CS 110
Computer Architecture

Warehouse-Scale Computing, MapReduce,
and Spark

Instructors:
Soren Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/2ls

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkeley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca/21s

Agenda

 Warehouse Scale Computing

* Request-level Parallelism

e.g. Web search

e Data-level Parallelism
— MapReduce
— Hadoop, Spark

New-School Machine Structures

Parallel Requests

Assigned to computer
e.g., Search “F9”

Parallel Threads ~_ Harness
Parallelism &

Achieve High
Performance

Parallel Instructions ESLIy e
>1 instruction @ one time . Memory .-~ (Cache)
e.g., 5 pipelined instructions : -~

Parallel Data

Assigned to core
e.g., Lookup, Ads

I ?’Qgt/Output Core \

: : Functional
>1 data item @ one time ﬁb&wctlon Unit(s) Unit(s)
Mot

e.g., Deep Learning for
image classification

Hardware descriptions
All gates @ one time
Programming Languages

sufsinicl
Hmw /O+B%1+B}/AZ+B}/A/3+B/
/”l

Cache Memory -

Logic Gates

3

Google’s WSCs

Atlantic
Ocean

Africa

Australia

WSCs

N

Containers
Inside WSC

Inside Container

, Array

r, Rack

Serve

&

; _ﬁ___,_ T T B

£.8.0:4.8.4.0:0:4:

»pgwgﬁ

zEEEE:

A Giant Computer

* Sunway TaihuLight

Riplefiek 125.436PFlops
EPFSEH 93.015PFlops
REZRZ "B B 26010" A AT B
ENLEZRENK 409601~
EENLAEEZK 106496001~
RARENF 1310720 GB
RIERS Raise Linux
mEET C. C++, Fortran
HATEE KRB MPI. OpenMP. OpenACC%
SSD7F ik 230TB
T & 77 bk 10PB, # 7 .288GB/s
RRFW 10PB, * %.32GB/s

http://www.nsccwx.cn/swsource/5d2fe23624364f0351459262

Google Server Internals

.

\ 0 pen Compute Project

Share designs of data center products e i

— Facebook, Intel, Nokia, Google, Apple,)|
Microsoft, Seagate Technology, Dell, Cisco,
Goldman Sachs, Lenovo, ...

Design and enable the delivery of the

most efficient server, storage and data

center hardware designs for scalable

computing.

Openly sharing ideas, specifications and

other intellectual property is the key to

maximizing innovation and reducing

operational complexity

All Facebook Data Centers are 100% OCP |

TxraN

Warehouse-Scale Computers

Datacenter
— Collection of 10,000 to 100,000 servers
— Networks connecting them together
Single gigantic machine

Very large applications (Internet service):
search, email, video sharing, social networking

Very high availability

“...WSCs are no less worthy of the expertise of computer
systems architects than any other class of machines”
Barroso and Hoelzle, 2009

10

Unique to WSCs

 Ample Parallelism
— Request-level Parallelism: e.g., web search
— Data-level Parallelism: e.g., image classifier training

* Scale and its Opportunities/Problems
— Scale of economy: low per-unit cost

— Cloud computing: rent computing power with low costs
(e.g., AWS)

— High # of failures 50000 X 4 X 4%

365 x 24~ 0913

e.g.: 4 disks/server, annual failure rate: 4%
—> WSC of 50,000 servers: 1 disk fail/hour

* Operation Cost Count
— Longer life time (>10 years)
— Cost of equipment purchases << cost of ownership

WSC Architecture

—

1U Server:
8 cores,
16 GB DRAM,
Ax1 TB disk Array (aka cluster):
16-32 racks
Rack: Expensive switch
40-80 severs, (10X bandwidth = 100x cost)

Local Ethernet (1-10Gbps) switch

12

WSC Storage Hierarchy

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

1U Server:
DRAM: 16GB, 0.1us, 20GB/s

Rack(80 severs):

DRAM: 1TB, 100MB/s

Array(30 racks):
DRAM: 30TB, 500us, 10MB/s

‘—;;._Disk: 4.80PB, 12ms, 10MB/s
‘ .

Workload Variation

O 1
©
O
< 2X
=
v
Noon Midnight

* Online service: Peak usage 2X off-peak

14

Impact on WSC software

Latency, bandwidth = Performance

— Independent data set within an array

— Locality of access within server or rack
High failure rate - Reliability, Availability

— Preventing failures is expensive

— Cope with failures gracefully

Varying workloads = Scalability, Availability
— Scale up and down gracefully

More challenging than software for single computers!

