CS 110
Computer Architecture

An Introduction to Operating Systems

Instructors:
Soren Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/21s

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkeley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca/21s

C Programs

CA so far...

. RISC-V Assembly int £ib(int n) |
Project 2 setuzn

-foo £ib (n-2) ;
1w t0, 4(sl) :

CPU addi t1, t0, 3

beq t1, t2, foo

nop

Project 1

Integer (R)

zero

seter Write
H
H
H

o]

Dx0 0x00115863 bge x2 x1 16 ble x1, x2, loop ra (x1)

i ' i R sp (x2)
o

gp (x3)

tp (x4)

t0 (x5)

tl (x6)

t2 (x7)

50 (x8)

i 130 BRu 43210
Caches 7 -
Tag 20 s Block offset
Index
Index Vali ag ata

Memory c
s |9 3
2 L=l =

So how is this any different?

Keyboard \

Storage

Project 2

Adding 1/0

Caches

Hit

Block offset

b

C Programs

#include <stdlib.h>
RISC-V Assembly int £ib(int n) |
return
fib(n-1) +
-foo f£ib(n-2) ;
1w t0, 4(sl) }
addi t1, tO0, 3
beg t1, t2, foo
nop .
Project 1
Screen Keyboard Storage

i

i

/O (Input/Output)

i

Memory

Data

Program
Bytes—

Raspberry Pi

J8 e

e i oosing @
= C € §o o =¥ rs0 04

= 206 Raspberry Pi Model B+ V1.2 N ain T :

- 3 FR47 R

(O Dz OResberry th20M - gy = 3iis Serial I/O

[Fliy—o -
CPU+Ss, etc. (USB)

Storage I/O Memory
(Micro SD Card)

[
=
o
.

-
b
-~

oc ¥ ac
AR tannnhintig

[
SRI9S W W s
cssuﬁ.”.- >
o T S| mwowaEgyy i - L

J3
]

SUL0] | wa 0%
9 b B \

1A
e

'Ei e ‘;;‘7’6-05. lj -

L

: ' = o« IHEITH
> 335’““..*‘ ')Ll Esﬁ = 05

S g U9 S DS
§8 G = -
i _'-aumggs u14 ?C;;
iy
© T pu < FOTS

AR OTEN Screen |/0

ElunEg = Sy
SRR (Hom)

Network 1/0O
(Ethernet)

"RNE I

It’s a real computer!

But walit...

* That’s not the same! Our CS 110 experience isn’t like the
real world. When we run VENUS, it only executes one
program and then stops.

* When | switch on my computer, | get this:

e

S i Categories +
.' Applications
g eeeeeeee
— Weather
@ [v m = -
T r =, L
- te

8

Becevolome | | o

< | ®@ B O ©

- Landscape Software & jme & Date Universa
LN |

Yes, but that’s just software! The Operating System (OS)

Well, “just software”

2 -,--gam? s
* The biggestpii e machine?

. PLATFORM93/4 _
* How many linc e RS uesstimates:

All 7 fictions in txt format

L

| e of zipped file

1994 zipped to be 2.5MB 1MB
1996 5 e o T 6MB
% e CeF 71 23MB
2003 e 40MB
Say No to Pirated Products

201 (HE4: K5 R) 02MB

v - 118MB
2019 RS o- 155MB
Apr 2020 | »ﬁ*”"‘ \ g 166MB
May 2021 INUX-5. 179MB

What does the OS do?

One of the first things that runs when your computer
starts (right after firmware/ bootloader)

Loads, runs and manages programs:

— Multiple programs at the same time (time-sharing)

— |Isolate programs from each other (isolation)
— Multiplex resources between applications (e.g., devices)

Services: File System, Network stack, printer, etc.

Finds and controls all the devices in the machine in a
general way (using “device drivers”)

What does the core of OS need to do?

 Provide interaction with the outside world

— Interact with “devices”

* Disk, screen, keyboard, mouse, network, etc.

* Provide isolation between running programs
(processes)

— Each program runs in its own little world

e Virtual memory

10

Agenda

* OS Boot Sequence and Operation
* Devices and I/0O, interrupt and traps
* Application, Multiprogramming/time-sharing

Agenda

* OS Boot Sequence and Operation

12

What happens at boot?

