
CS 110
Computer Architecture

Lecture 7:
Multiplication and Floating Point

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Summary of RISC-V Instruction
Formats

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 821

rs1 funct3 rd opcodeimm[11:0]

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
opcodeimm[31:12] rd U-type

R-type

opcodeimm[20|10:1|11]] rdimm[19:12] J-type

All RV32 R-format instructions

Different encoding in funct7 + funct3 selects different operations

0000000 rs2 rs1 000 rd 0110011
0100000 rs2 rs1 000 rd 0110011
0000000 rs2 rs1 001 rd 0110011

add
sub
sll

0000000 rs2 rs1 010 rd 0110011 slt
0000000 rs2 rs1 011 rd 0110011 sltu
0000000 rs2 rs1 100 rd 0110011 xor
0000000 rs2 rs1 101 rd 0110011 srl
0100000 rs2 rs1 101 rd 0110011 sra
0000000 rs2 rs1 110 rd 0110011
0000000 rs2 rs1 111 rd 0110011

or
and

All RV32 I-format Arithmetic
Instructions

“Shift-by-immediate” instructions only use lower
5 bits of the immediate value for shift amount
(can only shift by 0-31 bit positions)

One of the higher-order immediate bits is
used to distinguish “shift right logical”
(SRLI) from “shift right arithmetic” (SRAI)

imm[11:0] rs1 000 rd 0010011
imm[11:0] rs1 010 rd 0010011
imm[11:0] rs1 011 rd 0010011

addi
slti
sltiu

imm[11:0] rs1 100 rd 0010011 xori
imm[11:0] rs1 110 rd 0010011 ori
imm[11:0] rs1 111 rd 0010011 andi

0000000 shamt rs1 001 rd 0010011 slli
0000000 shamt rs1 101 rd 0010011 srli
0100000 shamt rs1 101 rd 0010011 srai

All RV32 Load Instructions

• LBU is “load unsigned byte”
• LH is “load halfword”, which loads 16 bits (2 bytes) and sign-extends to fill destination 32-

bit register
• LHU is “load unsigned halfword”, which zero-extends 16 bits to fill destination 32-bit

register
• There is no LWU in RV32, because there is no sign/zero extension needed when copying

32 bits from a memory location into a 32-bit register

funct3 field encodes size and
‘signedness’ of load data

imm[11:0] rs1 000 rd 0000011
imm[11:0] rs1 001 rd 0000011
imm[11:0] rs1 010 rd 0000011

lb
lh
lw

imm[11:0] rs1 100 rd 0000011 lbu
imm[11:0] rs1 101 rd 0000011 lhu

S-Format Used for Stores

• Store needs to read two registers, rs1 for base memory address,
and rs2 for data to be stored, as well immediate offset!

• Can’t have both rs2 and immediate in same place as other
instructions!

• Note that stores don’t write a value to the register file, no rd!
• RISC-V design decision is move low 5 bits of immediate to where rd

field was in other instructions – keep rs1/rs2 fields in same place
• register names more critical than immediate bits in hardware design

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

Keeping Registers always in
the Same Place...

• The critical path for all operations includes
fetching values from the registers

• By always placing the read sources in the same
place, the register file can read without hesitation
– If the data ends up being unnecessary (e.g. I-Type), it

can be ignored
• Other RISCs have had slightly different encodings
– Necessitating the logic to look at the instruction to

determine which registers to read
• Example of one of the (many) little tweaks done

in RISC-V to make things work better

7

S-Format Example
• RISC-V Assembly Instruction:

sw x14, 8(x2)

0000000 01110 00010 010 01000 0100011

STOREoffset[4:0]
=8

SWoffset[11:5]
=0

rs2=14 rs1=2

combined 12-bit offset = 80000000 01000

7 5 5 3 75

31 25 20 15 71224 19 14 11 6 0
Imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

offset[11:5] base widthsrc STOREoffset[4:0]

All RV32 Store Instructions

Imm[11:5] rs2 rs1 000 imm[4:0] 0100011 sb
sh
sw

Imm[11:5] rs2 rs1 001 imm[4:0] 0100011
Imm[11:5] rs2 rs1 010 imm[4:0] 0100011

• Store byte, halfword, word
width

RISC-V Conditional Branches

• E.g., BEQ x1, x2, Label
• Branches read two registers but don’t write a

register (similar to stores)
• How to encode label, i.e., where to branch to?

