CS 110
Computer Architecture
Lecture 15:
Performance

Instructors:
Soren Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Greater Instruction-Level Parallelism (ILP)

 Multiple issue “superscalar”
— Replicate pipeline stages => multiple pipelines
— Start multiple instructions per clock cycle
— CPIl < 1, so use Instructions Per Cycle (IPC)
— E.g., 4GHz 4-way multiple-issue
* 16 BIPS, peak CPI =0.25, peak IPC=4
— But dependencies reduce this in practice
* “Out-of-Order” execution

— Reorder instructions dynamically in hardware to reduce
impact of hazards

* Hyper-threading

Hyper-threading (simplified)

Alim
| -
g O _ c—_— + o >
” A » + O 1 e e]0) L
(@) I'S o0 Q > O o) -
S5 £ Q = +
S o [s2|] = © £
v £ I O o
y C E
= . o
< +4 m J l
_)‘ > (e > o > e - >
. [5. Write
1. Instruction 2. Qecode/ 3. Execute 4. Memory
Fetch Register Read Back

Duplicate all elements that hold the state (registers)
Use the same CL blocks
Use muxes to select which state to use every clock cycle

=>run 2 independent processes

— No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, ...)

Speedup?

— No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable
resources (e.g. wait for memory)

Superscalar Processor

Instruction fetch
and decode unit

l

l

Reservation
station

Reservation
station

Functional

units Integer

Integer

l

l

In-order issue

Reservation

Reservation

station station
Floating Load-
point store

l

Commit
unit

Out-of-order execute

In-order commit

Static Two-Issue RISC-V Datapath

97
,>+ L -
4 — . _l—’

Cxeg) (28

9‘
M "| Registers >
1C090000-+| u E', instruction | »| | o >
x memory . = || write
- > data
Imm ALU | - Data -
b \ Gen _(Imm | me y
_/ | Gen =
U Address

Superscalar:
Dynamic Multiple Issue

 Hardware guarantees correct execution =>

— Compiler does not need to (but can) optimize
* Dynamic pipeline scheduling:
— Re-order instructions based on:
e What functional units are free
* Avoiding of data hazards
— Reservation Station
* Buffer of instructions waiting to be executed
* With operands (Registers) needed
* Once all operands are available: execute!
— Commit Unit (Reorder buffer): supply the operands to reservation station;
write to register

— OR: Unified Physical Register File :
Registers are renamed for use in reservation station and commit unit

Phases of Instruction Execution

PC
L4
|-cache
- ¢

Fetch: Instruction bits retrieved from
instruction cache.

Fetch Buffer

v

Decode/Rename

v

Decode: Instructions dispatched to
appropriate issue buffer

Issue Buffer

]

[

Execute: Instructions and operands issued to

Functional Units] functional units. When execution completes,

*

all results and exception flags are available.

Result Buffer

-
[Commit]
¥

Architectural

Commit: Instruction irrevocably updates
architectural state (aka “graduation”), or
takes precise trap/interrupt.

State

ARM Cortex A53 Pipeline

* Prediction 1 clock cycle! Predict: branches, future function returns; 8 clock
cycles on mis-prediction (flush pipeline)

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
- ALU pipe 0 >
Integer
AGU |« | Register —

+ fil -+ ALU pipe 1 >

B ,| Hybrid e pbe

Instruction ol
™| cache . ™ MAC pipe ™| writeback
Indirect

> Predictor - -
> Divide pipe >
Issue | |, Load pipe >
> Store pipe >

Instruction Decode Floating Point execute
MUL/DIV/SQRT pipe
Early 13-Entry Main Late R%Zggr
™ Decode | | 'MStuction > npocode [Decode file
Queue ALU pipe

D1 D2 D3 F1 F2 F3 F4

F5

Speculative & Out-of-Order Execution

Update predictors

-Order In-q[der

\ ™~ 7 N\

Decode &
Rename

N— 7

'
In-Order

eorder Bu%sr P1Commit[—

Physical Reg. File \

Branch Store
B ALY [

. 4

Prefetch Buffer (16 Bytes) P?erdairgi':)n
global/bimodal,
Predecode & loop, indirect
I I N h I ° 7 Instruction Length Decoder | | jmp
nte enaliem | TITIL] 1
Instruction Queue
18 x86 Instructions
Alignment
MacroOp Fusion
Hyperthreading: | 1 |
— About 5% die area Complex | | Simple |m| |Dm,
— Up to 30% speed gain = | | | v
(BUT also < 0% possible) Stream |—{Decoded Instruction Queue (28 OP entries) e yjicro
) . Decoder 1 i | 3 4 Instruction
Plpellne: 20-24 StagES! | MicroOp Fusion | Sequencer
. 2x 1 | 1 | 1 1 |
Out-of-order execution Reurement| [Regter Alocaon Table (RAT
1. Instruction fetch. File f=| Reorder Buffer (128-entry) fused
2. Instructlon dlspatch tO0 an |n5truct|on queue —_— l 1 l 1
3. Instruction: Wait in queue until input | |R“e“’"s“’"°“(e“"y) fused é

