
CS 110
Computer Architecture

Lecture 15:
Performance

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Greater Instruction-Level Parallelism (ILP)

• Multiple issue “superscalar”
– Replicate pipeline stages => multiple pipelines
– Start multiple instructions per clock cycle
– CPI < 1, so use Instructions Per Cycle (IPC)
– E.g., 4GHz 4-way multiple-issue

• 16 BIPS, peak CPI = 0.25, peak IPC = 4

– But dependencies reduce this in practice

• “Out-of-Order” execution
– Reorder instructions dynamically in hardware to reduce

impact of hazards

• Hyper-threading
2

imm

Hyper-threading (simplified)

• Duplicate all elements that hold the state (registers)
• Use the same CL blocks
• Use muxes to select which state to use every clock cycle
• => run 2 independent processes

– No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, …)

• Speedup?
– No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable

resources (e.g. wait for memory) 3

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

re
gi

st
er

s

PC
PC

rs2
rs1
rd

Superscalar Processor

4

Static Two-Issue RISC-V Datapath

5

Superscalar:
Dynamic Multiple Issue

• Hardware guarantees correct execution =>
– Compiler does not need to (but can) optimize

• Dynamic pipeline scheduling:
– Re-order instructions based on:

• What functional units are free
• Avoiding of data hazards

– Reservation Station
• Buffer of instructions waiting to be executed
• With operands (Registers) needed
• Once all operands are available: execute!

– Commit Unit (Reorder buffer): supply the operands to reservation station;
write to register

– OR: Unified Physical Register File :
Registers are renamed for use in reservation station and commit unit

6

Phases of Instruction Execution

7

Fetch: Instruction bits retrieved from
instruction cache.I-cache

Fetch Buffer

Issue Buffer

Functional Units

Architectural
State

Execute: Instructions and operands issued to
functional units. When execution completes,
all results and exception flags are available.

Decode: Instructions dispatched to
appropriate issue buffer

Result Buffer
Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

PC

Commit

Decode/Rename

ARM Cortex A53 Pipeline

8

• Prediction 1 clock cycle! Predict: branches, future function returns; 8 clock
cycles on mis-prediction (flush pipeline)

Speculative & Out-of-Order Execution

9

Intel Nehalem i7
• Hyperthreading:

– About 5% die area
– Up to 30% speed gain

(BUT also < 0% possible)
• Pipeline: 20-24 stages!
• Out-of-order execution

1. Instruction fetch.
2. Instruction dispatch to an instruction queue
3. Instruction: Wait in queue until input

operands are available => instruction can
leave queue before earlier, older instructions.

4. The instruction is issued to the appropriate
functional unit and executed by that unit.

5. The results are queued.
6. Write to register only after all older

instructions have their results written.

10

“Data-in-ROB” Design
(HP PA8000, Pentium Pro, Core2Duo, Nehalem)

• ROB: Reorder Buffer
• Managed as circular buffer in program order, new instructions dispatched to

free slots, oldest instruction committed/reclaimed when done (“p” bit set
on result)

• Tag is given by index in ROB (Free pointer value)
• In dispatch, non-busy source operands read from architectural register file

and copied to Src1 and Src2 with presence bit “p” set. Busy operands copy
tag of producer and clear “p” bit.

• Set valid bit “v” on dispatch, set issued bit “i” on issue
• On completion, search source tags, set “p” bit and copy data into src on tag

match. Write result and exception flags to ROB.
• On commit, check exception status, and copy result into architectural

register file if no trap.

Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode
Tagp Src1 Tagp Src2 Regp Result Except?iv Opcode

Oldest

Free

11

Managing Rename for Data-in-ROB

• If “p” bit set, then use value in architectural register file
• Else, tag field indicates instruction that will/has produced value
• For dispatch, read source operands <p,tag,value> from arch. regfile,

then also read <p,result> from producing instruction in ROB at tag
index, bypassing as needed. Copy operands to ROB.

• Write destination arch. register entry with <0,Free,_>, to assign tag
to ROB index of this instruction

• On commit, update arch. regfile with <1, _, Result>
• On trap, reset table (All p=1)

12

Tagp Value
Tagp Value
Tagp Value

Tagp Value

One entry per
architectural
register

Rename table
associated with
architectural
registers,
managed in
decode/dispatch

ROB

Data Movement in Data-in-ROB Design

13

Architectural Register
File

Read operands
during decode

Read
operands at
issue

Functional Units

Read results for
commit

Bypass newer
values at dispatch

Result
Data

Write results at
completion

Write results at
commit

Source
Operands

Write sources
in dispatch

Reorder Buffer Holds Active Instructions
(Decoded but not Committed)

14

(Older instructions)

(Newer instructions)

