
CS 110
Computer Architecture

Lecture 18:
Caches Part III

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/21s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Cache Terms I
• Cache:

– A small and fast memory used to increase the performance of
accessing a big and slow memory

– Uses temporal locality: The tendency to reuse data in the same
space over time

– Uses spatial locality: The tendency to use data at nearby
addresses

• Cache hit: The address being fetched is in the cache
• Cache miss: The address being fetched is not in the cache
• Valid bit: Is a particular entry valid
• Cache line flush: Invalidate and flush one entry

– e.g., clflush of x86, but newer clwb may not invalidate the entry
• Cache flush: Invalidate all entries

– e.g., wbinvd of x86
2

CPU-Cache Interaction
(5-stage pipeline)

3

PC addr inst

Primary
Instruction
Cache

0x4
Add

IR

D

bubble

hit?

PCen

Decode,
Register
Fetch

wdata
R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

YYALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M
E

Cache Terms II
• Cache level:

– The order in the memory hierarchy: L1$ is closest to the
processor

– L1 caches may only hold data (Data-cache, D$) or
instructions (Instruction Cache, I$)

• Most L2+ caches are "unified", can hold both instructions and data
• Cache capacity:

– The total # of bytes in the cache
• Cache line or cache block:

– A single entry in the cache
• Cache block size:

– The number of bytes in each cache line

4

Cache Terms III
Associativity

• Number of cache lines:
– Cache capacity / block size:

• Cache associativity:
– The number of possible cache lines a given address may exist in.
– Also the number of comparison operations needed to check for an

element in the cache
– Direct mapped: A data element can only be in one possible location

(N=1)
– N-way set associative: A data element can be in one of N possible

positions
– Fully associative: A data element can be at any location in the cache.

• Associativity == # of lines
• Total # of cache lines == capacity of cache/line size

• Total # of lines in a set == # ways == N == associativity
• Total # of sets == # of cache lines / associativity

5

Victim Cache

• Conflict misses are a pain, but...
– Perhaps a little associativity can help without having

to be a fully associative cache
• In addition to the main cache...

– Optionally have a very small (16-64 entry) fully
associative "victim" cache

• Whenever we evict a cache entry
– Don't just get rid of it, put it in the victim cache

• Now on cache misses...
– Check the victim cache first, if it is in the victim cache

you can just reload it from there

6

Cache Terms IV
Parts of the Address

• Address is divided into |TAG|INDEX|OFFSET|
• Offset:

– The lowest bits of the memory address which say where data
exists within the cache line.

– It is log2(line/block size)
– So for a cache with 64B blocks it is 6 bits

• Index:
– The portion of the address which says where in the cache an

address may be stored
– Takes log2(# of cache lines / associativity) bits
– So for a 4-way associative cache with 512 lines it is 7 bits

• Tag: The portion of the address which must be stored in
the cache to check if a location matches
– # of bits of address - (# of bits for index + # of bits for offset)
– So with 64-bit addresses it is 51-bit... 7

Cache Terms V
Writing

• Eviction:
– The process of removing an entry from the cache

• Write Back:
– A cache which only writes data up the hierarchy when a cache line is

evicted
– Instead set a dirty bit on cache entries
– All i7 caches are write back

• Write Through:
– A cache which always writes to memory

• Write Allocate:
– If writing to memory not in the cache fetch it first
– i7 L2 is Write Allocate

• No Write Allocate:
– Just write to memory without a fetch
– i7 L1 is no write allocate

8

Replacement Policy

9

In an associative cache, which line from a set should be
evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• True implementation only feasible for small sets (2-way)
• Pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• Used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used line or lines

This is a second-order effect. Why?