operands are available => instruction can
leave queue before earlier, older |nstruct|ons

4. Theinstruction is issued to the appropriate
functional unit and executed by that unit.

5. The results are queued.

6. Write to register only after all older
instructions have their results written.

nteger/
MMX ALUY
2XAGU |

Result Bus

octuple associative Data Cache 32 KByte,
64-entry TLB-4K, 32-entry TLB-2/4M :

“Data-in-ROB” Design

(HP PA800O, Pentium Pro, Core2Duo, Nehalem)

Oldest V| 1|/ Opcode || p|Tag| Srcl || p|Tag| Src2 || p |Reg| Result |Except?
~—lv|i||Opcode || p|Tag| Srcl || p|Tag| Src2 || p | Reg| Result |Except?
Free v|i|| Opcode ||p|Tag| Srcl ||p|Tag| Src2 || p | Reg| Result |Except?
—> v |i || Opcode || p|Tag| Srcl |[p|Tag| Src2 || p | Reg| Result |Except?

v|i || Opcode ||p|Tag| Srcl ||p|Tag| Src2 || p | Reg| Result [Except?

e ROB: Reorder Buffer

 Managed as circular buffer in program order, new instructions dispatched to
free slots, oldest instruction committed/reclaimed when done (“p” bit set

on result)
* Tagis given by index in ROB (Free pointer value)

* |In dispatch, non-busy source operands read from architectural register file
and copied to Srcl and Src2 with presence bit “p” set. Busy operands copy
tag of producer and clear “p” bit.

e Setvalid bit “v” on dispatch, set issued bit “i” on issue

* On completion, search source tags, set “p” bit and copy data into src on tag
match. Write result and exception flags to ROB.

 On commit, check exception status, and copy result into architectural

register file if no trap. "

Managing Rename for Data-in-ROB

Rename table
associated with p|Tag Value

architectural Tag| Value
p|Tag Value

©

One entry per

registers, ~— architectural
managed in o | Tag Value register
decode/dispatch —

* |If “p” bit set, then use value in architectural register file
* Else, tag field indicates instruction that will/has produced value

* For dispatch, read source operands <p,tag,value> from arch. regfile,
then also read <p,result> from producing instruction in ROB at tag
index, bypassing as needed. Copy operands to ROB.

* Write destination arch. register entry with <0,Free, >, to assign tag
to ROB index of this instruction

* On commit, update arch. regfile with <1, _, Result>
* On trap, reset table (All p=1)

12

Data Movement in Data-in-ROB Design

Architectural Register

Write results at

File commit
R
ea-d operands Read results for
during decode .
commit
Write sources ¢ i
in dispatch \V 7 \v] Bypass newer
¥ ¥ values at dispatch
Source Result
ROB Operands Data
7y
Read Write results at
pperands at v v completion
issue

Functional Units

13

Reorder Buffer Holds Active Instructions
(Decoded but not Committed)

ROB contents

-~ (Older instructions) / .

1d x1, (x3) }C"’"’"’t de x1, (x3)
add x3, x1, x2 | ~ add x3, x1, x2
sub x6, x7, x9 Execute sub x6, x7, x9
add x3, x3, x6 > add x3, x3, x6
1d x6, (x1) 1d x6, (x1)
add x6, x6, x3 | | add x6, x6, x3
sd x6, (x1) i Fetch sd x6, (x1)

1d x6, (x1) : 1d x6, (x1)

... (Newer instructions)

Cycle t

Cyclet+1

14

Register Renaming

* Programmers/ Compilers (have to) re-use
registers for different, unrelated purposes

* |dea: Re-name on the fly to resolve (fake)
dependencies (anti-dependency)

* Additional benefit: CPU can have more physical
registers than ISA!
— Alpha 21264 CPU has 80 integer register; ISA only 32