15

Power Usage Effectiveness

* Energy efficiency

— Primary concern in the design of WSC

— Important component of the total cost of ownership

Power Usage Effectiveness (PUE):

Total Building Power

IT EQuipment Power

— A power efficiency measure for WSC

— Not considering efficiency of servers, networking
— Perfection=1.0

— Google WSC’s PUE =1.2

16

PUE in the Wild (2007)

IR AR 0 S ——

i 1.0 = Best Value .
_ Possible

i 2 3 4 &5 & ¥ & & 1 41 12 43 14 15 46 4T 18 48 0 B 2 I3 24

FIGURE 5.1: LBNL survey of the power usage efficiency of 24 datacenters, 2007 (Greenberg et al.)

17

Where Data Center Power Goes

Electricity Lighting, etc.
Transformer/ 3%
S)
10% \ /

Air Movement
12%

Cooling
25%

IT Equipment
50%

18

Fraction of Time

Load Profile of WSCs

0.025 i I -

0.015 | i M &

0.01 | I i | .

o m]_H_H'WWWWWM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 i |
CPU Utilization

* Average CPU utilization of 5,000 Google servers, 6 month period

e Servers rarely idle or fully utilized, operating most of the time at
10% to 50% of their maximum utilization

19

Energy-Proportional Computing:
Design Goal of WSC

* Energy = Power x Time, Efficiency = Computation / Energy

* Desire:
— Consume almost no power when idle (“Doing nothing well”)
— Gradually consume more power as the activity level increases

IDEAL SYSTEM EFFICIENCY

Relative Povwer and Efficiency

0 20 40 &0 80 100

System Utilization

Cause of Poor Energy Proportionality

ECPU mDRAM Disk Other

100.00
90.00
g 80.00 -
g 7000
« 60.00
0
< 50.00
= 4000 -
3000
2 3
& 2000
10.00 -
0.00_ T T T T T T T T T T T T
e 7 14 21 20 3% 43 50 57 6 71 79 & 93 100

Compute load (%)

* CPU:50% at peek, 30% at idle
 DRAM, disks, networking: 70% at idle!
* Need to improve the energy efficiency of peripherals

21

Cloud Computing: Scale of Econom

Memory vCPUs Storage

Arch

Network

Performance

Linux On
Demand

M1 General Purpose Small 1.7GB 1 160 GB 32/64-bit Low $0.044 hourly
M1 General Purpose Medium 3.75GB 1 410 GB 32/64-bit Moderate $0.087 hourly
M1 General Purpose Extra

Large 150GB 4 1680GB 64-bit High $0.35 hourly
C1 High-CPU Medium 1.7GB 2 350 GB 32/64-bit Moderate $0.13 hourly
C1 High-CPU Extra Large 7.0GB 8 1680 GB 64-bit High $0.52 hourly
12 Extra Large 305GB 4 800 GB 64-bit Moderate $0.853 hourly
12 Double Extra Large 61.0GB 8 1600GB 64-bit Moderate $1.705 hourly
M4 Large 80GB 2 EBSonly 64-bit Moderate $0.108 hourly
M4 Extra Large 16.0GB 4 EBSonly 64-bit High $0.215 hourly
M4 16xlarge 256.0GB 64 EBSonly 64-bit 20 Gigabit ~ $3.447 hourly
General Purpose GPU Extra

Large 61.0GB 4 EBSonly 64-bit High $0.9 hourly
General Purpose GPU 16xlarge 732.0GB 64 EBSonly 64-bit 20 Gigabit $14.4 hourly
X1 Extra High-Memory 16xlarge 976.0 GB 64 1920GB 64-bit 10 Gigabit $6.669 hourly

* May 2017 AWS Instances & Prices
* Closest computer in WSC example is Standard Extra
* At these low rates, Amazon EC2 can make money!

— even if used only 50% of time

e Virtual Machine (VM) plays an important role

Agenda

* Request-level Parallelism

e.g. Web search

23

Request-Level Parallelism (RLP)

 Hundreds of thousands of requests per sec.

— Popular Internet services like web search, social
networking, ...

— Such requests are largely independent
e Often involve read-mostly databases
* Rarely involve read-write sharing or synchronization
across requests
 Computation easily partitioned across different
requests and even within a request

24

Google Query-Serving Architecture

:

Google Web server

-4—»= Spell checker

N

Ad server

K’/
5

i‘x\‘\\k ‘Lﬁl H\‘ I |
[

i

Index servers

Document servers

25

Anatomy of a Web Search

Google Fo X & Q

Q Al E News [Videos [f] Books [Images i More Settings Tools

I About 254,000,000 results (0.6

https://en.wikipedia.org » wiki » F9_(film) v

F9 (film) - Wikipedia

F9 (also known as Fast & Furious 9) is a 2021 American action film directed by Justin Lin, who
also co-wrote the screenplay with Daniel Casey. It is the sequel to The Fate of the Furious
(2017), the ninth main installment, and the tenth full-length film released overall in the Fast &
Furious franchise

