
CS 110
Computer Architecture

Lecture 8:
Running a Program - CALL

(Compiling, Assembling,
Linking, and Loading)

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

IEEE 754 Floating Point Standard

• Summary (single precision):

•Called Biased Notation, where bias is
number subtracted to get final number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual
value for exponent

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Representation for ± ∞

• In FP, divide by 0 should produce ± ∞, not
overflow.
•Why?
– OK to do further computations with ∞

E.g., X/0 > Y may be a valid comparison

• IEEE 754 represents ± ∞
– Most positive exponent reserved for ∞
– Significands all zeroes

Representation for 0

• Represent 0?
– exponent all zeroes
– significand all zeroes
– What about sign? Both cases valid
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

Special Numbers
• What have we defined so far? (Single Precision)

Clever idea:
– Use exp=0,255 & Sig!=0

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

Representation for Not a Number

• What do I get if I calculate
sqrt(-4.0)or 0/0?

– If ∞ not an error, these shouldn’t be either
– Called Not a Number (NaN)
– Exponent = 255, Significand nonzero

• Why is this useful?
– Hope NaNs help with debugging?
– They contaminate: op(NaN, X) = NaN
– Can use the significand to identify which!

Representation for Denorms (1/2)

• Problem: There’s a gap among representable FP
numbers around 0
– Smallest representable pos num:

• a = 1.000… * 2-126 = 2-126

– Second smallest representable pos num:
• b = 1.000…1 * 2-126

= (1 + 0.000…1) * 2-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

– a - 0 = 2-126

– b - a = 2-149 b
a0 +-

Gaps!

Normalization
and implicit 1
is to blame!

Representation for Denorms (2/2)
•Solution:

• We still haven’t used Exponent = 0,
Significand nonzero

• DEnormalized number: no (implied)
leading 1, implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

Special Numbers

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NAN

Summary
• Floating Point lets us:
– Represent numbers containing both integer and fractional parts; makes

efficient use of available bits.
– Store approximate values for very large and very small #s.

• IEEE 754 Floating-Point Standard is most widely accepted
attempt to standardize interpretation of such numbers (Every desktop or
server computer sold since ~1997 follows these conventions)

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)

Can
store
NaN,
± ∞

Play
• Double precision identical, except with exponent bias of 1023

(half, quad similar)

Levels of
Representation/Interpretation

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (e.g. RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

11

Logic Circuit Description
(Circuit Schematic Diagrams)

+ How to take
a program
and run it

Language Execution Continuum

• An Interpreter is a program that executes other
programs.

• Language translation gives us another option
• In general, we interpret a high-level language

when efficiency is not critical and translate to a
lower-level language to increase performance

Easy to program
Inefficient to interpret

Difficult to program
Efficient to interpret

Scheme Java C++ C Assembly Machine code
Java bytecode

12

Interpretation vs Translation

• How do we run a program written in a source
language?
– Interpreter: Directly executes a program in the

source language
– Translator: Converts a program from the source

language to an equivalent program in another
language

• For example, consider a Python program
foo.py

13

Interpretation

• Python interpreter is just a program that reads a
python program and performs the functions of
that python program.

14

Interpretation
• Any good reason to interpret machine language in

software?
• VENUS RISC-V simulator: useful for learning /

debugging
• Apple Macintosh conversion
– Switched from Motorola 680x0 instruction architecture to

PowerPC.
• Similar issue with switch to x86
• Similar issue with switch to ARM

– Could require all programs to be re-translated from high
level language

– Instead, let executables contain old and/or new machine
code, interpret old code in software if necessary
(emulation)

15

Interpretation vs. Translation? (1/2)

• Generally easier to write interpreter
• Interpreter closer to high-level, so can give

better error messages (e.g., VENUS)
– Translator reaction: add extra information to help

debugging (line numbers, names)

• Interpreter slower (10x?), code smaller (2x?)
• Interpreter provides instruction set

independence: run on any machine

16

Interpretation vs. Translation? (2/2)

• Translated/compiled code almost always more
efficient and therefore higher performance:
– Important for many applications, particularly

operating systems.
• Translation/compilation helps “hide” the program

“source” from the users:
– One model for creating value in the marketplace

(eg. Microsoft keeps all their source code secret)
– Alternative model, “open source”, creates value by

publishing the source code and fostering a community
of developers.