1 rl = m[1024] 1 rl = m[1024]
2 rl =rl1l + 2 2 rl = rl1l + 2
3 m[1032] = rl > 3 m[1032] = rl
4 rl = m[2048] 4 r2 = m[2048]
5 rl =rl1l + 4 5 r2 = r2 + 4
6 m[2056] = rl 6 m[2056] = r2

Alternative to "Data-in-ROB”:
Unified Physical Register File

(MIPS R10K, Alpha 21264, Intel Pentium 4 & Sandy/Ivy Bridge)

Rename all architectural registers into a single physical
register file during decode, no register values read

Functional units read and write from single unified register file

holding committed and temporary registers in execute

Commit only updates mapping of architectural register to
physical register, no data movement

Decode Stage Committed

Regist-er | Unified Physical | 1 Register
Mapping Register File Mapping

Read operands at issue I I IWrite results at completion

Functional Units

16

Lifetime of Physical Registers

® Physical regfile holds committed and speculative values
e Physical registers decoupled from ROB entries (no data in ROB)

1d x1, (x3) 1d Pl, (Px)
addi x3, x1, #4 addi P2, Pl, #4
sub x6, x7, x9 sub P3, Py, Pz
add x3, x3, x6 add P4, P2, P3
1d x6, (x1) Rename 1d p5, (P1l)
add x6, x6, x3 add P6, P5, P4
sd x6, (x1) sd P6, (P1l)
1d x6, (x11) 1d P7, (Pw)

When can we reuse a physical register?
When next writer of same architectural register commits

17

Conclusion

* “Iron Law” of Processor Performance to
estimate speed

* Complex Pipelines: more in CA I
* Multiple Functional Units => Parallel execution
— Static Multiple Issues (VLIW)
e E.g. 2 instructions per cycle
— Dynamic Multiple Issues (Superscalar)
* Re-order instructions

* |ssue Buffer; Re-order Buffer; Commit Unit
* Re-naming of registeres

New-School Machine Structures
(It's a bit more compllcated')

Software Hardware
Parallel Requests

Assigned to computer

Warehouse &
Scale §

e.g., Search “Katz” " Computer &
arness
Parallel Threads ,__/cjic g How do ?
Assigned to core Achieve Hig we know?
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions
All gates @ one time
Programming Languages

B Logic Gates

19

What is Performance?

e Latency (or response time or execution time)

— Time to complete one task
* Bandwidth (or throughput)

— Tasks completed per unit time

20

Transportation Analogy

Passenger Capacity 2 50
Travel Speed 250 km/h 100 km/h
Fuel consumption 20 1/100km 20 1/100km

Schwerin => Berlin trip: 200 km

I T

Travel Time 48 min 120 min
Time for 100 passengers 40 h 4 h
Fuel per passenger 2000 | 80 |

21

Latency & Throughput

Travel Time Program execution time (latency)
e.g. time to update display

Time for 100 Throughput:

passengers e.g. number of server requests handled per hour
Fuel per Energy per task*:

passenger e.g.:

- how many movies can you watch per battery charge
- energy bill for datacenter

* Note: power is not a good measure, since low-power
CPU might run for a long time to complete one
task consuming more energy than faster computer

running at higher power for a shorter time .

Cloud Performance:
Why Application Latency Matters

Server Delay Increased imeto Queries/ Any clicks/ User satisfac- Revenue/

(ms) next click (ms) user user tion User
50 - e - - -
200 500 - -0.3% -0.4% --
500 1200 - -1.0% -0.9% -1.2%
1000 1900 -0.7% -1.9% -1.6% -2.8%
2000 3100 -1.8% -4.4% -3.8% -4.3%

Figure 6.10 Negative impact of delays at Bing search server on user behavior [Brutlag
and Schurman 2009].

* Key figure of merit: application responsiveness

— Longer the delay, the fewer the user clicks, the less the
user happiness, and the lower the revenue per user

23

Defining Relative CPU Performance

* Performance, = 1/Program Execution Time,

* Performance, > Performance, =>
1/Execution Time, > 1/Execution Time, =>
Execution Time, > Execution Time,

 Computer X is N times faster than Computer Y
Performance, / Performance, = N or
Execution Time, / Execution Timey, = N

24

Measuring CPU Performance

Computers use a clock to determine when
events takes place within hardware

Clock cycles: discrete time intervals

— aka clocks, cycles, clock periods, clock ticks

Clock rate or clock frequency: clock cycles per
second (inverse of clock cycle time)