Branching Instruction Usage

• Branches typically used for loops (if-else,
while, for)
– Loops are generally small (< 50 instructions)
– Function calls and unconditional jumps handled with

jump instructions (J-Format)
• Recall: Instructions stored in a localized area of

memory (Code/Text)
– Largest branch distance limited by size of code
– Address of current instruction stored in the program

counter (PC)

PC-Relative Addressing

• PC-Relative Addressing: Use the immediate
field as a two’s-complement offset to PC
– Branches generally change the PC by a small

amount
– Can specify ± 211 ‘unit’ addresses from the PC

• Why not use byte as a unit of offset from PC?
– Because instructions are 32-bits (4-bytes)
– We don’t branch into middle of instruction

Scaling Branch Offset

• One idea: To improve the reach of a single
branch instruction, multiply the offset by four
bytes before adding to PC

• This would allow one branch instruction to
reach ± 211 × 32-bit instructions either side of
PC
– Four times greater reach than using byte offset

RISC-V Feature, n×16-bit instructions

• Extensions to RISC-V base ISA support 16-bit
compressed instructions and also variable-length
instructions that are multiples of 16-bits in length

• To enable this, RISC-V scales the branch offset by 2
bytes even when there are no 16-bit instructions

• Reduces branch reach by half and means that ½ of
possible targets will be errors on RISC-V processors
that only support 32-bit instructions (as used in this
class)

• RISC-V conditional branches can only reach ± 210 ×
32-bit instructions on either side of PC

Branch Calculation

• If we don’t take the branch:
PC = PC + 4 (i.e., next instruction)

• If we do take the branch:
PC = PC + immediate*2

• Observations:
– immediate is number of (1/2-) instructions to jump

(remember, specifies words) either forward (+) or
backwards (–))

RISC-V B-Format for Branches

• B-format is mostly same as S-Format, with two register
sources (rs1/rs2) and a 12-bit immediate imm[12:1]

• But now immediate represents values -4096 to +4094
in 2-byte increments

• The 12 immediate bits encode even 13-bit signed byte
offsets (lowest bit of offset is always zero, so no need
to store it)

1 6 5 3 74

31 30 24 15 71225 20 14 11 6 0
imm[12] rs2 rs1 funct3 imm[4:1] opcodeimm[10:5] imm[11]

19 8

5 1
BRANCHoffset[12|10:5] rs1 funct3rs2 offset[4:1|11]

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

Branch Example, Determine Offset

0
1
2
3
4

Count
instructions
from branch

• Branch offset =
• (Branch with offset of 0, branches to itself)

4×32-bit instructions = 16 bytes

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

??????? 01010 10011 000 ????? 1100011

BRANCHimmBEQimm rs2=10 rs1=19

Branch Example, Determine Offset

0
1
2
3
4

Count
instructions
from branch

• RISC-V Code:
Loop: beq x19,x10,End

add x18,x18,x10
addi x19,x19,-1
j Loop

End: # target instruction

??????? 01010 10011 000 ????? 1100011

BRANCHimmBEQimm rs2=10 rs1=19

offset = 16 bytes = 8x2 bytes

Branch Example, Encode Offset

RISC-V Immediate Encoding
Instruction encodings, inst[31:0]

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 8

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

R-type
I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type

32-bit immediates produced, imm[31:0]

31 25 12 1524 11 10 4 0
inst[30:25] inst[24:21] inst[20] I-imm.-inst[31]-

inst[30:25] inst[11:8] inst[7] S-imm.-inst[31]-

inst[30:25] inst[11:8] 0 B-imm.-inst[31]- inst[7]

Upper bits sign-extended from inst[31] always Only bit 7 of instruction changes role in
immediate between S and B

Branch Example, complete encoding

0 01010 10011 000 1000 11000110000000

BRANCHBEQrs2=10 rs1=19

beq x19,x10, offset = 16 bytes

13-bit immediate, imm[12:0], with value 16
0000000010000

imm[4:1]

imm[0] discarded,
always zero

imm[10:5]

imm[11]imm[12]