* When the computer switches on, it does the same as
Venus: the CPU executes instructions from some

start address (stored in Flash ROM)

CPU

yyyyyyyyyy

PC = 0x2000 (some default value) — Address Space

* Bootstrapping:

— 1] —3 | Memory mapped

_ - fl!L;dMMMMmWmewMz%j
o8 S
o | %0

0x2000:
addi t0, zero, 0x1000
1w t0, 4(t0)

(Code to copy firmware into
regular memory and jump
into

it)

https://en.wikipedia.org/wiki/Bootstrapping .

https://en.wikipedia.org/wiki/Bootstrapping

What happens at boot?

* When the computer switches on, it does the same as
Venus: the CPU executes instructions from some
start address (stored in Flash ROM)

4. Init: Launch an application
that waits for input in loop
e.g., Terminal/Desktop/...

1. BIOS: Find a storage
device and load first
sector (block of data

Diskette Drive B : None Serial Port(s) : 3F0 ZFO
Ti. isk : LBA,ATA 100, 250GB Parallel Port(s) : . .
Pri. i LBA,ATA 100, 2506B DDR at Bank(s) : c-tifhivedZ Limu x86.64.
Sec. Hone:

Sec. Slave Disk : None

capability ... Disabled 6
elcome to the KNOPFIX live GNU/Linux on DUD?

Pri. Master Disk HDD S.M.A.R.T.
S.M.A.R.T. capability ... Disabled

Pri. Slave Disk HDD

PCI Devices Listing ...
Dev Fun VUendor Device SUID SSID Class Device Class p ihive ing Linwe Kernel 2.6.24.4.
3 124132kB 118180kB

0 8086 2668 1458 AODS 0403 Multimedia Device .
0 8086 2658 1458 2658 0003 USB 1.1 Host Cnirlr
1 8086 2659 1458 2659 0C063 USB 1.1 Host Cntrlr 56 hdc [QEMU CD-ROM1
Z 8086 265A 1458 265 0C63 USB 1.1 Host Cntrlr ~/src/proji/proii_starter § I ng KNOFPIX DUD at ~deuv/hdc...
3 8086 2658 1458 265A 0C63 USB 1.1 Host Cntrlr T Fou® primary KNOPPIX compressed image at /cdrom/KNOPPIX/KNOPPIX.
7 8086 265C 1458 5006 0063 USB 1.1 Host Cntrlr Found additional KNOPPIX compressed image at /cdrom/KNOPPIX/KNOPPINZ.
z 80686 2651 1458 2651 0161 IDE Catrlr srandisk shared nemory
3 8086 266A 1458 266A 0CO5 SMBus Cntrlr
g iggg g;ﬁ éggg gsgg gigg ﬁ;zg‘;%ug‘;;zlénmr > Read-only DUD system successfully merged with read-write sramdisk.
@ 11AB 4320 1458 E000 0200 Network Cntrlr
ACPL Controllec INIT: version 2.86 booting
onfiguring for Linux Kernel 2.6.24.4.
fProcessor 0 is Pentiun 11 (Klamath) 1662MHz, 128 KB Cache
pnd[16081: apnd 3.2.1 interfacing uith apm driver 1.16ac and APNM BIOS 1.2
APM Bios found, pouer management functions enabled.
ISB found, managed by udeu
Ubuntu 6.84, kernel 2.6.24-16-gene cuire found, mamaged by udeu
udev hot-plug hardware detect

2. Bootloader (stored on, €.8., | e
disk): Load the OS kernel from 3. 0S Boot: Initiall
; 0O0T: INnITlalize
disk into a location in memory , ,
Use the * and L keys to select which entry is highlighted. Se rVICeS’ drlve rs’ etc-

Press enter to boot the selected 0S, 'e’ to edit the

a nd J p |nto |t comands before hooting, or . for a command-line.
um .

UEFI
Unified Extensible Firmware Interface

7”7

e Successor of BIOS
* Much more powerful and complex

e E.g. graphics menu; networking;
browsers

e All modern Intel & AMD

based computer use UEFI

[Extensible Firmware Interface J

N~

15
Hardware

Agenda

* Devices and I/0O, interrupt and traps

16

How to interact with devices?

* Assume a program running on a CPU. How does it
interact with the outside world?

* Need I/O interface for Keyboards,
Network, Mouse, Screen, etc. Processor

N
— Connect to many types of devices

— Control these devices, respond PCI Bus >
to them, and transfer data

— Present them to user < >
SCSI| Bus
programs so | |

Operating System

Mem

they are useful < > & 2 ® ﬂr 5%)
cntrl reg.
data reg. .

