
CS 110
Computer Architecture

Lecture 21:
OpenMP & Cache Coherence

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/21s/

School of Information Science and Technology

ShanghaiTech University

1

Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Review

• Sequential software is slow software
– SIMD and MIMD are paths to higher performance

• MIMD thru: multithreading processor cores
(increases utilization), Multicore processors
(more cores per chip)

• Synchronization – coordination among threads
– RISC-V: atomic read-modify-write using load-

reserve/store-conditional & AMOs

• OpenMP as simple parallel extension to C
– Pragmas for forking multiple Threads
– ≈ C: small so easy to learn, but not very high level and

it’s easy to get into trouble

2

OpenMP Programming Model - Review

• Fork - Join Model:

• OpenMP programs begin as single process (master thread)
and executes sequentially until the first parallel region
construct is encountered
– FORK: Master thread then creates a team of parallel threads
– Statements in program that are enclosed by the parallel region

construct are executed in parallel among the various threads
– JOIN: When the team of threads complete the statements in

the parallel region construct, they synchronize and terminate,
leaving only the master thread

3

parallel Pragma and Scope -
Review

• Basic OpenMP construct for parallelization:
#pragma omp parallel

{

/* code goes here */

}

– Each thread runs a copy of code within the block

– Thread scheduling is non-deterministic

• OpenMP default is shared variables
– To make private, need to declare with pragma:

#pragma omp parallel private (x)
4

OpenMP Directives (Work-Sharing)

5

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

Parallel Statement Shorthand

#pragma omp parallel

{

#pragma omp for

for(i=0; i<len; i++) { … }

}

can be shortened to:

#pragma omp parallel for

for(i=0; i<len; i++) { … }

• Also works for sections
6

This is the only
directive in the
parallel section

Building Block: for loop

for (i=0; i<max; i++) zero[i] = 0;

• Breaks for loop into chunks, and allocate each to a
separate thread
– e.g. if max = 100 with 2 threads:

assign 0-49 to thread 0, and 50-99 to thread 1

• Must have relatively simple “shape” for an OpenMP-
aware compiler to be able to parallelize it
– Necessary for the run-time system to be able to determine

how many of the loop iterations to assign to each thread

• No premature exits from the loop allowed
– i.e. No break, return, exit, goto statements

7

In general,
don’t jump
outside of any
pragma block

Parallel for pragma

#pragma omp parallel for

for (i=0; i<max; i++) zero[i] = 0;

• Master thread creates additional threads,
each with a separate execution context

• All variables declared outside for loop are
shared by default, except for loop index
which is private per thread (Why?)

• Implicit “barrier” synchronization at end of
for loop

• Divide index regions sequentially per thread
– Thread 0 gets 0, 1, …, (max/n)-1;
– Thread 1 gets max/n, (max/n)+1, …, 2*(max/n)-1
– Why? 8

OpenMP Example

$ gcc-5 -fopenmp for.c;./a.out

% clang -Xpreprocessor -fopenmp -
lomp -o for for.c; ./for

thread 0, i = 0

thread 1, i = 3

thread 2, i = 6

thread 3, i = 8

thread 0, i = 1

thread 1, i = 4

thread 2, i = 7

thread 3, i = 9

thread 0, i = 2

thread 1, i = 5

00 01 02 13 14 15 26 27 38 39

9

The call to find the maximum number of threads that are available to do work is omp_get_max_threads()

(from omp.h).