Replacement only happens on misses

Cache Terms VI
Cache Performance

• Hit Time:
– Amount of time to return data in a given cache: depends

on the cache
– i7 L1 hit time: 4 clock cycles

• Miss Penalty:
– Amount of additional time to return an element if its not

in the cache: depends on the cache
• Miss Rate:

– Fraction of a particular program's memory requests which
miss in the cache

• Average Memory Access Time (AMAT):
– Hit time + Miss Rate * Miss Penalty

10

Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block impossible to avoid; small effect for long

running programs
– Solution: increase block size (increases miss penalty; very large

blocks could increase miss rate)
• Capacity:

– Cache cannot contain all blocks accessed by the program
– Solution: increase cache size (may increase access time)

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)

11

3Cs Analysis

• Three sources of misses (SPEC2000 integer and floating-point
benchmarks)
– Compulsory misses 0.006%; not visible
– Capacity misses, function of cache size
– Conflict portion depends on associativity and cache size 12

Improving Cache Performance

• Reduce the time to hit in the cache
– E.g., Smaller cache

• Reduce the miss rate
– E.g., Bigger cache

• Reduce the miss penalty
– E.g., Use multiple cache levels

13

AMAT = Time for a hit + Miss rate x Miss penalty

Cache Design Space

• Several interacting dimensions
– Cache size
– Block size
– Associativity
– Replacement policy
– Write-through vs. write-back
– Write allocation

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

14

Computer architects expend considerable effort optimizing organization of cache
hierarchy – big impact on performance and power!

Increasing Associativity?
• Hit time as associativity increases?

– Increases, with large step from direct-mapped to >=2 ways,
as now need to mux correct way to processor

– Smaller increases in hit time for further increases in
associativity

• Miss rate as associativity increases?
– Goes down due to reduced conflict misses, but most gain is

from 1->2->4-way with limited benefit from higher
associativities

• Miss penalty as associativity increases?
– Unchanged, replacement policy runs in parallel with

fetching missing line from memory

15

Increasing #Entries?
• Hit time as #entries increases?

– Increases, since reading tags and data from larger
memory structures

• Miss rate as #entries increases?
– Goes down due to reduced capacity and conflict

misses
– Architects rule of thumb: miss rate drops ~2x for every

~4x increase in capacity (only a gross approximation)
• Miss penalty as #entries increases?

– Unchanged

16

At some point, increase in hit time for a larger cache may overcome
the improvement in hit rate, yielding a decrease in performance

Increasing Block Size?

• Hit time as block size increases?
– Hit time unchanged, but might be slight hit-time

reduction as number of tags is reduced, so faster to
access memory holding tags

• Miss rate as block size increases?
– Goes down at first due to spatial locality, then

increases due to increased conflict misses due to
fewer blocks in cache

• Miss penalty as block size increases?
– Rises with longer block size, but with fixed constant

initial latency that is amortized over whole block

17

Another Cache: Branch Predictor
• In our simple pipeline, we assume branches-not-taken

– Always start fetching the next instruction
• If a branch or jump is taken...

– Then we have to kill the non-taken instructions so they don't
cause side effects

• But both branches and jumps are PC relative...
– So if we can quickly look at the instruction and decide 'eh,

probably taken/not’, we can compute the new location for the
PC if we can guess right

– Which for jal we always can, but branches we need to guess
• Idea: branches have temporal locality!

– Loops: for (x = 0; x < n...)
– Rare conditionals: if (err) ...

18

A Simple Branch Predictor
• Have an N entry, direct-mapped memory

– E.g., a 1024x1b memory
• If fetched instruction is a branch...

– Check if the bit for pc[12:2] is set in IF...
– If so, set next PC to PC + branch offset fetched (in ID

probably, if not IF)
– Set bit in pipeline to say “branch predicted-taken”

• When actually evaluating branch in EX...
– Set pc[12:2] in the branch predictor to branch taken/not-

taken status
– If branch taken but predicted not-taken

• Kill untaken instructions
– If branch not taken but predicted taken

• Kill predicted instructions
19

Where to do this?
• If we could, do it in IF

– Now on correct predictions we will always be right
• If we can't, do it in ID

– First non-taken instruction will be fetched regardless, so we
need more complex control logic in determining which to kill,
but !.

