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Cache Terms I
• Cache:

– A small and fast memory used to increase the performance of 
accessing a big and slow memory

– Uses temporal locality: The tendency to reuse data in the same 
space over time

– Uses spatial locality: The tendency to use data at nearby 
addresses

• Cache hit: The address being fetched is in the cache 
• Cache miss: The address being fetched is not in the cache 
• Valid bit: Is a particular entry valid
• Cache line flush: Invalidate and flush one entry

– e.g., clflush of x86, but newer clwb may not invalidate the entry
• Cache flush: Invalidate all entries

– e.g., wbinvd of x86
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CPU-Cache Interaction
(5-stage pipeline)
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Cache Terms II
• Cache level: 

– The order in the memory hierarchy: L1$ is closest to the 
processor

– L1 caches may only hold data (Data-cache, D$) or 
instructions (Instruction Cache, I$) 

• Most L2+ caches are "unified", can hold both instructions and data 
• Cache capacity:

– The total # of bytes in the cache
• Cache line or cache block:

– A single entry in the cache
• Cache block size: 

– The number of bytes in each cache line
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Cache Terms III
Associativity

• Number of cache lines: 
– Cache capacity / block size: 

• Cache associativity: 
– The number of possible cache lines a given address may exist in. 
– Also the number of comparison operations needed to check for an 

element in the cache 
– Direct mapped: A data element can only be in one possible location 

(N=1) 
– N-way set associative: A data element can be in one of N possible 

positions 
– Fully associative: A data element can be at any location in the cache. 

• Associativity == # of lines 
• Total # of cache lines == capacity of cache/line size 

• Total # of lines in a set == # ways == N == associativity 
• Total # of sets == # of cache lines / associativity 
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Victim Cache

• Conflict misses are a pain, but...
– Perhaps a little associativity can help without having 

to be a fully associative cache 
• In addition to the main cache... 

– Optionally have a very small (16-64 entry) fully 
associative "victim" cache 

• Whenever we evict a cache entry 
– Don't just get rid of it, put it in the victim cache 

• Now on cache misses... 
– Check the victim cache first, if it is in the victim cache 

you can just reload it from there
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Cache Terms IV
Parts of the Address

• Address is divided into |TAG|INDEX|OFFSET| 
• Offset: 

– The lowest bits of the memory address which say where data 
exists within the cache line. 

– It is log2(line/block size) 
– So for a cache with 64B blocks it is 6 bits 

• Index: 
– The portion of the address which says where in the cache an 

address may be stored 
– Takes log2(# of cache lines / associativity) bits 
– So for a 4-way associative cache with 512 lines it is 7 bits 

• Tag: The portion of the address which must be stored in 
the cache to check if a location matches
– # of bits of address - (# of bits for index + # of bits for offset)
– So with 64-bit addresses it is 51-bit... 7



Cache Terms V
Writing

• Eviction: 
– The process of removing an entry from the cache

• Write Back: 
– A cache which only writes data up the hierarchy when a cache line is 

evicted 
– Instead set a dirty bit on cache entries 
– All i7 caches are write back 

• Write Through: 
– A cache which always writes to memory 

• Write Allocate: 
– If writing to memory not in the cache fetch it first 
– i7 L2 is Write Allocate 

• No Write Allocate: 
– Just write to memory without a fetch 
– i7 L1 is no write allocate
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Replacement Policy

9

In an associative cache, which line from a set should be 
evicted when the set becomes full?
• Random
• Least-Recently Used (LRU)

• LRU cache state must be updated on every access
• True implementation only feasible for small sets (2-way)
• Pseudo-LRU binary tree often used for 4-8 way

• First-In, First-Out (FIFO) a.k.a. Round-Robin
• Used in highly associative caches

• Not-Most-Recently Used (NMRU)
• FIFO with exception for most-recently used line or lines

This is a second-order effect.  Why?

Replacement only happens on misses



Cache Terms VI
Cache Performance

• Hit Time: 
– Amount of time to return data in a given cache: depends 

on the cache 
– i7 L1 hit time: 4 clock cycles 

• Miss Penalty: 
– Amount of additional time to return an element if its not 

in the cache: depends on the cache 
• Miss Rate: 

– Fraction of a particular program's memory requests which 
miss in the cache 

• Average Memory Access Time (AMAT): 
– Hit time + Miss Rate * Miss Penalty
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Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block impossible to avoid; small effect for long 

running programs
– Solution: increase block size (increases miss penalty; very large 

blocks could increase miss rate)
• Capacity:

– Cache cannot contain all blocks accessed by the program
– Solution: increase cache size (may increase access time)

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)
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3Cs Analysis

• Three sources of misses (SPEC2000 integer and floating-point 
benchmarks)
– Compulsory misses 0.006%; not visible
– Capacity misses, function of cache size
– Conflict portion depends on associativity and cache size 12



Improving Cache Performance

• Reduce the time to hit in the cache
– E.g., Smaller cache

• Reduce the miss rate
– E.g., Bigger cache

• Reduce the miss penalty
– E.g., Use multiple cache levels
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AMAT =  Time for a hit  +  Miss rate x Miss penalty



Cache Design Space

• Several interacting dimensions
– Cache size
– Block size
– Associativity
– Replacement policy
– Write-through vs. write-back
– Write allocation

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B
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Computer architects expend considerable effort optimizing organization of cache 
hierarchy – big impact on performance and power!