Instruction Set Architecture for I/O

* What must the processor do for |/0?
— Input: reads a sequence of bytes
— Output: writes a sequence of bytes

* Interface options
— Some processors have special input/output instructions
— Memory Mapped Input/Output (used by RISC-V):

* Use normal load/store instructions, e.g., lw/sw, for input/output
— In small pieces

* A portion of the address space dedicated to 10

* |/O device registers there (no memory there)

18

Memory Mapped I/0O

* Certain addresses are not regular memory

* |nstead, they correspond to registers in |/O devices

address
OXFFFFFFFF
OXFFFFO000 [cntrl reg.
~~~~~~~~~~~ data reg.

19



Processor-1/O Speed Mismatch

1GHz microprocessor can execute 1 billion load or
store instructions per second, or 4,000,000 KB/s data
rate

* |/O data rates range from 0.01 KB/s to 1,250,000 KB/s

Input: device may not be ready to send data as fast as
the processor loads it

* Also, might be waiting for human to act

Output: device not be ready to accept data as fast as
processor stores it

What to do?

20



Processor Checks Status before Acting

Path to a device generally has 2 registers:

* Control Register, says it’s OK to read/write (I/O ready) [think
of a flagman on a road]

e Data Register, contains data
Processor reads from Control Register in loop, waiting

for device to set Ready bit in Control reg
(0 =>1) to say it’s OK
Processor then loads from (input) or writes to (output)

data register

* Load from or Store into Data Register resets Ready bit
(1 => 0) of Control Register

This is called “Polling”

21



/O Example (polling)

* Input: Read from keyboard into a0

1i t0, Oxf£f££0000 #££££0000

Waitloop: 1w tl, 0(t0) #control
andi tl1, t1,0x1
beq tl, zero, Waitloop
lw a0, 4(t0) #data

* OQOutput: Write to display from a0

1i t0, Oxf£f££0000 #££££0000
Waitloop: 1w tl, 8(t0) #control
andi tl, tl1l,0x1

beqg tl, zero, Waitloop
SW a0, 12(t0) #data

“Ready” bit is from processor’s point of view!

22



Cost of Polling?

* Assume for a processor with a 1GHz clock it takes

400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning).
Determine % of processor time for polling

— Mouse: polled 30 times/sec so as not to miss user
movement



% Processor time to poll

* Mouse Polling [clocks/sec]
=30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]
* % Processor for polling:
12*103 [clocks/s] / 1*¥10° [clocks/s] = 0.0012%
=> Polling mouse little impact on processor

24



What is the alternative to polling?

Wasteful to have processor spend most of its time
“spin-waiting” for 1/0O to be ready

Would like an unplanned procedure call that would
be invoked only when I/O device is ready

Solution: use exception mechanism to help 1/0O.

— Interrupt program when 1/O ready, return when done with
data transfer

Allow to register (post) interrupt handlers: functions
that are called when an interrupt is triggered

25



Interrupt-driven 1/0O

Handler Execution

Stack Frame

Stack Frame

Stack Frame

Label: sl1 t1,s3,2
addu tl1,tl,s5
1w tl,0(tl) €
add s1,s1,tl
addu s3,s3,s4
bne s3,s2,abel

1. Incoming interrupt suspends instruction stream
2. Looks up the vector (function address) of a handler in
an interrupt vector table stored within the CPU

w

Perform a jal to the handler (needs to store any state)

4. Handler run on current stack and returns on finish
(thread doesn’t notice that a handler was run)

<€

handler: 11 t0,

1w tl,
andi t1,
1w ao,
sSw tl,
ret

Interrupt(SP10)

OxfEEF0000

0(t0)
tl,0x1
4 (t0)
8 (t0)

CPU Interrupt Table

> SPIO

handler

26



Terminology

In CA (you’ll see other definitions in use elsewhere):
* Interrupt — caused by an event external to current

running program (e.g. key press, mouse activity)

— Asynchronous to current program, can handle interrupt on
any convenient instruction

e Exception — caused by some event during execution
of one instruction of current running program (e.g.,
page fault, bus error, illegal instruction)

— Synchronous, must handle exception on instruction that
causes exception

* Trap — action of servicing interrupt or exception by
hardware jump to “trap handler” code



Traps/Interrupts/Exceptions.

altering the normal flow of control
() /()

program N >
. handler
Ii+1

!

An external or internal event that needs to be processed - by
another program - the OS. The event is often unexpected from
original program’s point of view.

HI,

28



Supervisor

Precise Traps Sxeepron

program counter

* Trap handler’s view of machine state is that every