17

Steps in compiling a C program

18

gcc -O2 -S -c foo.c

Compiler
• Input: High-Level Language Code

(e.g., foo.c)
• Output: Assembly Language Code

(e.g., foo.s for RISC-V)
• Note: Output may contain pseudo-instructions
• Pseudo-instructions: instructions that

assembler understands but not in machine
For example:
– move t1,t2 Þ addi t1,t2,0

19

Steps In The Compiler

• Lexer:
– Turns the input into "tokens", recognizes problems

with the tokens
• Parser:
– Turns the tokens into an "Abstract Syntax Tree",

recognizes problems in the program structure
• Semantic Analysis and Optimization:
– Checks for semantic errors, may reorganize the code

to make it better
• Code generation:
– Output the assembly code

20

Where Are We Now?

Compiler Class

21

Assembler
• Input: Assembly Language Code
• (e.g., foo.s for RISC-V)
• Output: Object Code, information tables

(e.g., foo.o for RISC-V)
• Reads and Uses Directives
• Replace Pseudo-instructions
• Produce Machine Language
• Creates Object File

22

Assembler Directives
• Give directions to assembler, but do not

produce machine instructions
.text: Subsequent items put in user text
segment (machine code)
.data: Subsequent items put in user data
segment (binary rep of data in source file)
.globl sym: declares sym global and can be
referenced from other files
.asciiz str: Store the string str in memory
and null-terminate it
.word w1…wn: Store the n 32-bit quantities in
successive memory words

23

Pseudo-instruction Replacement

24

So what is "tail" about...
• Often times your code has a convention like this:

{ ...
lots of code
return foo(y);

}
– It can be a recursive call to foo() if this is within foo(), or call to a

different function...
• So for efficiency...

– Evaluate the arguments for foo() and place them in a0-a7...
– Restore ra, all callee saved registers, and sp
– Then call foo() with j or tail

• Then when foo() returns, it can return directly to where it needs to
return to
– Rather than returning to wherever foo() was called and returning from

there
– Tail Call Optimization

25

Producing Machine Language (1/3)

• Simple Case
– Arithmetic, Logical, Shifts, and so on
– All necessary info is within the instruction already

• What about Branches?
– PC-Relative (e.g., beq/bne and jal)
– So once pseudo-instructions are replaced by real

ones, we know by how many instructions to
branch

• So these can be handled

26

16b "RISC-V C" Instruction Set

• Last lecture: the RISC-V includes an optional "C" (Compact)
16b ISA
– https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
– Understanding why it was designed this way is useful, but not used in

class. Might inspire exam questions…

• At this point in CALL, assembler can pattern match and turn
32b instructions into 16b instructions
– So the presence of the 16b instructions doesn't need to be known to

anybody but the assembler and the RISC-V processor itself!
– EG, pattern of:

sw s0 4(sp) converts to c.swsp s0 4
beq x0 s2 20 converts to c.beqz s2 20

27

https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Producing Machine Language (2/3)

• “Forward Reference” problem
– Branch instructions can refer to labels that are

“forward” in the program:

– Solved by taking two passes over the program
• First pass remembers position of labels
• Second pass uses label positions to generate code

28

addi t2, zero, 9 # t2 = 9
L1: slt t1, zero, t2 # 0 < t2? Set t1

beq t1, zero, L2 # NO! t2 <= 0; Go to L2
addi t2, t2, -1 # YES! t2 > 0; t2--
j L1 # Go to L1

L2:

3 words back
(6 halfwords)

3 words forward
(6 halfwords)

