
CS 110
Computer Architecture

Lecture 17:
Caches Part II

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/21s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/21s/

Processor

Control

Datapath

Adding Cache to Computer

2

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Great Idea #3: Principle of Locality /
Memory Hierarchy

Big Idea: Locality

• Temporal Locality (locality in time)
– If a memory location is referenced, then it will

tend to be referenced again soon

• Spatial Locality (locality in space)
– If a memory location is referenced, the locations

with nearby addresses will tend to be referenced
soon

4

• Four words/block, cache size = 1K words

Multiword-Block Direct-Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte offset

20

20Tag

Hit

5

2

Data

32

Word offset

Cache Names for Each Organization
• “Fully Associative”: Line can go anywhere

– First design in lecture
– Note: No Index field, but 1 comparator/ line

• “Direct Mapped”: Line goes one place
– Note: Only 1 comparator
– Number of sets = number blocks

• “N-way Set Associative”: N places for a line
– Number of sets = number of lines/ N
– N comparators
– Fully Associative: N = number of lines
– Direct Mapped: N = 1

6

Range of Set-Associative Caches
• For a fixed-size cache, and a given block size, each

increase by a factor of 2 in associativity doubles the
number of blocks per set (i.e., the number of “ways”)
and halves the number of sets –
• decreases the size of the index by 1 bit and

increases the size of the tag by 1 bit

7

Block offsetIndexTag

More Associativity (more ways)

Total Cache Capacity =

8

Associativity * # of sets * block_size
Bytes = blocks/set * sets * Bytes/block

Byte OffsetTag Index

C = N * S * B

address_size = tag_size + index_size + offset_size
= tag_size + log2(S) + log2(B)

Handling Stores with Write-Through

• Store instructions write to memory, changing
values

• Need to make sure cache and memory have same
values on writes: 2 policies

1) Write-Through Policy: write cache and write
through the cache to memory
– Every write eventually gets to memory
– Too slow, so include Write Buffer to allow processor to

continue once data in Buffer
– Buffer updates memory in parallel to processor

9

Write-Through
Cache

• Write both values in
cache and in memory

• Write buffer stops CPU
from stalling if memory
cannot keep up

• Write buffer may have
multiple entries to
absorb bursts of writes

• What if store misses in
cache?

10

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041 Addr Data

Write
Buffer

Handling Stores with Write-Back

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache
– Writes collected in cache, only single write to

memory per block
– Include bit to see if wrote to block or not, and

then only write back if bit is set
• Called “Dirty” bit (writing makes it “dirty”)

11

Write-Back
Cache

• Store/cache hit, write data in
cache only & set dirty bit
– Memory has stale value

• Store/cache miss, read data
from memory, then update
and set dirty bit
– “Write-allocate” policy

• Load/cache hit, use value
from cache

• On any miss, write back
evicted block, only if dirty.
Update cache with new block
and clear dirty bit.

12

Processor

32-bit
Address

32-bit
Data

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

D
D
D
D

Dirty
Bits

Cache

Write-Through vs. Write-Back

• Write-Through:
– Simpler control logic
– More predictable timing

simplifies processor control
logic

– Easier to make reliable, since
memory always has copy of
data (big idea: Redundancy!)

• Write-Back
– More complex control logic
– More variable timing (0,1,2

memory accesses per
cache access)

– Usually reduces write
traffic

– Harder to make reliable,
sometimes cache has only
copy of data

13

Cache (Performance) Terms

• Hit rate: fraction of accesses that hit in the cache
• Miss rate: 1 – Hit rate
• Miss penalty: time to replace a line/ block from

lower level in memory hierarchy to cache
• Hit time: time to access cache memory (including

tag comparison)

• Abbreviation: “$” = cache (cash …)

14

Average Memory Access Time (AMAT)
• Average Memory Access Time (AMAT) is the

average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
+ Miss rate × Miss penalty

15

Direct Mapped Cache Example

00
01
10
11

Cache Main Memory

Q: Where in the cache is
the mem block?