OpenMP Timing

• Elapsed wall clock time:

double omp_get_wtime(void);

– Returns elapsed wall clock time in seconds

– Time is measured per thread, no guarantee can be
made that two distinct threads measure the same
time

– Time is measured from “some time in the past,” so
subtract results of two calls to omp_get_wtime
to get elapsed time

10

Matrix Multiply in OpenMP

// C[M][N] = A[M][P] × B[P][N]

start_time = omp_get_wtime();

#pragma omp parallel for private(tmp, j, k)

for (i=0; i<M; i++){

for (j=0; j<N; j++){

tmp = 0.0;

for(k=0; k<P; k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/

tmp += A[i][k] * B[k][j];

}

C[i][j] = tmp;

}

}

run_time = omp_get_wtime() - start_time;

Outer loop spread across N
threads;
inner loops inside a single
thread

11

Notes on Matrix Multiply Example

• More performance optimizations available:

– Higher compiler optimization (-O2, -O3) to reduce
number of instructions executed

– Cache blocking to improve memory performance

– Using SIMD SSE instructions to raise floating point
computation rate (DLP)

12

Example: Calculating π

13

Sequential p

pi = 3.142425985001

• Resembles p, but not very accurate
• Let’s increase num_steps and parallelize 14

Parallelize (1) …

• Problem: each thread
needs access to the
shared variable sum

• Code runs sequentially
…

15

#include <omp.h>

Parallelize (2) …

sum[0] sum[1]

1. Compute
sum[0]and sum[1]

in parallel

2. Compute
sum = sum[0] + sum[1]

sequentially

16

Parallel p--Trial Run

i = 1, id = 1

i = 0, id = 0

i = 2, id = 2

i = 3, id = 3

i = 5, id = 1

i = 4, id = 0

i = 6, id = 2

i = 7, id = 3

i = 9, id = 1

i = 8, id = 0

pi = 3.142425985001

17

Scale up: num_steps = 106

pi =

3.141592653590

You verify how many
digits are correct …

18

Can We Parallelize Computing sum?

Summation inside parallel section
• Insignificant speedup in this

example, but …
• pi = 3.138450662641

• Wrong! And value changes
between runs?!

• What’s going on?

Always looking for ways to
beat Amdahl’s Law …

19

Question

What are the possible
values of *(x11) after
executing this code by two
concurrent threads?

*(x11) = 100

lw x12,0(x11)

addi x12,x12,1

sw x12,0(x11)

Values of *(x1) ?

A: None of these

B: 100

C: 101

D: 102

E: 100 or 101

F: 101 or 102

G: 100 or 102

H: 100 or 101 or 102
20

Thread 0 Thread 1

x12100

x12101

*(x11)101

x12101

x12102

*(x11)102

Case 0

Thread 0 Thread 1

x12100

x12101

*(x11)101

x12100

x12101

*(x11)101

Case 1

• Operation is really
pi = pi + sum[id]

• What if >1 threads reads current
(same) value of pi, computes the
sum, stores the result back to pi?

• Each processor reads same
intermediate value of pi!

• Result depends on who gets there
when
• A “race” → result is not

deterministic

What’s Going On?

21

OpenMP Reduction
double avg, sum=0.0, A[MAX]; int i;

#pragma omp parallel for private (sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX; // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that, 1 or more variables that are private

to each thread, are subject of reduction operation at end of
parallel region:
reduction(operation:var) where
– Operation: operator to perform on the variables (var) at the end of the parallel

region : +, *, -, &, ^, |, &&, or ||.
– Var: One or more variables on which to perform scalar reduction.

double avg, sum=0.0, A[MAX]; int i;

#pragma omp for reduction(+ : sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX;
22

parallel for, reduction
#include <omp.h>

#include <stdio.h>

static long num_steps = 100000;

double step;

void main (){

int i; double x, pi, sum = 0.0;

step = 1.0 / (double)num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

for (i=1; i<= num_steps; i++){

x = (i - 0.5) * step;

sum = sum + 4.0 / (1.0+x*x);

}

pi = sum * step;

printf ("pi = %6.8f\n", pi);

}

23

More on OpenMP

24

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

More on OpenMP

25

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

#include <stdio.h>

#include <omp.h>

int main(int argc, char **argv) {

int i = 0;

omp_set_num_threads(4); // Maximum 4 threads

#pragma omp parallel private(i)

{

printf("thread %d start\n", omp_get_thread_num());

#pragma omp single

{

for (i = 0; i < 6; i++)