Producing Machine Language (3/3)
• What about jumps (j, jal) and branches (beq,
bne)?
– Jumps within a file are PC relative (and we can easily

compute):
• Just count the number of instruction halfwords between target

and jump to determine the offset: position-independent code (PIC)
– Jumps to other files we can’t

• What about references to static data?
– la gets broken up into lui and addi
– These require the full 32-bit address of the data

• These can’t be determined yet, so we create two tables
…

29

Symbol Table

• List of “items” in this file that may be used by
other files

• What are they?
– Labels: function calling
– Data: anything in the .data section; variables

which may be accessed across files

30

Relocation Table

• List of “items” whose address this file needs
What are they?
– Any external label jumped to: jal, jalr
• External (including lib files)
• Such as the la instruction

E.g., for jalr base register

– Any piece of data in static section
• Such as the la instruction

E.g., for lw/sw base register

31

Object File Format
• object file header: size and position of the other

pieces of the object file
• text segment: the machine code
• data segment: binary representation of the static

data in the source file
• relocation information: identifies lines of code that

need to be fixed up later
• symbol table: list of this file’s labels and static data

that can be referenced
• debugging information
• A standard format is ELF (except MS)

http://www.skyfree.org/linux/references/ELF_Format.pdf 32

http://www.skyfree.org/linux/references/ELF_Format.pdf

Where Are We Now?

33

Linker (1/3)
• Input: Object code files, information tables (e.g.,
foo.o,libc.o for RISC-V)

• Output: Executable code
(e.g., a.out for RISC-V)

• Combines several object (.o) files into a single
executable (“linking”)

• Enable separate compilation of files
– Changes to one file do not require recompilation of the

whole program
• Linux source > 20 M lines of code!

– Old name “Link Editor” from editing the “links” in jump
and link instructions

34

.o file 1
text 1
data 1
info 1

.o file 2
text 2
data 2
info 2

Linker

a.out
Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2

Linker (2/3)

35

Linker (3/3)

• Step 1: Take text segment from each .o file
and put them together

• Step 2: Take data segment from each .o file,
put them together, and concatenate this onto
end of text segments

• Step 3: Resolve references
– Go through Relocation Table; handle each entry
– That is, fill in all absolute addresses

36

Four Types of Addresses

• PC-Relative Addressing (beq, bne, jal)
– Never need to relocate (PIC: position independent

code)
• External Function Reference (usually jal)
– Always relocate

• Static Data Reference (often auipc/addi)
– Always relocate
– RISC-V often uses auipc rather than lui so that a big

block of stuff can be further relocated as long as it is
fixed relative to the pc

37

Absolute Addresses in RISC-V

• Which instructions need relocation editing?
– J-format: jump and link: ONLY for external jumps

– I-,S- Format: Loads and stores to variables in static area, relative to global pointer

– What about conditional branches?

– PC-relative addressing preserved even if code moves
38

jalxxxxx

lwgp rdxxx

rd

swrs1 gpxx

beq
bners1 rs2 xxx

x

Resolving References (1/2)

• Linker assumes first word of first text segment
is at address 0x04000000 for RV32.
– (More later when we study “virtual memory”)

• Linker knows:
– Length of each text and data segment
– Ordering of text and data segments

• Linker calculates:
– Absolute address of each label to be jumped to

and each piece of data being referenced

39

Resolving References (2/2)

• To resolve references:
– search for reference (data or label) in all “user”

symbol tables
– if not found, search library files

(for example, for printf)
– once absolute address is determined, fill in the

machine code appropriately

• Output of linker: executable file containing
text and data (plus header)

40

Where Are We Now?

