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Greater Instruction-Level Parallelism (ILP)

• Multiple issue “superscalar”
– Replicate pipeline stages => multiple pipelines
– Start multiple instructions per clock cycle
– CPI < 1, so use Instructions Per Cycle (IPC)
– E.g., 4GHz 4-way multiple-issue

• 16 BIPS, peak CPI = 0.25, peak IPC = 4

– But dependencies reduce this in practice

• “Out-of-Order” execution
– Reorder instructions dynamically in hardware to reduce 

impact of hazards

• Hyper-threading
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imm

Hyper-threading (simplified)

• Duplicate all elements that hold the state (registers)
• Use the same CL blocks
• Use muxes to select which state to use every clock cycle
• => run 2 independent processes

– No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, …)

• Speedup?       
– No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable 

resources (e.g. wait for memory) 3
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Superscalar Processor
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Static Two-Issue RISC-V Datapath
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Superscalar:
Dynamic Multiple Issue

• Hardware guarantees correct execution =>
– Compiler does not need to (but can) optimize

• Dynamic pipeline scheduling: 
– Re-order instructions based on:

• What functional units are free
• Avoiding of data hazards

– Reservation Station 
• Buffer of instructions waiting to be executed
• With operands (Registers) needed
• Once all operands are available: execute!

– Commit Unit (Reorder buffer): supply the operands to reservation station; 
write to register

– OR: Unified Physical Register File :
Registers are renamed for use in reservation station and commit unit
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Phases of Instruction Execution
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Fetch: Instruction bits retrieved from 
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to 
functional units. When execution completes, 
all results and exception flags are available.

Decode: Instructions dispatched to 
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates 
architectural state (aka “graduation”), or 
takes precise trap/interrupt.

PC

Commit

Decode/Rename



ARM Cortex A53 Pipeline
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• Prediction 1 clock cycle! Predict: branches, future function returns; 8 clock 
cycles on mis-prediction (flush pipeline)



Speculative & Out-of-Order Execution
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Intel Nehalem i7
• Hyperthreading:

– About 5% die area
– Up to 30% speed gain

(BUT also < 0% possible)
• Pipeline: 20-24 stages!
• Out-of-order execution

1. Instruction fetch.
2. Instruction dispatch to an instruction queue
3. Instruction: Wait in queue until input 

operands are available => instruction can 
leave queue before earlier, older instructions.

4. The instruction is issued to the appropriate 
functional unit and executed by that unit.

5. The results are queued.
6. Write to register only after all older 

instructions have their results written.
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“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

• ROB: Reorder Buffer
• Managed as circular buffer in program order, new instructions dispatched to 

free slots, oldest instruction committed/reclaimed when done (“p” bit set 
on result)

• Tag is given by index in ROB (Free pointer value)
• In dispatch, non-busy source operands read from architectural register file 

and copied to Src1 and Src2 with presence bit “p” set.  Busy operands copy 
tag of producer and clear “p” bit.

• Set valid bit “v” on dispatch, set issued bit “i” on issue
• On completion, search source tags, set “p” bit and copy data into src on tag 

match.  Write result and exception flags to ROB.
• On commit, check exception status, and copy result into architectural 

register file if no trap.

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free
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Managing Rename for Data-in-ROB

• If “p” bit set, then use value in architectural register file
• Else, tag field indicates instruction that will/has produced value
• For dispatch, read source operands <p,tag,value> from arch. regfile, 

then also read <p,result> from producing instruction in ROB at tag 
index, bypassing as needed. Copy operands to ROB.

• Write destination arch. register entry with  <0,Free,_>, to assign tag 
to ROB index of this instruction

• On commit, update arch. regfile with <1, _, Result>
• On trap, reset table (All p=1)
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Tagp Value
Tagp Value
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Tagp Value

One entry per 
architectural 
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associated with 
architectural 
registers, 
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ROB

Data Movement in Data-in-ROB Design
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Architectural Register 
File

Read operands 
during decode

Read 
operands at 
issue

Functional Units

Read results for 
commit

Bypass newer 
values at dispatch

Result 
Data

Write results at 
completion

Write results at 
commit

Source 
Operands

Write sources 
in dispatch



Reorder Buffer Holds Active Instructions
(Decoded but not Committed)

14

(Older instructions)

(Newer instructions)

Cycle t

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

Commit

Fetch

Cycle t + 1

Execute

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

ROB contents



Register Renaming

• Programmers/ Compilers (have to) re-use 
registers for different, unrelated purposes