• This does complicate the pipeline a fair bit, but worth it!
– Let’s assume the branch comparison is done in EX…
– If we can predict in IF in the 5 stage pipeline:

• Correct predicted branches -> no stalls
• Incorrect prediction -> 2 stalls for killed instructions

– If we can predict in ID:
• Correct predicted taken branch -> 1 stall
• Correct predicted not-taken branch -> 0 stalls
• Incorrect predicted taken branch -> 2 stalls
• Incorrect predicted not-taken branch -> 2 stalls 20

Improving it slightly...
• How about 2 bits:

– Each entry starts at 01...
– If taken, increment with saturating arithmetic (so max is 11)
– If not taken, decrement by one (so min is 00)

• If the upper bit is 1, assume the branch is taken
– Now a function with a commonly taken loop will only mispredict once

rather than twice
• Miss penalty for a mispredicted branch: The # of instructions that

got terminated because of the wrong prediction
– E.g., on a dual-issue, 10-deep 2x superscalar like a Raspberry Pi or

smartphone: Probably ~10 instructions
– On a modern x86? It could be 20+

• Can then try even fancier predictors...
– But we get into diminishing returns:

• The simple-smart thing (e.g. a two bit branch predictor) is a big win...
• But trying to get fancier no longer helps nearly as much

21

Approximate Cache...

• The data caches are exact:
– They will return an answer that is exactly what is

asked for
• But this branch predictor is approximate:

– It can make mistakes due to aliasing:
Its not actually storing the full address as a tag to
check

• Sometimes its OK to be wrong
– So data structures that are this way are also

particularly interesting...
– E.g. Bloom filter https://en.wikipedia.org/wiki/Bloom_filter

22

https://en.wikipedia.org/wiki/Bloom_filter

A related cache: return target
location...

• Observation:
– On RISC-V, you call a function with jal or jalr (object oriented)

with the return set to ra
– And you return with a jalr with the source register as ra

• So let’s maintain a small stack in hardware...
– Whenever we see jal or jalr writing to ra: We write PC+4 into

the stack
– Whenever we see jalr reading from ra: We predict the top of

this stack as the next PC, and pop this stack
• Result: We should always correctly predict a function

return address...
– Works as long as we don't exceed the stack depth: once we hit

that we will start getting misses

23

And A Final Related Cache:
Branch Target Buffer

• Function calls using jal we will never mispredict on RISC-V
– Since they are all PC relative we can do the add in the decode where we

change our PC prediction
• But so much today is object-oriented programming which uses jalr: C++

and Java object calls are equivalent to calling pointers to functions
– foo.bar() is implemented as something like this:

lw t0 0(a0) # Get the pointer to the "virtual function table" in the object
lw t0 8(t0) # Get the pointer to the function to actually call
jalr ra t0 # Do a JALR to call bar(),

with the object foo as the first implicit argument
• So cache this as well:

– On a jalr which writes to ra rather than x0.
Look in a small cache for the address to predict to based on current PC

– When evaluating the jump, set the value in this cache to the address used
• It is the x86 equivalent of this cache that is part of one of the Spectre

vulnerabilities

24

How to Reduce Miss Penalty?

• Could there be locality on misses from a
cache?

• Use multiple cache levels!
• With Moore’s Law, more room on die for

bigger L1 caches and for second-level (L2)
cache

• And in some cases even an L3 cache!
• IBM mainframes have ~1GB L4 cache off-chip.

25

Review: Memory Hierarchy
Processor

Size of memory at each level

Increasing
distance from

processor,
decreasing

speed

Level 1

Level 2

Level n

Level 3

. . .

Inner

Outer

Levels in
memory
hierarchy

As we move to outer levels the latency goes up
and price per bit goes down.