41

Loader Basics

• Input: Executable Code
(e.g., a.out for RISC-V)

• Output: (program is run)
• Executable files are stored on disk
• When one is run, loader’s job is to load it into

memory and start it running
• In reality, loader is the operating system (OS)
– loading is one of the OS tasks

42

Loader … what does it do?
• Reads executable file’s header to determine size of text and

data segments
• Creates new address space for program large enough to hold

text and data segments, along with a stack segment
• Copies instructions and data from executable file into the new

address space
• Copies arguments passed to the program onto the stack
• Initializes machine registers

– Most registers cleared, but stack pointer assigned address of 1st free
stack location

• Jumps to start-up routine that copies program’s arguments
from stack to registers & sets the PC
– If main routine returns, start-up routine terminates program with the

exit system call 43

Question
At what point in process are all the machine code bits
generated for the following assembly instructions:

1) add x6, x7, x8
2) jal x1, fprintf

A: 1) & 2) After compilation
B: 1) After compilation, 2) After assembly
C: 1) After assembly, 2) After linking
D: 1) After assembly, 2) After loading
E: 1) After compilation, 2) After linking 44

Answer

At what point in process are all the
machine code bits determined for the
following assembly instructions:

1) add x6, x7, x8
2) jal x1, fprintf

C: (1) After assembly, (2) After linking
45

Example: C Þ Asm Þ Obj Þ Exe Þ Run
C Program Source Code: prog.c

“printf” lives in “libc”

46

Compile to RISC-V Assembly: prog.s

47

48

Pseudo Instructions?Example: C Þ Asm Þ Obj Þ Exe Þ Run

49

7 Pseudo Instructions

50

Assembly Step 1:
Remove Pseudo Instructions, assign jumps

PC Machine Code Basic Code Original Code Label
0x0 0xFFC10113 addi x2 x2 -4 addi sp, sp, -4 main:
0x4 0x00112023 sw x1 0(x2) sw ra, 0(sp)
0x8 0x00000293 addi x5 x0 0 mv t0, x0
0xc 0x00000593 addi x11 x0 0 mv a1, x0
0x10 0x06400313 addi x6 x0 100 li t1, 100
0x14 0x0100006F jal x0 16 j check
0x18 0x025283B3 mul x7 x5 x5 mul t2, t0, t0 loop:
0x1c 0x007585B3 add x11 x11 x7 add a1, a1, t2
0x20 0x00128293 addi x5 x5 1 addi t0, t0, 1
0x24 0xFE62CAE3 blt x5 x6 -12 blt t0, t1, loop check:
0x28 0x00000517 auipc x10 l.str la a0, str
0x2c 0x00050513 addi x10 x10 r.str la a0, str
0x30 0x000000EF jal x1 printf jal printf
0x34 0x00000513 addi x10 x0 0 mv a0, x0
0x38 0x00012083 lw x1 0(x2) lw ra, 0(sp)
0x3c 0x00410113 addi x2 x2 4 addi sp, sp 4
0x40 0x00008067 jalr x0 x1 0 ret 51

Assigned
jumps

Unknown
addresses

Assembly Step 1:
Instructions and Labels have addresses!

PC Machine Code Basic Code Original Code Label
0x00 0xFFC10113 addi x2 x2 -4 addi sp, sp, -4 main:
0x04 0x00112023 sw x1 0(x2) sw ra, 0(sp)
0x08 0x00000293 addi x5 x0 0 mv t0, x0
0x0c 0x00000593 addi x11 x0 0 mv a1, x0
0x10 0x06400313 addi x6 x0 100 li t1, 100
0x14 0x0100006F jal x0 16 j check
0x18 0x025283B3 mul x7 x5 x5 mul t2, t0, t0 loop:
0x1c 0x007585B3 add x11 x11 x7 add a1, a1, t2
0x20 0x00128293 addi x5 x5 1 addi t0, t0, 1
0x24 0xFE62CAE3 blt x5 x6 -12 blt t0, t1, loop check:
0x28 0x00000517 auipc x10 l.str la a0, str
0x2c 0x00050513 addi x10 x10 r.str la a0, str
0x30 0x000000EF jal x1 printf jal printf
0x34 0x00000513 addi x10 x0 0 mv a0, x0
0x38 0x00012083 lw x1 0(x2) lw ra, 0(sp)
0x3c 0x00410113 addi x2 x2 4 addi sp, sp 4
0x40 0x00008067 jalr x0 x1 0 ret 52