• Idea: Re-name on the fly to resolve (fake) 
dependencies (anti-dependency)

• Additional benefit: CPU can have more physical 
registers than ISA!
– Alpha 21264 CPU has 80 integer register; ISA only 32
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Alternative to ”Data-in-ROB”:
Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

• Rename all architectural registers into a single physical 
register file during decode, no register values read

• Functional units read and write from single unified register file 
holding committed and temporary registers in execute

• Commit only updates mapping of architectural register to 
physical register, no data movement
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Unified Physical 
Register File

Read operands at issue

Functional Units

Write results at completion

Committed 
Register 
Mapping

Decode Stage 
Register 
Mapping



Lifetime of Physical Registers
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ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
When next writer of same architectural register commits

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)



Conclusion

• “Iron Law” of Processor Performance to 
estimate speed

• Complex Pipelines: more in CA II
• Multiple Functional Units => Parallel execution

– Static Multiple Issues (VLIW)
• E.g. 2 instructions per cycle

– Dynamic Multiple Issues (Superscalar)
• Re-order instructions
• Issue Buffer; Re-order Buffer; Commit Unit
• Re-naming of registeres
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New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
19
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What is Performance?

• Latency (or response time or execution time)
– Time to complete one task

• Bandwidth (or throughput)
– Tasks completed per unit time
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Transportation Analogy

Sports Car Bus

Passenger Capacity 2 50

Travel Speed 250 km/h 100 km/h

Fuel consumption 20 l/100km 20 l/100km
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Schwerin => Berlin trip: 200 km

Sports Car Bus

Travel Time 48 min 120 min

Time for 100 passengers 40 h 4 h

Fuel per passenger 2000 l 80 l



Latency & Throughput

* Note: 
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Transportation Computer
Travel Time Program execution time (latency)

e.g. time to update display

Time for 100 
passengers

Throughput:
e.g. number of server requests handled per hour 

Fuel per 
passenger

Energy per task*:
e.g.:
- how many movies can you watch per battery charge
- energy bill for datacenter

power is not a good measure, since low-power 
CPU might run for a long time to complete one 
task consuming more energy than faster computer 
running at higher power for a shorter time



Cloud Performance:
Why Application Latency Matters

• Key figure of merit: application responsiveness
– Longer the delay, the fewer the user clicks, the less the 

user happiness, and the lower the revenue per user
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Defining Relative CPU Performance

• PerformanceX = 1/Program Execution TimeX

• PerformanceX > PerformanceY =>
1/Execution TimeX > 1/Execution Timey =>
Execution TimeY > Execution TimeX

• Computer X is N times faster than Computer Y
PerformanceX / PerformanceY = N or
Execution TimeY / Execution TimeX = N
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Measuring CPU Performance

• Computers use a clock to determine when 
events takes place within hardware

• Clock cycles: discrete time intervals
– aka clocks, cycles, clock periods, clock ticks 

• Clock rate or clock frequency: clock cycles per 
second (inverse of clock cycle time)

• 3 GigaHertz clock rate 
=> clock cycle time = 1/(3x109) seconds 

clock cycle time = 333 picoseconds (ps)
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CPU Performance Factors

• To distinguish between processor time and I/O, 
CPU time is time spent in processor

• CPU Time/Program
= Clock Cycles/Program 
x Clock Cycle Time

• Or 
CPU Time/Program
= Clock Cycles/Program ÷ Clock Rate
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Iron Law of Performance

• A program executes instructions
• CPU Time/Program

= Clock Cycles/Program x Clock Cycle Time
= Instructions/Program 

x Average Clock Cycles/Instruction 
x Clock Cycle Time

• 1st term called Instruction Count
• 2nd term abbreviated CPI for average 
Clock Cycles Per Instruction 

• 3rd term is 1 / Clock rate
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Restating Performance Equation

• Time = Seconds
Program

Instructions Clock cycles Seconds
Program Instruction Clock Cycle

28
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What Affects Each Component? 
Instruction Count, CPI, Clock Rate

Affects What?
Algorithm

Programming 
Language
Compiler

Instruction Set
Architecture
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What Affects Each Component? 
Instruction Count, CPI, Clock Rate

Affects What?
Algorithm Instruction Count,

CPI
Programming 
Language

Instruction Count,
CPI

Compiler Instruction Count,
CPI

Instruction Set
Architecture

Instruction Count,
Clock Rate, CPI
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Question

