CS 110
Computer Architecture
Lecture 17/:
Caches Part Il

Instructors:
Soren Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/21s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkeley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca/21s/

Adding Cache to Computer

Processor

Enable?
Read/Write

Address

Write

G J \)

Processor-Memory Interface I/0-Memory Interfaces

2

Great Idea #3: Principle of Locality /

Memory Hierarchy

-

y h

SUFPER FAST
SUPER EXPENSIVE
TINY CAPACITY

EDOQ, SD-RAM, DDR-SDRAM, RD-R.AM
and More...

PHYSICAL MEMORY

FAST
PRICED REASONABLY
AVERAGE CAPACITY

Big Idea: Locality

e Temporal Locality (locality in time)

— If a memory location is referenced, then it will
tend to be referenced again soon

e Spatial Locality (locality in space)

— |If a memory location is referenced, the locations
with nearby addresses will tend to be referenced
soon

Multiword-Block Direct-Mapped Cache

Hit

A

Four words/block, cache size = 1K words

Tag

0
1
2

Index Valid Tag <

Byte offset

Data

a

3130 ... 1312 11 ... 43210
v
X
20 3 \2 Word offset
Index
Data

v

253
254
255

v I o T v]

CJ

T~ 20

ns

Cache Names for Each Organization

* “Fully Associative”: Line can go anywhere
— First design in lecture
— Note: No Index field, but 1 comparator/ line
* “Direct Mapped”: Line goes one place
— Note: Only 1 comparator
— Number of sets = number blocks
* “N-way Set Associative”: N places for a line
— Number of sets = number of lines/ N
— N comparators
— Fully Associative: N = number of lines
— Direct Mapped: N = 1

Range of Set-Associative Caches

* For a fixed-size cache, and a given block size, each
increase by a factor of 2 in associativity doubles the
number of blocks per set (i.e., the number of “ways”)
and halves the number of sets —

* decreases the size of the index by 1 bit and
increases the size of the tag by 1 bit

More Associativity (more ways)

— >
Tag ‘ Index

Block offset

Total Cache Capacity =

Associativity * # of sets * block size
Bytes = blocks/set * sets * Bytes/block

C=N*S *B

Tag

Index

Byte Offset

address_size = tag_size + index_size + offset_size

= tag_size + log2(S) + log2(B)

Handling Stores with Write-Through

e Store instructions write to memory, changing
values

* Need to make sure cache and memory have same
values on writes: 2 policies

1) Write-Through Policy: write cache and write
through the cache to memory
— Every write eventually gets to memory

— Too slow, so include Write Buffer to allow processor to
continue once data in Buffer

— Buffer updates memory in parallel to processor

Write-Through
Cache Processor

Write both values in
cache and in memory

Write buffer stops CPU YT T rache T
from stalling if memory ’ * | ‘
cannot keep up

Write buffer may have
multiple entries to

; Addr " Data
absorb bursts of writes i,

What if store misses in eeeepeteccssessnnonenelofones
3 32-bit
CaChe) Address

Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache

— Writes collected in cache, only single write to
memory per block

— Include bit to see if wrote to block or not, and
then only write back if bit is set

e Called “Dirty” bit (writing makes it “dirty”)

11

Write-Back
Cache Processor

Store/cache hit, write datain 3yt
cache only & set dirty bit Address

— Memory has stalevalue [T AL L T

Store/cache miss, read data
from memory, then update
and set dirty bit

— “Write-allocate” policy

Load/cache hit, use value
from cache

On any miss, write back sssofssesssscssssssssesssfonne
evicted block, only if dirty.
Update cache with new block
and clear dirty bit.