3 GigaHertz clock rate
=> clock cycle time = 1/(3x10°) seconds
clock cycle time = 333 picoseconds (ps)

CPU Performance Factors

* To distinguish between processor time and 1/0,
CPU time is time spent in processor

* CPU Time/Program

= Clock Cycles/Program
x Clock Cycle Time

* Or
CPU Time/Program
= Clock Cycles/Program + Clock Rate

26

lron Law of Performance

A program executes instructions
CPU Time/Program

= Clock Cycles/Program x Clock Cycle Time

= Instructions/Program
x Average Clock Cycles/Instruction
x Clock Cycle Time

15t term called Instruction Count

2"d term abbreviated CPI for average
Clock Cycles Per Instruction

3rd term is 1 / Clock rate

27

Restating Performance Equation

* Time = Seconds

Program
Instructions y Clock cyclesx Seconds
Program Instruction Clock Cycle

28

What Affects Each Component?
Instruction Count, CPI, Clock Rate

_______ Affects What?

Algorithm

Programming
Language

Compiler

Instruction Set
Architecture

29

What Affects Each Component?
Instruction Count, CPI, Clock Rate

_______ Affects What?

Algorithm Instruction Count,
CPI

Programming Instruction Count,

Language CPI

Compiler Instruction Count,
CPI

Instruction Set Instruction Count,

Architecture Clock Rate, CPI

30

Question

Computer | Clock Clock cycles | #instructions
frequency | per per program
instruction

A 1GHz 1000
B 2GHz 5 800
C 500MHz 1.25 400
D 5GHz 10 2000

* Which computer has the highest performance
for a given program?

31

Question

Computer | Clock Clock cycles | #instructions | Calculation
frequency | per per program
instruction

A 1GHz 1000 1ns * 2 * 1000 = 2ps

B 2GHz 5 800 0.5ns 5 *800 = 2us

C 500MHz 1.25 400 2ns 1.25 * 400 = 1ps

D 5GHz 10 2000 0.2ns * 10 * 2000 = 4us

* Which computer has the highest performance
for a given program?

32

Workload and Benchmark

 Workload: Set of programs run on a computer

— Actual collection of applications run or made from
real programs to approximate such a mix

— Specifies programs, inputs, and relative frequencies
 Benchmark: Program selected for use in
comparing computer performance

— Benchmarks form a workload
— Usually standardized so that many use them

SPEC
(System Performance Evaluation Cooperative)

 Computer Vendor cooperative for
benchmarks, started in 1989

* SPECCPU2006

— 12 Integer Programs
— 17 Floating-Point Programs

e Often turn into number where bigger is faster

* SPECratio: reference execution time on old
reference computer divide by execution time
on new computer to get an effective speed-up

34

SPECrate 2017 | SPECspeed 2017
Integer Integer

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.x264_r
531.deepsjeng_r
541.leela_r
548.exchange2_r

557.XZ_T

SPECrate 2017 | SPECspeed 2017
Floating Point Floating Point

503.bwaves_r

507.cactuBSSN_r

508.namd_r
510.parest_r
511.povray_r
519.]bm_r
521.wrf_r
526.blender_r
527.cam4_r

538.imagick_r
544.nab_r

549.fotonik3d_r
554.roms_r

SPEC CPU 2017

Language[1]
600.perlbench_s C
602.gcc_s C
605.mcf_s C
620.omnetpp_s C++
623.xalancbmk_s C++
625.x264_s C
631.deepsjeng_s C++
641.leela_s C++
648.exchange2_s Fortran
657.X7_S C
Language[1]
603.bwaves_s Fortran
607.cactuBSSN_s C++, C, Fortran
C++
C++
C++, C
619.]bm_s c
621.wrf_s Fortran, C
C++, C
627.cam4_s Fortran, C
628.pop2_s Fortran, C
638.imagick_s c
644.nab_s C
649.fotonik3d_s Fortran
654.roms_s Fortran

KLOC 2]

362
1,304

134
520
96
10
21
1
33

KLOC |2

1
257
8
427
170
1
991
1,577
407
338
259
24
14
210

Application Area

Perl interpreter

GNU C compiler

Route planning

Discrete Event simulation - computer network

XML to HTML conversion via XSLT

Video compression

Artificial Intelligence: alpha-beta tree search (Chess)
Artificial Intelligence: Monte Carlo tree search (Go)
Artificial Intelligence: recursive solution generator (Sudoku)
General data compression

Application Area

Explosion modeling

Physics: relativity

Molecular dynamics

Biomedical imaging: optical tomography with finite elements
Ray tracing

Fluid dynamics

Weather forecasting

3D rendering and animation

Atmosphere modeling

Wide-scale ocean modeling (climate level)
Image manipulation

Molecular dynamics

Computational Electromagnetics
Regional ocean modeling

[1] For multi-language benchmarks, the first one listed determines library and link options (detailsc?)