26

Processor

Control

Datapath

Adding Cache to Computer

27

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

L1 and L2 Caches

28

Processor

Control

Datapath
PC

Registers
Arithmetic & Logic Unit

(ALU)

Instruction
L1 Cache

Data
L1 Cache

L2
Cache

Memory (DRAM)

Bytes

Data

Program

Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy

Control

Datapath

Secondary
Memory

(Disk
Or Flash)

On-Chip Components

RegFile

Main
Memory
(DRAM)Data

Cache
Instr

Cache

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s

29

• Principle of locality + memory hierarchy presents programmer with
≈ as much memory as is available in the cheapest technology at the
≈ speed offered by the fastest technology

Cost/bit: highest lowest

Third-
Level
Cache

(SRAM)

How is the Hierarchy Managed?

• registers ↔ memory
– By compiler (or assembly level programmer)

• cache ↔ main memory
– By the cache controller hardware

• main memory ↔ disks (secondary storage)
– By the operating system (virtual memory)
– Virtual to physical address mapping assisted by the

hardware (‘translation lookaside buffer’ or TLB)
– By the programmer (files)

30

2015 IBM CPU
• z13 designed in 22nm SOI technology with

seventeen metal layers, 4 billion transistors/chip
• 8 cores/chip, with 2MB L2 cache, 64MB L3

cache, and 480MB L4 off-chip cache.
• 5GHz clock rate, 6 instructions per cycle, 2

threads/core
• Up to 24 processor chips in shared memory

node

31

IBM z13 Memory Hierarchy

32

Local vs. Global Miss Rates

• Local miss rate – the fraction of references to
one level of a cache that miss

• Local Miss rate L2$ = L2$ Misses / L1$ Misses
= L2$ Misses / total_L2_accesses

• Global miss rate – the fraction of references that
miss in all levels of a multilevel cache
• L2$ local miss rate >> than the global miss rate

33

34

L1 Cache: 32KB I$, 32KB D$
L2 Cache: 256 KB
L3 Cache: 4 MB

Local vs. Global Miss Rates
• Local miss rate – the fraction of references to one

level of a cache that miss
• Local Miss rate L2$ = $L2 Misses / L1$ Misses
• Global miss rate – the fraction of references that

miss in all levels of a multilevel cache
• L2$ local miss rate >> than the global miss rate

• Global Miss rate = L2$ Misses / Total Accesses
= (L2$ Misses / L1$ Misses) × (L1$ Misses / Total Accesses)
= Local Miss rate L2$ × Local Miss rate L1$

• AMAT = Time for a hit + Miss rate × Miss penalty
• AMAT = Time for a L1$ hit + (local) Miss rate L1$ ×

(Time for a L2$ hit + (local) Miss rate L2$ × L2$ Miss penalty)
35

36

CPI/Miss Rates/DRAM Access
SpecInt2006

37

Instructions and DataData Only Data Only

In Conclusion, Cache Design Space
• Several interacting dimensions

– Cache size
– Block size
– Associativity
– Replacement policy
– Write-through vs. write-back
– Write-allocation

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

38

	CS 110�Computer Architecture �Lecture 18: �Caches Part III
	Cache Terms I
	CPU-Cache Interaction�(5-stage pipeline)
	Cache Terms II
	Cache Terms III�Associativity
	Victim Cache
	Cache Terms IV�Parts of the Address
	Cache Terms V�Writing
	Replacement Policy
	Cache Terms VI�Cache Performance
	Understanding Cache Misses:�The 3Cs
	3Cs Analysis
	Improving Cache Performance
	Cache Design Space
	Increasing Associativity?
	Increasing #Entries?
	Increasing Block Size?
	Another Cache: Branch Predictor
	A Simple Branch Predictor
	Where to do this?
	Improving it slightly...
	Approximate Cache...
	A related cache: return target location...
	And A Final Related Cache: �Branch Target Buffer
	How to Reduce Miss Penalty?
	Review: Memory Hierarchy
	Adding Cache to Computer
	L1 and L2 Caches
	Typical Memory Hierarchy
	How is the Hierarchy Managed?
	2015 IBM CPU
	IBM z13 Memory Hierarchy
	Local vs. Global Miss Rates
	Slide Number 34
	Local vs. Global Miss Rates
	Slide Number 36
	CPI/Miss Rates/DRAM Access�SpecInt2006
	In Conclusion, Cache Design Space