All RISC-V Branch Instructions

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

Questions on PC-addressing

• Does the value in branch immediate field change if
we move the code?
– If moving individual lines of code, then yes
– If moving all of code, then no (‘position-independent

code’)
• What do we do if destination is > 210 instructions

away from branch?
– Other instructions save us
beq x10,x0,far bne x10,x0,next
next instr à j far

next: # next instr

U-Format for “Upper Immediate”
Instructions

• Has 20-bit immediate in upper 20 bits of 32-bit
instruction word

• One destination register, rd
• Used for two instructions
– LUI – Load Upper Immediate
– AUIPC – Add Upper Immediate to PC

7

31 712 6 0
opcodeimm[31:12] rd

11

20 5
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI to Create Long Immediates

• LUI writes the upper 20 bits of the destination with the
immediate value, and clears the lower 12 bits.

• Together with an ADDI to set low 12 bits, can create any
32-bit value in a register using two instructions (LUI/ADDI).

LUI x10, 0x87654 # x10 = 0x87654000
ADDI x10, x10, 0x321# x10 = 0x87654321

One Corner Case

How to set 0xDEADBEEF?
LUI x10, 0xDEADB # x10 = 0xDEADB000
ADDI x10, x10, 0xEEF # x10 = 0xDEADAEEF

ADDI 12-bit immediate is always sign-extended, if top bit is set,
will subtract 1 from upper 20 bits

Solution
How to set 0xDEADBEEF?
LUI x10, 0xDEADC # x10 = 0xDEADC000
ADDI x10, x10, 0xEEF # x10 = 0xDEADBEEF

Pre-increment value placed in upper 20 bits, if sign bit will be set on
immediate in lower 12 bits.

Assembler pseudo-op handles all of this:
li x10, 0xDEADBEEF # Creates two instructions

Actually: Important!
The assembler treats the provided number for ADDI as signed number.
So in order to get 0xEEF, we have to provide the according negative
number! So actually, only this works:
ADDI x10, x10, -273 # -273 = 0xFFFFFFFEEF

AUIPC

• Adds upper immediate value to PC and places
result in destination register

• Used for PC-relative addressing

Label: AUIPC x10, 0 # Puts address of label in x10

J-Format for Jump Instructions

• JAL saves PC+4 in register rd (the return address)
– Assembler “j” jump is pseudo-instruction, uses JAL but sets
rd=x0 to discard return address

• Set PC = PC + offset (PC-relative jump)
• Target somewhere within ±219 locations, 2 bytes apart

– ±218 32-bit instructions
• Immediate encoding optimized similarly to branch instruction

to reduce hardware cost

7

31 712 6 0
opcodeimm[10:1] rd

11

10 5
offset[20:1] dest JAL

imm[20] imm[11] imm[19:12]
1 1 8

19202130

Uses of JAL
j pseudo-instruction
j Label = jal x0, Label # Discard return address

Call function within 218 instructions of PC
jal ra, FuncName

JALR Instruction (I-Format)

• JALR rd, rs, immediate
– Writes PC+4 to rd (return address)
– Sets PC = rs + immediate
– Uses same immediates as arithmetic and loads

• no multiplication by 2 bytes
• In contrast to branches and JAL

7

31 712 6 0
opcodeimm[11:0] rd

11

12 5
offset[11:0] dest JALR

rs1 func3
5 3

151920 14

base 0

Uses of JALR
ret and jr psuedo-instructions
ret = jr ra = jalr x0, ra, 0

Call function at any 32-bit absolute address
lui x1, <hi20bits>
jalr ra, x1, <lo12bits>

Jump PC-relative with 32-bit offset
auipc x1, <hi20bits>
jalr x0, x1, <lo12bits>

Summary of RISC-V Instruction
Formats

31 25 20 15 71224 19 14 11 6 0
funct7 rs2 rs1 funct3 rd opcode

30 821

rs1 funct3 rd opcodeimm[11:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

I-type
S-type

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
opcodeimm[31:12] rd U-type

R-type

opcodeimm[20|10:1|11]] rdimm[19:12] J-type

Complete RV32I ISA

Not in CA lectures

ADMIN

35

HW

• HW2 is due this Friday
• HW3 will be published this week
– RISC-V programming
– In Venus simulator
– Venus tutorial on the website