Write-Through vs. Write-Back

* Write-Through: * Write-Back

— Simpler control logic — More complex control logic

— More predictable timing — More variable timing (0,1,2
simplifies processor control Mmemory accesses per
logic cache access)

— Easier to make reliable, since — Usually reduces write
memory always has copy of traffic
data (big idea: Redundancy!) — Harder to make reliable,

sometimes cache has only
copy of data

13

Cache (Performance) Terms

Hit rate: fraction of accesses that hit in the cache
Miss rate: 1 — Hit rate

Miss penalty: time to replace a line/ block from
lower level in memory hierarchy to cache

Hit time: time to access cache memory (including
tag comparison)

Abbreviation: “S” = cache (cash ...)

14

Average Memory Access Time (AMAT)

* Average Memory Access Time (AMAT) is the
average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
+ Miss rate x Miss penalty

15

Direct Mapped Cache Example

Cache

Main Memory

\ 4 v
Index Valid Tag Data

00 S

01 SO

10 [

11 SRR

Q: Is the memory block in
cache?

Compare the cache tag to the
high-order 2 memory address
bits to tell if the memory
block is in the cache
(provided valid bit is set)

0000xx

0001xx

010,110)%

co;OOllXX

5;50100xx

0101xx

01J10xx

0111xx

1000xx

1001xx

10110xx

1011xx

1100xx

1101xx

11j10xx

1111xx

-

One word blocks

Two low order bits (xx)
define the byte in the
block (32b words)

Q: Where in the cache is
the mem block?

Use 2 middle memory
address bits — the index
— to determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

6bit Memory Address 16

Example: Direct-Mapped Cache
with 4 Single-Word Blocks, Worst-Case Reference String

* Consider the main memory address (words) reference string
of word numbers: 04040404

Start with an empty cache - all blocks
initially marked as not valid

01 0 mbs o1 00 01

~8Q_| Mem(Q) BQ_|Mem(8) 81 |Mem(&) 8Q_ (Mem(B),

4 mMiss 0 miss 4 mMiss

4

00 0 mss g 01 4 miss 4 00 0 miss 0 01 4 miss 4

* 8 requests, 8 misses

* Ping-pong effect due to conflict misses - two memory
locations that map into the same cache block

17

Alternative Block Placement Schemes

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 :
Ta Ta Ta

o T s [s TTTTTTT

« DM placement: mem block 12 in 8 block cache: only one cache
block where mem block 12 can be found—(12 modulo 8) = 4

» SA placement: four sets x 2-ways (8 cache blocks), memory block 12
in set (12 mod 4) = 0; either element of the set

* FA placement: mem block 12 can appear in any cache blocks

18

Example: 2-Way Set Associative S
(4 words = 2 sets x 2 ways per set)

BOOnnnnnnnnG Main Memory
OO0 ord blocks
Cache e 000 1xX T .
1|0 WO IOW Order bltS
Way Set V Tag Data 0010 gefine the byte in the
oooooo0011xx word (32b words)
o O ~|oidoxx
B N 5 .]0101xx
, 0 1] o |o11joxx
1 . lo11ixx o we find it?
_ [rodee ¥ Howdowedind:
Q: Is it there? SR 1001XK
I 10]]0xx Use next 1 low order
Compare all the cache 1011xx (rjnemory add:]gs:] bit tho
tags in the set to the high ~ [11doxx cetermine Vé 'IC ;ac €
order 3 memory address s 1101xx set ('Ee" rr;o u gt E
bits to tell if the memory [udoec TUTRMO setsinthe
block is in the cache [mmaxx cache)

19

Example: 4-Word 2-Way SA S
Same Reference String

* Consider the main memory address (word) reference string

Start with an empty cache - all blocks O4040420 4
initially marked as not valid

0 miss 4 miss o0 hit 4 hit
000 | Mem(0) 000 | Mem(0) 000 | Mem(0) 000 | Mem(0)
010 | Mem(4) 010 | Mem(4) 010 | Mem(4)

* 8 requests, 2 misses

* Solves the ping-pong effect in a direct-mapped cache due to
conflict misses since now two memory locations that map into
the same cache set can co-exist!