Cycle t

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

Commit

Fetch

Cycle t + 1

Execute

…
ld x1, (x3)
add x3, x1, x2
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x1)
…

ROB contents

Register Renaming

• Programmers/ Compilers (have to) re-use
registers for different, unrelated purposes

• Idea: Re-name on the fly to resolve (fake)
dependencies (anti-dependency)

• Additional benefit: CPU can have more physical
registers than ISA!
– Alpha 21264 CPU has 80 integer register; ISA only 32

15

Alternative to ”Data-in-ROB”:
Unified Physical Register File
(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

• Rename all architectural registers into a single physical
register file during decode, no register values read

• Functional units read and write from single unified register file
holding committed and temporary registers in execute

• Commit only updates mapping of architectural register to
physical register, no data movement

16

Unified Physical
Register File

Read operands at issue

Functional Units

Write results at completion

Committed
Register
Mapping

Decode Stage
Register
Mapping

Lifetime of Physical Registers

17

ld x1, (x3)
addi x3, x1, #4
sub x6, x7, x9
add x3, x3, x6
ld x6, (x1)
add x6, x6, x3
sd x6, (x1)
ld x6, (x11)

ld P1, (Px)
addi P2, P1, #4
sub P3, Py, Pz
add P4, P2, P3
ld P5, (P1)
add P6, P5, P4
sd P6, (P1)
ld P7, (Pw)

Rename

When can we reuse a physical register?
When next writer of same architectural register commits

• Physical regfile holds committed and speculative values
• Physical registers decoupled from ROB entries (no data in ROB)

Conclusion

• “Iron Law” of Processor Performance to
estimate speed

• Complex Pipelines: more in CA II
• Multiple Functional Units => Parallel execution

– Static Multiple Issues (VLIW)
• E.g. 2 instructions per cycle

– Dynamic Multiple Issues (Superscalar)
• Re-order instructions
• Issue Buffer; Re-order Buffer; Commit Unit
• Re-naming of registeres

18

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
19

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory (Cache)

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

How do
we know?

What is Performance?

• Latency (or response time or execution time)
– Time to complete one task

• Bandwidth (or throughput)
– Tasks completed per unit time

20

Transportation Analogy

Sports Car Bus

Passenger Capacity 2 50

Travel Speed 250 km/h 100 km/h

Fuel consumption 20 l/100km 20 l/100km

21

Schwerin => Berlin trip: 200 km

Sports Car Bus

Travel Time 48 min 120 min

Time for 100 passengers 40 h 4 h

Fuel per passenger 2000 l 80 l

Latency & Throughput

* Note:

22

Transportation Computer
Travel Time Program execution time (latency)

e.g. time to update display

Time for 100
passengers

Throughput:
e.g. number of server requests handled per hour

Fuel per
passenger

Energy per task*:
e.g.:
- how many movies can you watch per battery charge
- energy bill for datacenter

power is not a good measure, since low-power
CPU might run for a long time to complete one
task consuming more energy than faster computer
running at higher power for a shorter time

Cloud Performance:
Why Application Latency Matters

• Key figure of merit: application responsiveness
– Longer the delay, the fewer the user clicks, the less the

user happiness, and the lower the revenue per user

23

Defining Relative CPU Performance

• PerformanceX = 1/Program Execution TimeX

• PerformanceX > PerformanceY =>
1/Execution TimeX > 1/Execution Timey =>
Execution TimeY > Execution TimeX

• Computer X is N times faster than Computer Y
PerformanceX / PerformanceY = N or
Execution TimeY / Execution TimeX = N

24

Measuring CPU Performance

• Computers use a clock to determine when
events takes place within hardware

• Clock cycles: discrete time intervals
– aka clocks, cycles, clock periods, clock ticks

• Clock rate or clock frequency: clock cycles per
second (inverse of clock cycle time)

• 3 GigaHertz clock rate
=> clock cycle time = 1/(3x109) seconds

clock cycle time = 333 picoseconds (ps)

25

CPU Performance Factors

• To distinguish between processor time and I/O,
CPU time is time spent in processor

• CPU Time/Program
= Clock Cycles/Program
x Clock Cycle Time

• Or
CPU Time/Program
= Clock Cycles/Program ÷ Clock Rate

26

Iron Law of Performance

• A program executes instructions
• CPU Time/Program

= Clock Cycles/Program x Clock Cycle Time
= Instructions/Program

x Average Clock Cycles/Instruction
x Clock Cycle Time

• 1st term called Instruction Count
• 2nd term abbreviated CPI for average
Clock Cycles Per Instruction

• 3rd term is 1 / Clock rate

27

Restating Performance Equation

• Time = Seconds
Program

Instructions Clock cycles Seconds
Program Instruction Clock Cycle

28

××=

What Affects Each Component?
Instruction Count, CPI, Clock Rate

Affects What?
Algorithm

Programming
Language
Compiler

Instruction Set
Architecture

29

What Affects Each Component?
Instruction Count, CPI, Clock Rate

Affects What?
Algorithm Instruction Count,

CPI
Programming
Language

Instruction Count,
CPI

Compiler Instruction Count,
CPI

Instruction Set
Architecture

Instruction Count,
Clock Rate, CPI

30

Question

• Which computer has the highest performance
for a given program?