[2] KLOC = line count (including comments/whitespace) for source files used in a build / 1000

SPECINT2006 on AMD Barcelona

Instruc- Clock | Execu- | Refer- |onc -
Description tion CPI | cycle tion ence " .o
Count (B time (ps)|Time (s)|Time (s

Interpreted string

processing 2,118 0.75 9,770 15.3
Block-sorting compression 2,389 0.85 400 817 9,650 11.8
GNU C compiler 1,050 1.72 400 724 8,050 11.1
Combinatorial

optimization 336 10.0 400 1,345 9,120 6.8
Go game 1,658 1.09 400 721 10,490 14.6
Search gene sequence 2,783 0.80 400 890 9,330 10.5
Chess game 2,176 0.96 400 837 12,100 14.5
Quantum computer

simulation 1,623 1.61 400 1,047 20,720 19.8
Video compression 3,102 0.80 400 993 22,130 22.3
Discrete event simulation

library 587 2.94 400 690 6,250 9.1
Games/path finding 1,082 1.79 400 773 7,020 9.1
XML parsing 1,058 2.70 400 1,143 6,900 6.0

Summarizing Performance ...

System Rate (Task 1) Rate (Task 2)
A 10 20
B 20 10

Clickers: Which system is faster?

(A3 SysEam A
R SysEam B

CSame]perfeimance

D Unenswerelle cuasiion!

37

... Depends Who's Selling

System Rate (Task 1) Rate (Task 2) Average
A 10 20 15
B 20 10 15

Average throughput

System Rate (Task 1) Rate (Task 2) Average
A 0.50 2.00 1.25
B 1.00 1.00 1.00

Throughput relative to B

System Rate (Task 1) Rate (Task 2) Average
A 1.00 1.00 1.00
B 2.00 0.50 1.25

Throughput relative to A

38

Summarizing SPEC Performance

e Varies from 6x to 22x faster than reference
computer

* Geometric mean of ratios: [n
N-th root of product n'.']_[Execution time ratio,
of N ratios Yi=1
— Geometric Mean gives same relative answer no

matter what computer is used as reference

e Geometric Mean for Barcelonais 11.7

39

Midterm | Review

STD DEV

MINIMUM MEDIAN MAXIMUM

16.0 49.5 94.5 49.87 16.68

100
80

60
\ assignment mean
|

40

20

1 2 3 4 5 6 7 8 9 10 11 12
Question

40

3 b) & c): TA will cover in discussion

A quarter is a single byte split into the following fields (1 sign, 3 exponent, 4
mantissa): SEEEMMMM. It has all the properties of IEEE 754 (including denormal
numbers, NaNs and 4+o00) just with different ranges, precision and representations.

For a quarter, the bias of the exponent is 3, and the implicit exponent for denormal
numbers are —2.

What is the largest number smaller than co?

In binary

In decimal

Which negative denormal number is closest to 07

In binary

In decimal

(a) Memory of C

#include <stdlib.hs> 4 a)

int main() {
static int p = 5;

char *str =

return 0;

1. You need to allocate a string str containing p characters. Write the code above
(please use malloc).

Solution: char *str = malloc(sizeof(char) * (p + 1));

e Control characters like ”\0” are characters BUT:
* No guarantee that a “\0” will be at the end is given, so:
e Space for “\0” after the 5 characters needs to be allocated!

42

(a) Idea I: Little Dragon wants to directly retrieve the " and 7" byte of num, then
swap them.

First of all, define a MACRO to get the i byte of num. Read the following C
code, then help Little Dragon to fill in the blank lines (Line 4 and 10) so the output
should be 0x34. When defining the MACRO, use &, |, *, ~, >>, << operators only.
Remember to write a meaningful MACRO such that Little Dragon can reuse it
again (directly return 0x34 is not allowed)!