20

Four-Way Set-Associative Cache

» 28 =256 sets each with four ways (each with one block)

3130 ... 109 ... 210 s Byte offset
I
Set Index
Tag 22 18
Index

vV Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0

1

N -
é—

N -
éf

. N =
é—

—
253 253 253 253
254 254 254 254
255 255 255 255

)
)
)

—(
d
d

N 4x1 select

Hit Data

Different Organizations of an Eight-Block Cache

One-way set associative
(direct mapped)

Block Tag Data

0
4 Two-way set associative
5 Set Tag Data Tag Data
3 0
. 1
» 2
Total size of S in blocks is equal to . 3
number of sets x associativity. For
fixed S size and fixed block size, £

increasing associativity decreases
number of sets while increasing

number of elements per set. With | Set Tag Data Tag Data Tag Data Tag Data
eight blocks, an 8-way set- 0
associative S is same as a fully 1
associative S.

Four-way set associative

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

P

Range of Set-Associative Caches

* For a fixed-size cache and fixed block size, each
increase by a factor of two in associativity doubles the
number of blocks per set (i.e., the number or ways)
and halves the number of sets — decreases the size of
the index by 1 bit and increases the size of the tag by 1

blt Used for tag compare Selects the set Selects the word in the block
| |
Taé Index Word offset |Byte pffset

— > Increasing associativity

Decreasing associativity

] Fully associative
Direct mapped },7 | (only one set)
(only one way) Tag is all the bits except
Smaller tags, only a block and byte offset

single comparator

23

Costs of Set-Associative Caches

* N-way set-associative cache costs
— N comparators (delay and area)
— MUX delay (set selection) before data is available
— Data available after set selection (and Hit/Miss decision).

DM S: block is available before the Hit/Miss decision

* In Set-Associative, not possible to just assume a hit and continue
and recover later if it was a miss

 When miss occurs, which way’s block selected for

replacement?
— Least Recently Used (LRU): one that has been unused the

longest (principle of temporal locality)
* Must track when each way’s block was used relative to other
blocks in the set
* For 2-way SA S, one bit per set - set to 1 when a block is
referenced; reset the other way’s bit (i.e., “last used”)

24

Cache Replacement Policies

 Random Replacement

— Hardware randomly selects a cache evict
e Least-Recently Used

— Hardware keeps track of access history

— Replace the entry that has not been used for the longest time

— For 2-way set-associative cache, need one bit for LRU replacement
 Example of a Simple “Pseudo” LRU Implementation

— Assume 64 Fully Associative entries

— Hardware replacement pointer points to one cache entry

— Whenever access is made to the entry the pointer points to:
* Move the pointer to the next entry

— Otherwise: do not move the pointer
— (example of “not-most-recently used” replacement policy)

Entry O

Entry 1

Replacement

»

Pointer

Entry 63

25

Benefits of Set-Associative Caches

* Choice of DM S versus SA S depends on the cost of a miss
versus the cost of implementation

150/0 e
120/0 il [i—
Q 9% ul —
o
7)]
D
2 60/0 i Li— — o — _ %
3% 4 o 16KB i
32 KB
_ 64KB _ 128KB _
0 | I | |
One-way Two-way Four-way Eight-way

e Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

26

Understanding Cache Misses:
The 3Cs

 Compulsory (cold start or process migration, 15 reference):

— First access to block impossible to avoid; small effect for long
running programs

— Solution: increase block size (increases miss penalty; very large
blocks could increase miss rate)

* (Capacity:
— Cache cannot contain all blocks accessed by the program
— Solution: increase cache size (may increase access time)
* Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size
— Solution 2: increase associativity (may increase access time)

27

Prefetching...