31

Computer Clock
frequency

Clock cycles
per
instruction

#instructions
per program

A 1GHz 2 1000

B 2GHz 5 800

C 500MHz 1.25 400

D 5GHz 10 2000

Question

• Which computer has the highest performance
for a given program?

32

Computer Clock
frequency

Clock cycles
per
instruction

#instructions
per program

Calculation

A 1GHz 2 1000 1ns * 2 * 1000 = 2µs

B 2GHz 5 800 0.5ns 5 *800 = 2µs

C 500MHz 1.25 400 2ns 1.25 * 400 = 1µs

D 5GHz 10 2000 0.2ns * 10 * 2000 = 4µs

Workload and Benchmark

• Workload: Set of programs run on a computer
– Actual collection of applications run or made from

real programs to approximate such a mix
– Specifies programs, inputs, and relative frequencies

• Benchmark: Program selected for use in
comparing computer performance
– Benchmarks form a workload
– Usually standardized so that many use them

33

SPEC
(System Performance Evaluation Cooperative)
• Computer Vendor cooperative for

benchmarks, started in 1989
• SPECCPU2006
– 12 Integer Programs
– 17 Floating-Point Programs

• Often turn into number where bigger is faster
• SPECratio: reference execution time on old

reference computer divide by execution time
on new computer to get an effective speed-up

34

SPEC CPU 2017

35

SPECINT2006 on AMD Barcelona
Description

Instruc-
tion

Count (B)
CPI

Clock
cycle

time (ps)

Execu-
tion

Time (s)

Refer-
ence

Time (s)

SPEC-
ratio

Interpreted string
processing 2,118 0.75 400 637 9,770 15.3
Block-sorting compression 2,389 0.85 400 817 9,650 11.8
GNU C compiler 1,050 1.72 400 724 8,050 11.1
Combinatorial
optimization 336 10.0 400 1,345 9,120 6.8
Go game 1,658 1.09 400 721 10,490 14.6
Search gene sequence 2,783 0.80 400 890 9,330 10.5
Chess game 2,176 0.96 400 837 12,100 14.5
Quantum computer
simulation 1,623 1.61 400 1,047 20,720 19.8
Video compression 3,102 0.80 400 993 22,130 22.3
Discrete event simulation
library 587 2.94 400 690 6,250 9.1
Games/path finding 1,082 1.79 400 773 7,020 9.1
XML parsing 1,058 2.70 400 1,143 6,900 6.036

37

Summarizing Performance …

Clickers: Which system is faster?

System Rate (Task 1) Rate (Task 2)

A 10 20

B 20 10

A: System A
B: System B
C: Same performance
D: Unanswerable question!

38

… Depends Who’s Selling
System Rate (Task 1) Rate (Task 2)

A 10 20

B 20 10

Average

15

15
Average throughput

System Rate (Task 1) Rate (Task 2)

A 0.50 2.00

B 1.00 1.00

Average

1.25

1.00
Throughput relative to B

System Rate (Task 1) Rate (Task 2)

A 1.00 1.00

B 2.00 0.50

Average

1.00

1.25
Throughput relative to A

Summarizing SPEC Performance

• Varies from 6x to 22x faster than reference
computer

• Geometric mean of ratios:
N-th root of product
of N ratios
– Geometric Mean gives same relative answer no

matter what computer is used as reference

• Geometric Mean for Barcelona is 11.7

39

Midterm I Review

40

3 b) & c): TA will cover in discussion

41

4 a)

• Control characters like ”\0” are characters BUT:
• No guarantee that a “\0” will be at the end is given, so:
• Space for “\0” after the 5 characters needs to be allocated!

42

43

5 a)

44

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

Exponent Significand Object

0 0 0

0 nonzero Denorm

1-254 anything +/- fl. pt. #

255 0 +/- ∞

255 nonzero NAN

AND: 0111 1111 1111 1111 1111 1111 1111 1111
= 1000 0000 0000 0000 0000 0000 0000 0000 -1

XOR: S111 1111 1000 0000 0000 0000 0000 0000
= 0x7F 80 00 00

9

45

Answer circuit:

10 a)

• NOT: 2ns
• Clk-to-Q: 2ns
• Setup: 2ns
• Clock: 8ns 46

47

10

48

10

49

11

12 b)

50

51

11 c)