36

RISC-V ISA Specification

• Different modules
• Class covers RV32I Base Integer Instruction Set
– RV64I (used in textbook) and RV128I also available
– RV32E: Embedded Systems (only 16 registers)

• Various Extensions, named with leeters
• The RISC-V Instruction Set Manual; Volume II:

Privileged Architecture
– For Operating System

37

RISC-V Specifications

• https://riscv.org/technical/specifications/
– ISA Specification
– Debug Specification
– Trace Specification
– Compliance Framework

• https://five-embeddev.com/riscv-isa-manual/latest/intro.html
– Manual

• https://github.com/riscv/riscv-isa-manual/releases/latest
– Latest draft document

38

https://riscv.org/technical/specifications/
https://five-embeddev.com/riscv-isa-manual/latest/intro.html
https://github.com/riscv/riscv-isa-manual/releases/latest

39

Clarifications

• RISC-V ISA Spec: Does NOT define Assembly
Syntax
– Defines Binary Machine Instructions and their

behavior
– Different Assemblers could have different syntax (i.e.

allow commas or not)
• Project 1 RISC-V emulator: behave exactly like

Venus!
• ALL I-Type instructions (including sltiu):
– do sign-extension
– (in Venus): input number is signed, even if hex

40

RISC-V instruction sizes

41

RV32M

• Multiplication and Division for RV32I

42

Integer Multiplication (1/3)
• Paper and pencil example (unsigned):

Multiplicand 1000 8
Multiplier x1001 9

1000
0000
0000

+1000
01001000 72

• m bits x n bits = m + n bit product

• In RISC-V, we multiply registers, so:
– 32-bit value x 32-bit value = 64-bit value

• Multiplication is not part of standard RISC-V because:
– It requires a more complicated ALU
– The compiler can use a series of shifts and adds if the multiplier

isn't present
• Syntax of Multiplication (signed):

– mul rd, rs1, rs2
– mulh rd, rs1, rs2
– Multiplies 32-bit values in those registers and returns either the

lower or upper 32b result
• If you do mulh/mul back to back, the architecture can fuse them

– Also unsigned versions of the above

44

Integer Multiplication (2/3)

• Example:
– in C: a = b * c;
• int64_t a; int32_t b, c;
• These types are defined in C99, in stdint.h

• in RISC-V:
– let b be s2; let c be s3; and let a be s0 and s1

(since it may be up to 64 bits)
– mulh s1, s2, s3
mul s0, s2, s3

45

Integer Multiplication (3/3)

Integer Division (1/2)
• Paper and pencil example (unsigned):
– Quotient = 1001010 / 1000
– Remainder = 1001010 % 1000

Dividend = Quotient x Divisor + Remainder

Divisor 1000|1001010 Dividend
-1000

10
101
1010
-1000

10 Remainder
(or Modulo result)

Quotient1 0 0 1

• Syntax of Division (signed):
– div rd, rs1, rs2
rem rd, rs1, rs2

– Divides 32-bit rs1 by 32-bit rs2, returns the quotient
(/) for div, remainder (%) for rem

– Again, can fuse two adjacent instructions
• Example in C: a = c / d; b = c % d;
• RISC-V:

• a↔s0; b↔s1; c↔s2; d↔s3
– div s0, s2, s3
rem s1, s2, s3

47

Integer Division (2/2)

Note Optimization...

• A recommended convention
– mulh s1 s2 s3
mul s0 s2 s3

– div s0 s2 s3
rem s1 s2 s3

• Not a requirement but...
– RISC-V says "if you do it this way, and the

microarchitecture supports it, it can fuse the two
operations into one"

– Same logic behind much of the 16b ISA design:
If you follow the convention you can get significant
optimizations

48

Review of Integer Numbers

• Computers are made to deal with numbers
• What can we represent in N bits?
– 2N things, and no more! They could be…
– Unsigned integers:

0 to 2N - 1
(for N=32, 2N–1 = 4,294,967,295)
– Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1
(for N=32, 2(N-1) = 2,147,483,648)

What about other numbers?
1. Very large numbers? (seconds/millennium)

=> 31,556,926,00010 (3.155692610 x 1010)
2. Very small numbers? (Bohr radius)

=> 0.000000000052917710m (5.2917710 x 10-11)
3. Numbers with both integer & fractional parts?