* Programmer/Compiler: | know that, later on, |
will need this data...
e Tell the computer to prefetch the data
— Can be as an explicit prefetch instruction

— Or an implicit instruction: lw x0 0(t0)

* Won't stall the pipeline on a cache miss: The processor
control logic recognizes this situation

* Allows you to hide the cost of compulsory misses
— You still need to fetch the data however

How to Calculate 3C’s using Cache
Simulator

1. Compulsory: set cache size to infinity and fully
associative, and count number of misses

2. Capacity: Change cache size from infinity, usually
in powers of 2, and count misses for each
reduction in size
— 16 MB, 8 MB, 4 MB, ... 128 KB, 64 KB, 16 KB

3. Conflict: Change from fully associative to n-way
set associative while counting misses
— Fully associative, 16-way, 8-way, 4-way, 2-way, 1-way

29

10%

9%

3Cs Analysis

8% One-way

% Two-way

6% -

Miss rate

o 59, | Four-way

4% -
3% -
2%

Capacity
1% A

Oo,/o I I I I I I 1 1
4 8 16 32 64 128 256 512 1024

Cache size (KB)

* Three sources of misses (SPEC2000 integer and floating-point
benchmarks)

— Compulsory misses 0.006%; not visible
— Capacity misses, function of cache size
— Conflict portion depends on associativity and cache size

30

Improving Cache Performance
AMAT = Time for a hit + Miss rate x Miss penalty

Note: miss penalty is additional time for cache miss
Reduce the time to hit in the cache
— E.g., Smaller cache

Reduce the miss rate

— E.g., Bigger cache
Longer cache lines (somewhat: improves ability to exploit
spatial locality at the cost of reducing the ability to exploit
temporal locality)

— E.g., Better programs!

Reduce the miss penalty
— E.g., Use multiple cache levels

Hit and Miss, 3C

31

Impact of Larger Cache on AMAT?

* 1) Reduces misses (what kind(s)?)

e 2) Longer Access time (Hit time): smaller is faster

— Increase in hit time will likely add another stage to the
pipeline
* At some point, increase in hit time for a larger
cache may overcome the improvement in hit rate,
vielding a decrease in performance

 Computer architects expend considerable effort
optimizing organization of cache hierarchy — big
impact on performance and power!

Cache Design Space

e Several interacting dimensions
— Cache size
— Block size
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write allocation

* Optimal choice is a compromise

— Depends on access characteristics
* Workload
e Use (lI-cache, D-cache)

— Depends on technology / cost
e Simplicity often wins

Cache Size
A
Associativity
Block Size
Bad
Good Factor A Factor B
Less More

33

And In Conclusion, ...

Principle of Locality for Libraries /Computer
Memory

Hierarchy of Memories (speed/size/cost per
bit) to Exploit Locality

Cache — copy of data lower level in memory
hierarchy

Direct Mapped to find block in cache using Tag
field and Valid bit for Hit

Cache design choice:

* Write-Through vs. Write-Back

	CS 110�Computer Architecture �Lecture 17: �Caches Part II
	Adding Cache to Computer
	Great Idea #3: Principle of Locality / Memory Hierarchy
	Big Idea: Locality
	Multiword-Block Direct-Mapped Cache
	Cache Names for Each Organization
	Range of Set-Associative Caches
	Total Cache Capacity =
	Handling Stores with Write-Through
	Write-Through Cache
	Handling Stores with Write-Back
	Write-Back Cache
	Write-Through vs. Write-Back
	Cache (Performance) Terms
	Average Memory Access Time (AMAT)
	Direct Mapped Cache Example
	Slide Number 17
	Alternative Block Placement Schemes
	Example: 2-Way Set Associative $�(4 words = 2 sets x 2 ways per set)
	Example: 4-Word 2-Way SA $�Same Reference String
	Four-Way Set-Associative Cache
	Different Organizations of an Eight-Block Cache
	Range of Set-Associative Caches
	Costs of Set-Associative Caches
	Cache Replacement Policies
	Benefits of Set-Associative Caches
	Understanding Cache Misses:�The 3Cs
	Prefetching...
	How to Calculate 3C’s using Cache Simulator
	3Cs Analysis
	Improving Cache Performance
	Impact of Larger Cache on AMAT?
	Cache Design Space
	And In Conclusion, …