Assembly Step 2:
Create relocation table and symbol table

• Symbol Table
Label address (in module) Type
main: 0x00000000 global text
loop: 0x00000018 local text
check: 0x00000024 local text
str: 0x00000000 local data

• Relocation Table
Address Instr. type Dependency
0x0000000028 auipc l.str
0x000000002c addi r.str
0x0000000030 jal printf

53

Assembly Step 3:

• Generate object (.o) file:
– Output binary representation for
• text segment (instructions)
• data segment (data)
• symbol and relocation tables

– Using dummy “placeholders” for unresolved
absolute and external references

54

Example: C Þ Asm Þ Obj Þ Exe Þ Run
Text segment of Assembled prog.s: prog.o

PC Machine Code Basic Code Original Code Label
0x00 0xFFC10113 addi x2 x2 -4 addi sp, sp, -4 main:
0x04 0x00112023 sw x1 0(x2) sw ra, 0(sp)
0x08 0x00000293 addi x5 x0 0 mv t0, x0
0x0c 0x00000593 addi x11 x0 0 mv a1, x0
0x10 0x06400313 addi x6 x0 100 li t1, 100
0x14 0x0100006F jal x0 16 j check
0x18 0x025283B3 mul x7 x5 x5 mul t2, t0, t0 loop:
0x1c 0x007585B3 add x11 x11 x7 add a1, a1, t2
0x20 0x00128293 addi x5 x5 1 addi t0, t0, 1
0x24 0xFE62CAE3 blt x5 x6 -12 blt t0, t1, loop check:
0x28 0x00000517 auipc x10 0 la a0, str
0x2c 0x00050513 addi x10 x10 0 la a0, str
0x30 0x000000EF jal x1 0 jal printf
0x34 0x00000513 addi x10 x0 0 mv a0, x0
0x38 0x00012083 lw x1 0(x2) lw ra, 0(sp)
0x3c 0x00410113 addi x2 x2 4 addi sp, sp 4
0x40 0x00008067 jalr x0 x1 0 ret 55

Example: C Þ Asm Þ Obj Þ Exe Þ Run
Move text segment to text location

PC Machine Code Basic Code Original Code Label
00400000 0xFFC10113 addi x2 x2 -4 addi sp, sp, -4 main:
00400004 0x00112023 sw x1 0(x2) sw ra, 0(sp)
00400008 0x00000293 addi x5 x0 0 mv t0, x0
0040000c 0x00000593 addi x11 x0 0 mv a1, x0
00400010 0x06400313 addi x6 x0 100 li t1, 100
00400014 0x0100006F jal x0 16 j check
00400018 0x025283B3 mul x7 x5 x5 mul t2, t0, t0 loop:
0040001c 0x007585B3 add x11 x11 x7 add a1, a1, t2
00400020 0x00128293 addi x5 x5 1 addi t0, t0, 1
00400024 0xFE62CAE3 blt x5 x6 -12 blt t0, t1, loop check:
00400028 0x00000517 auipc x10 0 la a0, str
0040002c 0x00050513 addi x10 x10 0 la a0, str
00400030 0x000000EF jal x1 0 jal printf
00400034 0x00000513 addi x10 x0 0 mv a0, x0
00400038 0x00012083 lw x1 0(x2) lw ra, 0(sp)
0040003c 0x00410113 addi x2 x2 4 addi sp, sp 4
00400040 0x00008067 jalr x0 x1 0 ret 56

Example: C Þ Asm Þ Obj Þ Exe Þ Run
Linking: PC relative static data str!

• Static Data str
– Above text segment, so assume: 0x00401B08
– la a0 str =>
auipc x10 ?????
addi x10 ???

– PC relative addr with auipc!
• Can move entire program around!

– auipc at address: 0x00400028
=> (str) 0x00401B08 = (PC auipc) 0x00400028 + offset =>
offset = 0x1AE0
– represent 0x1AE0 as auipc/ addi pair:

• addi immediate: 0xAE0
• addi with Two’s Complement => -1312 =>

need to add 1 to auipc immediate
• auipc immediate: 0x00002

57

Example: C Þ Asm Þ Obj Þ Exe Þ Run
Linking: PC relative to printf!