Increasing Associativity?
• Hit time as associativity increases?

– Increases, with large step from direct-mapped to >=2 ways, 
as now need to mux correct way to processor

– Smaller increases in hit time for further increases in 
associativity

• Miss rate as associativity increases?
– Goes down due to reduced conflict misses, but most gain is 

from 1->2->4-way with limited benefit from higher 
associativities

• Miss penalty as associativity increases?
– Unchanged, replacement policy runs in parallel with 

fetching missing line from memory

15



Increasing #Entries?
• Hit time as #entries increases?

– Increases, since reading tags and data from larger 
memory structures

• Miss rate as #entries increases?
– Goes down due to reduced capacity and conflict 

misses
– Architects rule of thumb: miss rate drops ~2x for every 

~4x increase in capacity (only a gross approximation)
• Miss penalty as #entries increases?

– Unchanged
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At some point, increase in hit time for a larger cache may overcome 
the improvement in hit rate, yielding a decrease in performance



Increasing Block Size?

• Hit time as block size increases?
– Hit time unchanged, but might be slight hit-time 

reduction as number of tags is reduced, so faster to 
access memory holding tags

• Miss rate as block size increases?
– Goes down at first due to spatial locality, then 

increases due to increased conflict misses due to 
fewer blocks in cache

• Miss penalty as block size increases?
– Rises with longer block size, but with fixed constant 

initial latency that is amortized over whole block
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Another Cache: Branch Predictor
• In our simple pipeline, we assume branches-not-taken 

– Always start fetching the next instruction
• If a branch or jump is taken... 

– Then we have to kill the non-taken instructions so they don't 
cause side effects

• But both branches and jumps are PC relative... 
– So if we can quickly look at the instruction and decide 'eh, 

probably taken/not’, we can compute the new location for the 
PC if we can guess right 

– Which for jal we always can, but branches we need to guess 
• Idea: branches have temporal locality! 

– Loops: for (x = 0; x < n...) 
– Rare conditionals: if (err) ...
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A Simple Branch Predictor
• Have an N entry, direct-mapped memory 

– E.g., a 1024x1b memory 
• If fetched instruction is a branch... 

– Check if the bit for pc[12:2] is set in IF... 
– If so, set next PC to PC + branch offset fetched (in ID 

probably, if not IF)
– Set bit in pipeline to say “branch predicted-taken”

• When actually evaluating branch in EX... 
– Set pc[12:2] in the branch predictor to branch taken/not-

taken status 
– If branch taken but predicted not-taken 

• Kill untaken instructions 
– If branch not taken but predicted taken 

• Kill predicted instructions
19



Where to do this?
• If we could, do it in IF 

– Now on correct predictions we will always be right 
• If we can't, do it in ID 

– First non-taken instruction will be fetched regardless, so we 
need more complex control logic in determining which to kill, 
but !. 

• This does complicate the pipeline a fair bit, but worth it!
– Let’s assume the branch comparison is done in EX… 
– If we can predict in IF in the 5 stage pipeline: 

• Correct predicted branches -> no stalls 
• Incorrect prediction -> 2 stalls for killed instructions 

– If we can predict in ID: 
• Correct predicted taken branch -> 1 stall 
• Correct predicted not-taken branch -> 0 stalls 
• Incorrect predicted taken branch -> 2 stalls 
• Incorrect predicted not-taken branch -> 2 stalls 20



Improving it slightly...
• How about 2 bits:

– Each entry starts at 01... 
– If taken, increment with saturating arithmetic (so max is 11) 
– If not taken, decrement by one (so min is 00) 

• If the upper bit is 1, assume the branch is taken 
– Now a function with a commonly taken loop will only mispredict once 

rather than twice 
• Miss penalty for a mispredicted branch: The # of instructions that 

got terminated because of the wrong prediction 
– E.g., on a dual-issue, 10-deep 2x superscalar like a Raspberry Pi or 

smartphone: Probably ~10 instructions 
– On a modern x86? It could be 20+ 

• Can then try even fancier predictors... 
– But we get into diminishing returns: 

• The simple-smart thing (e.g. a two bit branch predictor) is a big win... 
• But trying to get fancier no longer helps nearly as much
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Approximate Cache...