Use 2 middle memory
address bits – the index
– to determine which
cache block (i.e.,
modulo the number of
blocks in the cache)

Tag Data

Q: Is the memory block in
cache?
Compare the cache tag to the
high-order 2 memory address
bits to tell if the memory
block is in the cache
(provided valid bit is set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One word blocks
Two low order bits (xx)
define the byte in the
block (32b words)

Index

166bit Memory Address

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)
01 4

00 Mem(0)
01 4

00 Mem(0)
01 4

01 Mem(4)
000

01 Mem(4)
000

• Ping-pong effect due to conflict misses - two memory
locations that map into the same cache block

• 8 requests, 8 misses

17

Example: Direct-Mapped Cache
with 4 Single-Word Blocks, Worst-Case Reference String

• Consider the main memory address (words) reference string
of word numbers: 0 4 0 4 0 4 0 4

Start with an empty cache - all blocks
initially marked as not valid

01 4

Alternative Block Placement Schemes

• DM placement: mem block 12 in 8 block cache: only one cache
block where mem block 12 can be found—(12 modulo 8) = 4

• SA placement: four sets x 2-ways (8 cache blocks), memory block 12
in set (12 mod 4) = 0; either element of the set

• FA placement: mem block 12 can appear in any cache blocks
18

Example: 2-Way Set Associative $
(4 words = 2 sets x 2 ways per set)

0

Cache

Main Memory

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set (i.e., modulo the
number of sets in the
cache)

Tag Data

Q: Is it there?

Compare all the cache
tags in the set to the high
order 3 memory address
bits to tell if the memory
block is in the cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

One word blocks
Two low order bits
define the byte in the
word (32b words)

19

Example: 4-Word 2-Way SA $
Same Reference String

0 4 0 4

• Consider the main memory address (word) reference string
0 4 0 4 0 4 0 4

miss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all blocks
initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

• Solves the ping-pong effect in a direct-mapped cache due to
conflict misses since now two memory locations that map into
the same cache set can co-exist!

• 8 requests, 2 misses

20

Four-Way Set-Associative Cache
• 28 = 256 sets each with four ways (each with one block)

31 30 . . . 10 9 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

21

Different Organizations of an Eight-Block Cache

Total size of $ in blocks is equal to
number of sets × associativity. For
fixed $ size and fixed block size,
increasing associativity decreases
number of sets while increasing
number of elements per set. With
eight blocks, an 8-way set-
associative $ is same as a fully
associative $.

22

Range of Set-Associative Caches
• For a fixed-size cache and fixed block size, each

increase by a factor of two in associativity doubles the
number of blocks per set (i.e., the number or ways)
and halves the number of sets – decreases the size of
the index by 1 bit and increases the size of the tag by 1
bit

Word offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

23

Costs of Set-Associative Caches
• N-way set-associative cache costs

– N comparators (delay and area)
– MUX delay (set selection) before data is available
– Data available after set selection (and Hit/Miss decision).

DM $: block is available before the Hit/Miss decision
• In Set-Associative, not possible to just assume a hit and continue

and recover later if it was a miss
• When miss occurs, which way’s block selected for

replacement?
– Least Recently Used (LRU): one that has been unused the

longest (principle of temporal locality)
• Must track when each way’s block was used relative to other

blocks in the set
• For 2-way SA $, one bit per set → set to 1 when a block is

referenced; reset the other way’s bit (i.e., “last used”)

24

Cache Replacement Policies
• Random Replacement

– Hardware randomly selects a cache evict
• Least-Recently Used

– Hardware keeps track of access history
– Replace the entry that has not been used for the longest time
– For 2-way set-associative cache, need one bit for LRU replacement

• Example of a Simple “Pseudo” LRU Implementation
– Assume 64 Fully Associative entries
– Hardware replacement pointer points to one cache entry
– Whenever access is made to the entry the pointer points to:

• Move the pointer to the next entry
– Otherwise: do not move the pointer
– (example of “not-most-recently used” replacement policy)

:

Entry 0
Entry 1

Entry 63

Replacement
Pointer

25

Benefits of Set-Associative Caches
• Choice of DM $ versus SA $ depends on the cost of a miss

versus the cost of implementation

• Largest gains are in going from direct mapped to 2-way
(20%+ reduction in miss rate)

26

Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block impossible to avoid; small effect for long

running programs
– Solution: increase block size (increases miss penalty; very large

blocks could increase miss rate)
• Capacity:

– Cache cannot contain all blocks accessed by the program
– Solution: increase cache size (may increase access time)

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)

27

Prefetching...