• Libc was linked to executable
– Assume printf at: 0x0040C4F
– jal printf =>
jal x1 ?????

– PC relative addr!
• Can move entire program around!

– jal at address: 0x00400030
=> (printf) 0x00400C4F = (PC jal) 0x00400030 + offset =>
offset = 0xC1F

58

Example: C Þ Asm Þ Obj Þ Exe Þ Run
Text segment of Linked prog.o: a.out

PC Machine Code Basic Code Original Code Label
00400000 0xFFC10113 addi x2 x2 -4 addi sp, sp, -4 main:
00400004 0x00112023 sw x1 0(x2) sw ra, 0(sp)
00400008 0x00000293 addi x5 x0 0 mv t0, x0
0040000c 0x00000593 addi x11 x0 0 mv a1, x0
00400010 0x06400313 addi x6 x0 100 li t1, 100
00400014 0x0100006F jal x0 16 j check
00400018 0x025283B3 mul x7 x5 x5 mul t2, t0, t0 loop:
0040001c 0x007585B3 add x11 x11 x7 add a1, a1, t2
00400020 0x00128293 addi x5 x5 1 addi t0, t0, 1
00400024 0xFE62CAE3 blt x5 x6 -12 blt t0, t1, loop check:
00400028 0x00002517 auipc x10 2 la a0, str
0040002c 0xAE050513 addi x10 x10 -1312 la a0, str
00400030 0x00C1F0EF jal x1 0xC1F jal printf
00400034 0x00000513 addi x10 x0 0 mv a0, x0
00400038 0x00012083 lw x1 0(x2) lw ra, 0(sp)
0040003c 0x00410113 addi x2 x2 4 addi sp, sp 4
00400040 0x00008067 jalr x0 x1 0 ret 59

Static vs Dynamically linked libraries

• What we’ve described is the traditional way:
statically-linked approach
– The library is now part of the executable, so if the

library updates, we don’t get the fix (have to
recompile if we have source)

– It includes the entire library even if not all of it will be
used

– Executable is self-contained
• An alternative is dynamically linked libraries

(DLL), common on Windows (.dll) & UNIX (.so)
platforms

60

Dynamically linked libraries
• Space/time issues

+ Storing a program requires less disk space
+ Sending a program requires less time
+ Executing two programs requires less memory (if they share a
library)
– At runtime, there’s time overhead to do link

• Upgrades
+ Replacing one file (libXYZ.so) upgrades every program that
uses library “XYZ”
– Having the executable isn’t enough anymore
– Thus "containers": We hate dependencies, so we are just going

to ship around all the libraries and everything else as part of the
'application'

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and operating
system. However, it provides many benefits that often outweigh these

en.wikipedia.org/wiki/Dynamic_linking

61

Dynamically linked libraries

• The prevailing approach to dynamic linking
uses machine code as the “lowest common
denominator”
– The linker does not use information about how

the program or library was compiled (i.e., what
compiler or language)

– This can be described as “linking at the machine
code level”

– This isn’t the only way to do it ...

62

Address Space Layout Randomization

• With C memory errors, attackers traditionally often
were able to jump to interesting functions of libraries
(“Return oriented programming”)
– E.g.: overwrite the ra saved on the stack to jump to

another function!
• Randomized layout for libraries during linking =>

cannot predict address of function without linker info
=>

• Attackers cannot easily jump to existing code
• Attackers need this, because with Virtual Memory, we

can mark heap & stack as unexecutable!

63

In Conclusion…
§ Compiler converts a single HLL file

into a single assembly language file.

§ Assembler removes pseudo-
instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.
ú Does 2 passes to resolve addresses,

handling internal forward references

§ Linker combines several .o files and
resolves absolute addresses.
ú Enables separate compilation, libraries

that need not be compiled, and
resolves remaining addresses

§ Loader loads executable into memory
and begins execution.

64