=> 1.5
First consider #3.
…our solution will also help with #1 and #2.

Representation of Fractions
“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

xx.yyyy
21 20 2-1 2-2 2-3 2-4

Example 6-bit
representation:

10.1010two = 1x21 + 1x2-1 + 1x2-3 = 2.625ten

If we assume “fixed binary point”, range of 6-bit
representations with this format:

0 to 3.9375 (almost 4)

Fractional Powers of 2

0 1.0 1
1 0.5 1/2
2 0.25 1/4
3 0.125 1/8
4 0.0625 1/16
5 0.03125 1/32
6 0.015625
7 0.0078125
8 0.00390625
9 0.001953125
10 0.0009765625
11 0.00048828125
12 0.000244140625
13 0.0001220703125
14 0.00006103515625
15 0.000030517578125

i 2-i

Representation of Fractions with Fixed Pt.
What about addition and multiplication?

Addition is
straightforward:

01.100 1.5ten
+ 00.100 0.5ten
10.000 2.0ten

Multiplication a bit more complex:

01.100 1.5ten
00.100 0.5ten
00 000
000 00
0110 0
00000
00000
0000110000

Where’s the answer, 0.11? (need to remember where point is)

Representation of Fractions
So far, in our examples we used a “fixed” binary point.
What we really want is to “float” the binary point. Why?

Floating binary point most effective use of our limited bits
(and thus more accuracy in our number representation):

… 000000.001010100000…

Any other solution would lose accuracy!

example: put 0.1640625ten into binary. Represent
with 5-bits choosing where to put the binary point.

Store these bits and keep track of the binary
point 2 places to the left of the MSB

With floating-point rep., each numeral carries an exponent
field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very
large and small numbers can be represented.

Scientific Notation (in Decimal)

• Normalized form: no leadings 0s
(exactly one digit to left of decimal point)

• Alternatives to representing 1/1,000,000,000

– Normalized: 1.0 x 10-9

– Not normalized: 0.1 x 10-8,10.0 x 10-10

6.02ten x 1023

radix (base)decimal point

mantissa exponent

Scientific Notation (in Binary)

• Computer arithmetic that supports it called
floating point, because it represents numbers
where the binary point is not fixed, as it is for
integers
– Declare such variable in C as float

• double for double precision.

1.01two x 2-1

radix (base)“binary point”

exponentmantissa

Floating-Point Representation (1/2)
• Normal format: +1.xxx…xtwo*2yyy…ytwo

• Multiple of Word Size (32 bits)
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
•S represents Sign

Exponent represents y’s
Significand represents x’s

•Represent numbers as small as
2.0ten x 2-126 to as large as 2.0ten x 2127

•2126 = 8.507059173023462 e37 ≈ 1038

Floating-Point Representation (2/2)
• What if result too large?

(> 2.0x1038 , < -2.0x1038)
– Overflow! => Exponent larger than represented in 8-bit

Exponent field
• What if result too small?

(>0 & < 2.0x10-38 , <0 & > -2.0x10-38)
– Underflow! => Negative exponent larger than represented

in 8-bit Exponent field

• What would help reduce chances of overflow and/or
underflow?

0 2x10-38 2x10381-1 -2x10-38-2x1038

underflow overflowoverflow

Single Precision (Double Precision similar):

• Sign bit: 1 means negative 0 means positive

• Significand in sign-magnitude format (not 2’s complement)
– To pack more bits, leading 1 implicit for normalized numbers
– 1 + 23 bits single, 1 + 52 bits double
– always true: 0 < Significand < 1 (for normalized numbers)

• Note: 0 has no leading 1, so reserve exponent value 0 just for
number 0

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

IEEE 754 Floating Point Standard (1/3)

IEEE 754 Floating Point Standard (2/3)

• IEEE 754 uses “biased exponent”
representation
– Designers wanted FP numbers to be used even if no

FP hardware; e.g., sort records with FP numbers
using integer compares

– Wanted bigger (integer) exponent field to represent
bigger numbers

– 2’s complement poses a problem (because negative
numbers look bigger)
• Use just magnitude and offset by half the range

IEEE 754 Floating Point Standard (3/3)

• Summary (single precision):

•Called Biased Notation, where bias is
number subtracted to get final number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual
value for exponent

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