• Programmer/Compiler: I know that, later on, I
will need this data...

• Tell the computer to prefetch the data
– Can be as an explicit prefetch instruction
– Or an implicit instruction: lw x0 0(t0)

• Won't stall the pipeline on a cache miss: The processor
control logic recognizes this situation

• Allows you to hide the cost of compulsory misses
– You still need to fetch the data however

28

How to Calculate 3C’s using Cache
Simulator

1. Compulsory: set cache size to infinity and fully
associative, and count number of misses

2. Capacity: Change cache size from infinity, usually
in powers of 2, and count misses for each
reduction in size
– 16 MB, 8 MB, 4 MB, … 128 KB, 64 KB, 16 KB

3. Conflict: Change from fully associative to n-way
set associative while counting misses
– Fully associative, 16-way, 8-way, 4-way, 2-way, 1-way

29

3Cs Analysis

• Three sources of misses (SPEC2000 integer and floating-point
benchmarks)
– Compulsory misses 0.006%; not visible
– Capacity misses, function of cache size
– Conflict portion depends on associativity and cache size 30

Improving Cache Performance

• Note: miss penalty is additional time for cache miss
• Reduce the time to hit in the cache

– E.g., Smaller cache
• Reduce the miss rate

– E.g., Bigger cache
Longer cache lines (somewhat: improves ability to exploit
spatial locality at the cost of reducing the ability to exploit
temporal locality)

– E.g., Better programs!
• Reduce the miss penalty

– E.g., Use multiple cache levels
• Hit and Miss, 3C

31

AMAT = Time for a hit + Miss rate x Miss penalty

Impact of Larger Cache on AMAT?
• 1) Reduces misses (what kind(s)?)
• 2) Longer Access time (Hit time): smaller is faster

– Increase in hit time will likely add another stage to the
pipeline

• At some point, increase in hit time for a larger
cache may overcome the improvement in hit rate,
yielding a decrease in performance

• Computer architects expend considerable effort
optimizing organization of cache hierarchy – big
impact on performance and power!

32

Cache Design Space
• Several interacting dimensions

– Cache size
– Block size
– Associativity
– Replacement policy
– Write-through vs. write-back
– Write allocation

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

33

And In Conclusion, …

34

• Principle of Locality for Libraries /Computer
Memory

• Hierarchy of Memories (speed/size/cost per
bit) to Exploit Locality

• Cache – copy of data lower level in memory
hierarchy

• Direct Mapped to find block in cache using Tag
field and Valid bit for Hit

• Cache design choice:
• Write-Through vs. Write-Back

	CS 110�Computer Architecture �Lecture 17: �Caches Part II
	Adding Cache to Computer
	Great Idea #3: Principle of Locality / Memory Hierarchy
	Big Idea: Locality
	Multiword-Block Direct-Mapped Cache
	Cache Names for Each Organization
	Range of Set-Associative Caches
	Total Cache Capacity =
	Handling Stores with Write-Through
	Write-Through Cache
	Handling Stores with Write-Back
	Write-Back Cache
	Write-Through vs. Write-Back
	Cache (Performance) Terms
	Average Memory Access Time (AMAT)
	Direct Mapped Cache Example
	Slide Number 17
	Alternative Block Placement Schemes
	Example: 2-Way Set Associative $�(4 words = 2 sets x 2 ways per set)
	Example: 4-Word 2-Way SA $�Same Reference String
	Four-Way Set-Associative Cache
	Different Organizations of an Eight-Block Cache
	Range of Set-Associative Caches
	Costs of Set-Associative Caches
	Cache Replacement Policies
	Benefits of Set-Associative Caches
	Understanding Cache Misses:�The 3Cs
	Prefetching...
	How to Calculate 3C’s using Cache Simulator
	3Cs Analysis
	Improving Cache Performance
	Impact of Larger Cache on AMAT?
	Cache Design Space
	And In Conclusion, …