• Which computer has the highest performance 
for a given program?
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Computer Clock
frequency

Clock cycles 
per 
instruction

#instructions 
per program

A 1GHz 2 1000

B 2GHz 5 800

C 500MHz 1.25 400

D 5GHz 10 2000



Question

• Which computer has the highest performance 
for a given program?
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Computer Clock
frequency

Clock cycles 
per 
instruction

#instructions 
per program

Calculation

A 1GHz 2 1000 1ns * 2 * 1000 = 2µs

B 2GHz 5 800 0.5ns  5 *800 = 2µs

C 500MHz 1.25 400 2ns  1.25 * 400 = 1µs

D 5GHz 10 2000 0.2ns * 10 * 2000 = 4µs



Workload and Benchmark

• Workload: Set of programs run on a computer 
– Actual collection of applications run or made from 

real programs to approximate such a mix 
– Specifies programs, inputs, and relative frequencies

• Benchmark: Program selected for use in 
comparing computer performance
– Benchmarks form a workload
– Usually standardized so that many use them
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SPEC 
(System Performance Evaluation Cooperative)
• Computer Vendor cooperative for 

benchmarks, started in 1989
• SPECCPU2006
– 12 Integer Programs
– 17 Floating-Point Programs

• Often turn into number where bigger is faster
• SPECratio: reference execution time on old 

reference computer divide by execution time 
on new computer to get an effective speed-up
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SPEC CPU 2017
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SPECINT2006 on AMD Barcelona
Description

Instruc-
tion

Count (B)
CPI

Clock 
cycle 

time (ps)

Execu-
tion

Time (s)

Refer-
ence

Time (s)

SPEC-
ratio

Interpreted string 
processing 2,118 0.75 400 637 9,770 15.3
Block-sorting compression 2,389 0.85 400 817 9,650 11.8
GNU C compiler 1,050 1.72 400 724 8,050 11.1
Combinatorial 
optimization 336 10.0 400 1,345 9,120 6.8
Go game 1,658 1.09 400 721 10,490 14.6
Search gene sequence 2,783 0.80 400 890 9,330 10.5
Chess game 2,176 0.96 400 837 12,100 14.5
Quantum computer 
simulation 1,623 1.61 400 1,047 20,720 19.8
Video compression 3,102 0.80 400 993 22,130 22.3
Discrete event simulation 
library 587 2.94 400 690 6,250 9.1
Games/path finding 1,082 1.79 400 773 7,020 9.1
XML parsing 1,058 2.70 400 1,143 6,900 6.036
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Summarizing Performance …

Clickers: Which system is faster?

System Rate (Task 1) Rate (Task 2)

A 10 20

B 20 10

A: System A
B: System B
C: Same performance
D: Unanswerable question!
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… Depends Who’s Selling
System Rate (Task 1) Rate (Task 2)

A 10 20

B 20 10

Average

15

15
Average throughput

System Rate (Task 1) Rate (Task 2)

A 0.50 2.00

B 1.00 1.00

Average

1.25

1.00
Throughput relative to B

System Rate (Task 1) Rate (Task 2)

A 1.00 1.00

B 2.00 0.50

Average

1.00

1.25
Throughput relative to A



Summarizing SPEC Performance

• Varies from 6x to 22x faster than reference 
computer

• Geometric mean of ratios: 
N-th root of product 
of N ratios
– Geometric Mean gives same relative answer no 

matter what computer is used as reference

• Geometric Mean for Barcelona is 11.7
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Midterm I Review
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3 b) & c): TA will cover in discussion
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4 a)

• Control characters like ”\0” are characters BUT:
• No guarantee that a “\0” will be at the end is given, so:
• Space for “\0” after the 5 characters needs to be allocated!
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5 a)
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• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

Exponent Significand Object

0 0 0

0 nonzero Denorm

1-254 anything +/- fl. pt. #

255 0 +/- ∞

255 nonzero NAN

AND:  0111 1111 1111 1111 1111 1111 1111 1111
=  1000 0000 0000 0000 0000 0000 0000 0000 -1

XOR:   S111 1111 1000 0000 0000 0000 0000 0000  
=   0x7F 80 00 00  



9 
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Answer circuit:



10 a)

• NOT: 2ns
• Clk-to-Q: 2ns
• Setup: 2ns
• Clock: 8ns 46
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12 b)
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11 c)