• The data caches are exact: 
– They will return an answer that is exactly what is 

asked for 
• But this branch predictor is approximate: 

– It can make mistakes due to aliasing: 
Its not actually storing the full address as a tag to 
check 

• Sometimes its OK to be wrong 
– So data structures that are this way are also 

particularly interesting...
– E.g. Bloom filter https://en.wikipedia.org/wiki/Bloom_filter
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A related cache: return target 
location...

• Observation: 
– On RISC-V, you call a function with jal or jalr (object oriented) 

with the return set to ra
– And you return with a jalr with the source register as ra

• So let’s maintain a small stack in hardware... 
– Whenever we see jal or jalr writing to ra: We write PC+4 into 

the stack 
– Whenever we see jalr reading from ra: We predict the top of 

this stack as the next PC, and pop this stack 
• Result: We should always correctly predict a function 

return address... 
– Works as long as we don't exceed the stack depth: once we hit 

that we will start getting misses
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And A Final Related Cache: 
Branch Target Buffer

• Function calls using jal we will never mispredict on RISC-V 
– Since they are all PC relative we can do the add in the decode where we 

change our PC prediction 
• But so much today is object-oriented programming which uses jalr: C++ 

and Java object calls are equivalent to calling pointers to functions 
– foo.bar() is implemented as something like this: 

lw t0 0(a0) # Get the pointer to the "virtual function table" in the object 
lw t0 8(t0) # Get the pointer to the function to actually call 
jalr ra t0 # Do a JALR to call bar(), 

# with the object foo as the first implicit argument 
• So cache this as well: 

– On a jalr which writes to ra rather than x0. 
Look in a small cache for the address to predict to based on current PC 

– When evaluating the jump, set the value in this cache to the address used 
• It is the x86 equivalent of this cache that is part of one of the Spectre

vulnerabilities
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How to Reduce Miss Penalty?

• Could there be locality on misses from a 
cache?

• Use multiple cache levels!
• With Moore’s Law, more room on die for 

bigger L1 caches and for second-level (L2) 
cache

• And in some cases even an L3 cache!
• IBM mainframes have ~1GB L4 cache off-chip.
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Review: Memory Hierarchy
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As we move to outer levels the latency goes up
and price per bit goes down.
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Processor

Control

Datapath

Adding Cache to Computer
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L1 and L2 Caches
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Second-
Level
Cache

(SRAM)

Typical Memory Hierarchy
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• Principle of locality + memory hierarchy presents programmer with 
≈ as much memory as is available in the cheapest technology at the 
≈ speed offered by the fastest technology

Cost/bit:         highest                                                                                                 lowest
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How is the Hierarchy Managed?

• registers ↔ memory
– By compiler (or assembly level programmer)

• cache ↔ main memory
– By the cache controller hardware

• main memory ↔ disks (secondary storage)
– By the operating system (virtual memory)
– Virtual to physical address mapping assisted by the 

hardware (‘translation lookaside buffer’ or TLB)
– By the programmer (files)
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2015 IBM CPU
• z13 designed in 22nm SOI technology with 

seventeen metal layers, 4 billion transistors/chip
• 8 cores/chip, with 2MB L2 cache, 64MB L3 

cache, and 480MB L4 off-chip cache.
• 5GHz clock rate, 6 instructions per cycle, 2 

threads/core
• Up to 24 processor chips in shared memory 

node
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IBM z13 Memory Hierarchy
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Local vs. Global Miss Rates

• Local miss rate – the fraction of references to 
one level of a cache that miss

• Local Miss rate L2$ = L2$ Misses / L1$ Misses                                                          
= L2$ Misses / total_L2_accesses

• Global miss rate – the fraction of references that 
miss in all levels of a multilevel cache
• L2$ local miss rate >> than the global miss rate
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L1 Cache: 32KB I$, 32KB D$
L2 Cache: 256 KB
L3 Cache: 4 MB



Local vs. Global Miss Rates
• Local miss rate – the fraction of references to one 

level of a cache that miss
• Local Miss rate L2$ = $L2 Misses / L1$ Misses
• Global miss rate – the fraction of references that 

miss in all levels of a multilevel cache
• L2$ local miss rate >> than the global miss rate

• Global Miss rate = L2$ Misses / Total Accesses
= (L2$ Misses / L1$ Misses) × (L1$ Misses / Total Accesses)
= Local Miss rate L2$ × Local Miss rate L1$

• AMAT =  Time for a hit  +  Miss rate × Miss penalty
• AMAT =  Time for a L1$ hit  + (local) Miss rate L1$ ×

(Time for a L2$ hit + (local) Miss rate L2$ × L2$ Miss penalty)
35
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CPI/Miss Rates/DRAM Access
SpecInt2006
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Instructions and DataData Only Data Only



In Conclusion, Cache Design Space
• Several interacting dimensions

– Cache size
– Block size
– Associativity
– Replacement policy
– Write-through vs. write-back
– Write-allocation

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost
• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B
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