instruction prior to the trapped one has completed, and no
instruction after the trap has executed.

* Implies that handlercan return from an interrupt by
restoring user registers and jumping back to interrupted
instruction (SEPC register will hold the instruction address)

— Interrupt handler software doesn’t need to understand the
pipeline of the machine, or what program was doing!

— More complex to handle trap caused by an exception than
interrupt

* Providing precise traps is tricky in a pipelined superscalar
out-of-order processor!

— But handling imprecise interrupts in software is even worse.



Trap Handling in 5-Stage Pipeline

Inst. Decode \ Data
Mem o+ Mem
D

PC address Illegal Overflow ata address
Exception Opcode Exceptions

Asynchronous Interrupts

 How to handle multiple simultaneous
exceptions in different pipeline stages?

e How and where to handle external
asynchronous interrupts?



Save Exceptions Until Commit

Commit

Point .

Inst. \ Data
Mern Decode > + C) Mem
Illegal Overflow | Data address

PC address LOpcode .

I I Exceptions
:I :I I
Kill E Asynchronous| . Ki//‘

Stage Interrupts |Writeback

Exception I

Select :I
Handler Kill F Kill D
PC Stage Stage

SEPC Cause

31



Handling Traps in In-Order Pipeline

Hold exception flags in pipeline until commit point (M
stage)

Exceptions in earlier instructions override exceptions
in later instructions

Exceptions in earlier pipe stages override later
exceptions for a given instruction

Inject external interrupts at commit point

If exception/interrupt at commit: update Cause and
SEPC registers, kill all stages, inject handler PC into
fetch stage



Trap Pipeline Diagram

time
t0 t1 t2 t3 t4 t5 t6 t7 ....
(I,) 096: ADD IF, ID, EX; MA;~>- overflow!
(I,) 100: XOR IF, 1D, Exzt- -
(I;) 104: SUB IF, ID3\- - -
108: ADD - - - -

Trap Handler code

33



Agenda

* Application, Multiprogramming/time-sharing

34



Launching Applications

Applications are called “processes” in most OSs.

— Process: separate memory;

— Thread: shared memory

Created by another process calling into an OS routine
(using a “syscall”, more details later).

— Depends on OS, but Linux uses fork to create a new process, and
execve to load application.

Loads executable file from disk (using the file system
service) and puts instructions & data into memory (.text,
.data sections), prepare stack and heap.

Set argc and argv, jump into the main function.

35



Supervisor Mode

* |f something goes wrong in an application, it could
crash the entire machine.

— And what about malware, etc.?

 The OS may need to enforce resource constraints to
applications (e.g., access to devices).

* To help protect the OS from the application, CPUs
have a supervisor mode bit.

— When not in supervisor mode (user mode), a process can
only access a subset of instructions and (physical) memory.

— Process can enter the supervisor mode by using an
interrupt, and change out of supervisor mode using a special
instruction.



Syscalls

 What if we want to call into an OS routine? (e.g., to
read a file, launch a new process, send data, etc.)

— Need to perform a syscall: set up function arguments in
registers, and then raise software interrupt

— OS will perform the operation and return to user mode

* This way, the OS can mediate access to all resources,
including devices and the CPU itself.



Multiprogramming
The OS runs multiple applications at the same time.

But not really (unless you have a core per process)
— Time-sharing processor

When jumping into process, set timer interrupt.

— When it expires, store PC, registers, etc. (process state).
— Pick a different process to run and load its state.

— Set timer, change to user mode, jump to the new PC.

Switches between processes very quickly. This is
called a “context switch”.

Deciding what process to run is called scheduling.



Protection, Translation, Paging

e Supervisor mode does not fully isolate applications
from each other or from the OS.
— Application could overwrite another application’s memory.

— Also, may want to address more memory than we actually
have (e.g., for sparse data structures).

e Solution: Virtual Memory. Gives each process the
illusion of a full memory address space that it has
completely for itself.

39



In Conclusion

* Once we have a basic machine, it’s mostly up to the
OS to use it and define application interfaces.

 Hardware helps by providing the right abstractions
and features (e.g., Virtual Memory, 1/0).