1 #include <stdio.h> 5 a)

2 #include <stdint.h>

3

4 #define GET BYTE(num, ind)

5

6 int main(){

7 int number, index;

8 int8 t byte;

9 number = 0x12345678;

10

11 index = i /* index 1s one of {0, 1, 2, 3} */
12 byte = GET BYTE(number, index);

13 printf("%s#x\n", byte); /* should print 0x34 */
14 return 0;

15 }

Write your answer above.

Solution: (((num) >> ((ind) << 3)) & OxFF); 2.

Notice that there should be brackets around num and ind!

7. RISC-V Basic

(a) Write a function in RISC-V code to return 0 if the input 32-bit float is an infinite
value, else a non-zero value. The input and output will be stored in a0, as usual.
Do not use pseduo instructions!

« Summary (single precision):

31 30 23 22 0
|S | Exponent | Significand |

1 bit 8 bits 23 bits

* (-1)S x (1 + Significand) x 2(Exponent-127)

Exponent | Significand _| Object ____

0 0 0
Solution: 0 nonzero Denorm
1 is not infinity: 1-254 anything +/- fl. pt. #
luli al Ox80000 255 0 +/- 0o
addi al al -1
and a0® a0 al 255 nonzero NAN

5 lui al Ox7F800
xor a0 a0 al AND: 01111111111111111111111111111111

ret = 1000 0000 0000 0000 0000 0000 0000 0000 -1
XOR: S111 1111 1000 0000 0000 0000 0000 0000
= Ox7F 80 0000 44

Solution:

ABC + (A +

B)CD)=A+B+C+(A+B)(C+D)

—A+B+C+AC+AD+BC+BD
— A+ B+C+AD+ BD
=A+B+C+D

45

1 O 3) Clock

~Clock
* NOT: 2ns
e Clk-to-Q: 2n
e Setup: 2ns output L
* Clock: 8ns Output 2

10 (b) Consider the following circuit. Assume the clock has a frequency of 50 MHz, all
gates have a propagation delay of 6 ns, X changes 10 ns after the rising edge of clk,
Regl and Reg2 have a clk-to-q delay of 1 ns.

What is the longest possible setup time such that there are no setup time
violations?

Solution:

The clock period is ms = 20 ns.

Regl longest possible setup time: the path is the output of Reg2 — NOT —

OR, with a delay of 1 ns + 6 ns + 6 ns =13 ns. So 20 - 13 = 7 ns.

Reg?2 longest possible setup time: the path is X changes — AN D, with a delay
of 10 ns + 6 ns = 16 ns. So 20 - 16 = 4 ns.

So longest setup time: min(7 ns, 4 ns) = 4 ns.

10 (b) Consider the following circuit. Assume the clock has a frequency of 50 MHz, all
gates have a propagation delay of 6 ns, X changes 10 ns after the rising edge of clk,
Regl and Reg2 have a clk-to-q delay of 1 ns.

What is the longest possible hold time such that there are no hold time viola-
tions?

Regl longest possible hold time: the path is the output of Regl — OR, with a
delay of 1 ns + 6 ns = 7 ns.

Reg2 longest possible hold time: the path is the output of Reg2 — NOT —
AN D, with a delay of 1 ns + 6 ns + 6ns = 13 ns.

So longest hold time: min(7 ns, 13 ns) = 7 ns.

“40

1 1(d) Draw a FSM that outputs 1 when it receives two or more successive ‘0.

sart —(00)

Solution:

1/0

12 b)

(b) Which of following instructions involves all stages of execution?

A. addi B. jalr C. lw D. auipc

Solution: C

+4 a
wb pc
>|DataD Reg[rs1]
alu_ps _I Inst[11:7]
ST feder Inst[19:15] e
pc+4 £ inst »IAddrA DataA
' Inst[24:207
clk »lAddrB DataB
IMEM Reg [1,
4 | A 1
clk Reg[rs2] clk
Imm[31:0]
A 4 v) 4
PCSel Inst[31:0] ImmSel RegWEn Brun BrLT Bsel ALUSel MemRW WBSel
. Asel
Control logic BrEq

(c¢) Assume t3 = Ox8ffffftf, t4 = OxOffftfff. Write down control signals for blt t3, t4,
11 C) label. Please use * to indicate that what this signal is does not matter.

PCSel | ImmSel | RegWEn | BrUn | BrEq | BrLT | ASel | BSel | ALUSel | MemRW | WBSel

Solution: PCSel = 1 ImmSel = B RegWEn = 0 BrUn = 0 BrEq = 0 BrLT =
1 ASel = 1 BSel =1 ALUSel = Add MemRW = Read WBSel = *