{

printf("Single, thread %d execute i = %d\n",

omp_get_thread_num(), i);

}

}

}

}

More on OpenMP

26

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

#include <stdio.h>

#include <omp.h>

int main(int argc, char **argv) {

int i = 0;

omp_set_num_threads(4); // Maximum 4 threads

#pragma omp parallel private(i)

{

printf("thread %d start\n", omp_get_thread_num());

#pragma omp master

{

for (i = 0; i < 6; i++)

{

printf(“Master, thread %d execute i = %d\n",

omp_get_thread_num(), i);

}

}

printf(“Outside master, thread %d execute i = %d\n",

omp_get_thread_num(), i);

}

}

CACHE COHERENCE

27

Simple Multi-core Processor

28

Processor 0

Control

Datapath
PC

Registers

(ALU)

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers

(ALU)

Processor 1
Memory
Accesses

Multiprocessor Caches
• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed

recently
• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

29

Shared Memory and Caches

• What if?

– Processors 1 and 2 read Memory[1000] (value 20)

30

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000

1000 1000

20

0 1 2

Shared Memory and Caches

• Now:

– Processor 0 writes Memory[1000] with 40

31

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?

Keeping Multiple Caches Coherent
• Architect’s job: shared memory

=> keep cache values coherent
• Idea: When any processor has cache miss or

writes, notify other processors via interconnection
network
– If only reading, many processors can have copies
– If a processor writes, invalidate any other copies

• Write transactions from one processor, other
caches “snoop” the common interconnect
checking for tags they hold
– Invalidate any copies of same address modified in other

cache

32

Shared Memory and Caches

• Example, now with cache coherence

– Processors 1 and 2 read Memory[1000]

– Processor 0 writes Memory[1000] with 40

33

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0
Write
Invalidates
Other Copies

1000

1000 40

1000 40

Snoopy Cache, Goodman 1983

• Idea: Have cache watch (or snoop upon) other memory
transactions, and then “do the right thing”

• Snoopy cache tags are dual-ported

34

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

Optimized Snoop with Level-2 Caches

• Processors often have two-level caches
– small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
– invalidation in L2 => invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth

35

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

Cache Coherency Tracked by Block

• Suppose block size is 32 bytes

• Suppose Processor 0 reading and writing variable X, Processor
1 reading and writing variable Y

• Suppose in X location 4000, Y in 4012

• What will happen?

36

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

Coherency Tracked by Cache Block

• Block ping-pongs between two caches even
though processors are accessing disjoint
variables

• Effect called false sharing

• How can you prevent it?

– Keep variables far apart (at least block size (64
byte))

37

Shared Memory and Caches
• Use valid bit to “unload” cache lines (in

Processors 1 and 2)
• Dirty bit tells me: ”I am the only one using this

cache line”! => no need to announce on
Network!

38

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

Review: Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block, impossible to avoid; small effect for long-running

programs
– Solution: increase block size (increases miss penalty; very large blocks

could increase miss rate)

• Capacity (not compulsory and…)
– Cache cannot contain all blocks accessed by the program even with

perfect replacement policy in fully associative cache
– Solution: increase cache size (may increase access time)

• Conflict (not compulsory or capacity and…):
– Multiple memory locations map to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)
– Solution 3: improve replacement policy, e.g.. LRU

39

Fourth “C” of Cache Misses:
Coherence Misses

• Misses caused by coherence traffic with other
processor

• Also known as communication misses because
represents data moving between processors
working together on a parallel program

• For some parallel programs, coherence misses
can dominate total misses

40

And in Conclusion, …

• Multiprocessor/Multicore uses Shared
Memory
– Cache coherency implements shared memory

even with multiple copies in multiple caches

– False sharing a concern; watch block size!

• OpenMP as simple parallel extension to C
– Threads, Parallel for, private, reductions …

– ≈ C: small so easy to learn, but not very high level
and it’s easy to get into trouble

– Much we didn’t cover – including other
synchronization mechanisms (locks, etc.)

41

