jumps (minor variant of U-format, called UJ before)

36

Summary of RISC-V Instruction
Formats

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 821

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
opcodeimm[31:12] rd U-type

R-type

opcodeimm[20|10:1|11]] rdimm[19:12] J-type

R-Format Instruction Layout

• 32-bit instruction word divided into six fields of varying
numbers of bits each: 7+5+5+3+5+7 = 32

• Examples
– opcode is a 7-bit field that lives in bits 6-0 of the instruction
– rs2 is a 5-bit field that lives in bits 24-20 of the instruction

Field’s bit positions

Number of bits in fieldName of field

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

R-Format Instructions opcode/funct fields

– opcode: partially specifies what instruction it is
• Note: This field is equal to 0110011two for all R-

Format register-register arithmetic instructions

– funct7+funct3: combined with opcode,
these two fields describe what operation to
perform

• Question: You have been professing simplicity, so why aren’t opcode
and funct7 and funct3 a single 17-bit field?
– We’ll answer this later

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

R-Format Instructions register specifiers

– rs1 (Source Register #1): specifies register containing
first operand

– rs2 : specifies second register operand
– rd (Destination Register): specifies register which will

receive result of computation
– Each register field holds a 5-bit unsigned integer (0-

31) corresponding to a register number (x0-x31)

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

R-Format Example

• RISC-V Assembly Instruction:
add x18,x19,x10

0000000 01010 10011 000 10010 0110011

Reg-Reg OPrd=18addadd rs2=10 rs1=19

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

All RV32 R-format instructions

Different encoding in funct7 + funct3 selects different operations

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011
0000000 rs2 rs1 001 rd 0110011

add
sub
sll

0000000 rs2 rs1 010 rd 0110011 slt
0000000 rs2 rs1 011 rd 0110011 sltu
0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 101 rd 0110011 srl
0100000 rs2 rs1 101 rd 0110011 sra
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

Question
• What is correct encoding of add x4, x3, x2 ?
A: 4021 8233hex
B: 0021 82b3hex
C: 4021 82b3hex
D: 0021 8233hex
E: 0021 8234hex

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011

add
sub

0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

31 25 20 15 71224 19 14 11 6 0

ADMIN

44

Admin

• HW 2: due in about a week – start early!
• Project 1.1 will be posted today!
– Work together with your partner!
– Push to gitlab very often – every day you work on the

project – even if it doesn’t complie!
– We will evaluate each partners contribution based on

gitlab statistics!

• Venus Tutorial Videos available on the website.
– From last year’s TA Ze Song

45

Admin

• Lecture schedule slightly changed…
• Midterm I and II Dates:
– April 6
– May 11
– During lecture hours (10:15 – 12:15)
– Rooms: tbd.

• Midterm I content:
– Everything till (including): RISC-V Datapath
– Material: 1 A4 cheat-sheet handwritten by you

46

I-Format Instructions

• What about instructions with immediates?
– 5-bit field only represents numbers up to the value

31: immediates may be much larger than this
– Ideally, RISC-V would have only one instruction

format (for simplicity): unfortunately, we need to
compromise

• Define new instruction format that is mostly
consistent with R-format
– Notice if instruction has immediate, then uses at

most 2 registers (one source, one destination)

I-Format Instruction Layout

• Only one field is different from R-format, rs2 and funct7
replaced by 12-bit signed immediate, imm[11:0]

• Remaining fields (rs1, funct3, rd, opcode) same as before
• imm[11:0] can hold values in range [-2048ten , +2047ten]
• Immediate is always sign-extended to 32-bits before use

in an arithmetic operation
• We’ll later see how to handle immediates > 12 bits

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcodeImm[11:0]

12

I-Format Example

• RISC-V Assembly Instruction:
addi x15,x1,-50

111111001110 00001 000 01111 0010011

OP-Immrd=15addimm=-50 rs1=1

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12

All RV32 I-format Arithmetic
Instructions

“Shift-by-immediate” instructions only use lower
5 bits of the immediate value for shift amount
(can only shift by 0-31 bit positions)

One of the higher-order immediate bits is
used to distinguish “shift right logical”
(SRLI) from “shift right arithmetic” (SRAI)

imm[11:0] rs1 000 rd 0010011
imm[11:0] rs1 010 rd 0010011
imm[11:0] rs1 011 rd 0010011

addi
slti
sltiu

imm[11:0] rs1 100 rd 0010011 xori
imm[11:0] rs1 110 rd 0010011 ori
imm[11:0] rs1 111 rd 0010011 andi

0000000 shamt rs1 001 rd 0010011 slli
0000000 shamt rs1 101 rd 0010011 srli
0100000 shamt rs1 101 rd 0010011 srai

Load Instructions are also I-Type

• The 12-bit signed immediate is added to the base address in
register rs1 to form the memory address
– This is very similar to the add-immediate operation but used to create

address not to create final result

• The value loaded from memory is stored in register rd

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12
offset[11:0] base width dest LOAD

I-Format Load Example
• RISC-V Assembly Instruction:

lw x14, 8(x2)

000000001000 00010 010 01110 0000011

LOADrd=14lwimm=+8 rs1=2

(load word)

5 3 75

31 20 15 71219 14 11 6 0
rs1 funct3 rd opcodeimm[11:0]

12
offset[11:0] base width dest LOAD

All RV32 Load Instructions

• LBU is “load unsigned byte”
• LH is “load halfword”, which loads 16 bits (2 bytes) and sign-extends to fill destination 32-

bit register
• LHU is “load unsigned halfword”, which zero-extends 16 bits to fill destination 32-bit

register
• There is no LWU in RV32, because there is no sign/zero extension needed when copying

32 bits from a memory location into a 32-bit register

funct3 field encodes size and
‘signedness’ of load data

imm[11:0] rs1 000 rd 0000011
imm[11:0] rs1 001 rd 0000011
imm[11:0] rs1 010 rd 0000011

lb
lh
lw

imm[11:0] rs1 100 rd 0000011 lbu
imm[11:0] rs1 101 rd 0000011 lhu

S-Format Used for Stores

• Store needs to read two registers, rs1 for base memory address,
and rs2 for data to be stored, as well immediate offset!

• Can’t have both rs2 and immediate in same place as other
instructions!

• Note that stores don’t write a value to the register file, no rd!
• RISC-V design decision is move low 5 bits of immediate to where rd

field was in other instructions – keep rs1/rs2 fields in same place
• register names more critical than immediate bits in hardware design

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