@

seconds) I

Music by: Brian Tyler Based on: Characters; by Gary Scott Tho.. j
Distributed by: Universal Pictures Release date: May 19, 2021 (Hong Kong, ... () Mowimages
Nathalie Emmanuel - Sung Kang - Justin Lin - Brian O'Conner F .

ast & Furious 9 <

2021 - Action/Adventure + 3h 23m
People also ask
) ~iay trailer on YouTube

Is F9 The last one? v
4 6/10 33% 3/5
Where can | see F9 v IMDb Rotten IndieWire
Tomatoes

Why rock is not in F9? v

96% liked this movie
Is F9 out yet? v

Google users

Feedback

Dominic Toretto and his crew join forces to battle the
most skilled assassin and high-performance driver
they've ever encountered -- his forsaken brother.

https:/ftwitter.com/TheFastSaga

#F9 (@TheFastSaga) - Twitter

Release date: June 25, 2021 (USA)

Director: Justin Lin

Budget: $200 million+

Story by: Justin Lin; Alfredo Botello; Daniel Casey

Production companies: Original Film; One Race

Brother against brother. Meet Jakob Toretto. He's #F9 dominates the tallest > Films; Roth/Kirschenbaum Films
Dom and Jakob have done living in his brother's building in the world - the
unfinished business, and it's shadow. Who's ready for the Burj Khalifa in Dubai. See Cast View 15+ more

time to settle the score. #F9 family reunion? Fast is back F9 in US theaters on June P—
e 25475 2 fMarfaresa

26

Anatomy of a Web Search (1/3)

* Google “F9”
— Direct request to “closest” Google WSC

— Front-end load balancer directs request to one of many
arrays (cluster of servers) within WSC

— Within array, select one of many Google Web Servers (GWS)
to handle the request and compose the response pages

— GWS communicates with Index Servers to find documents
that contains the search word, “F9”

— Return document list with associated relevance score

27

Anatomy of a Web Search (2/3)

* In parallel,

— Ad system: run ad auction for bidders on search terms
e Use docids (Document IDs) to access indexed documents
« Compose the page

— Result document extracts (with keyword in context)
ordered by relevance score

— Sponsored links (along the top) and advertisements (along
the sides)

28

Anatomy of a Web Search (3/3)

* Implementation strategy
— Randomly distribute the entries
— Make many copies of data (a.k.a. “replicas”)

— Load balance requests across replicas

* Redundant copies of indices and documents
— Breaks up search hot spots, e.g., “F9”
— Increases opportunities for request-level parallelism

— Makes the system more tolerant of failures

29

Agenda

Data-level Parallelism
— MapReduce
— Hadoop, Spark

30

Data-Level Parallelism (DLP)

 SIMD

— Supports data-level parallelism in a single machine
— Additional instructions & hardware

e.g., Matrix multiplication in memory

DLP on WSC

— Supports data-level parallelism across multiple machines

— MapReduce & scalable file systems

31

Problem Statement

 How to process large amounts of raw data (crawled
documents, request logs, ...) every day to compute
derived data (inverted indices, page popularity, ...),
when computation is conceptually simple but input
data is large and distributed across 100s to 1000s of
servers, so as to finish in reasonable time?

e Challenge: Parallelize computation, distribute data,
tolerate faults without obscuring simple computation
with complex code to deal with issues

Solution: MapReduce

Simple data-parallel programming model and
implementation for processing large datasets
Users specify the computation in terms of

— a map function, and

— a reduce function

Underlying runtime system

— Automatically parallelize the computation across large
scale clusters of machines

— Handles machine failure

— Schedule inter-machine communication to make efficient
use of the networks

What is MapReduce used for?

* At Google:

— Index construction for Google Search

— Article clustering for Google News

— Statistical machine translation

— For computing multi-layers street maps

At Yahoo!:

— “Web map” powering Yahoo! Search
— Spam detection for Yahoo! Mail

At Facebook:
— Data mining
— Ad optimization
— Spam detection

34

Map/Reduce Programming Model

Reduce

Key-Value
Pairs

— Map computation across many objects
* E.g., 10 Internet web pages

— Aggregate results in many different ways
— System deals with issues of resource allocation & reliability

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004

35

Inspiration: Map & Reduce Functions,
ex: Python

4
o
Calculate: Qn® 1 2

3 4
"~ VU U Y

A =1, 2, 3, 4]

def square(x): 1 B - -
return X * X

def sum(x, y): @ ‘
return x + vy . e

reduce(sum, @
map(square, A))

30

36

MapReduce Programming Model

* Map: (in_key, in_value) - list(interm_key, interm val)

map(in_key, in val):
// DO WORK HERE
emit(interm_key, interm_val)

— Slice data into “shards” or “splits” and distribute to workers
— Compute set of intermediate key/value pairs

* Reduce: (interm_key, list(interm value)) > list(out _value)

reduce(interm key, list(interm val)):
// DO WORK HERE
emit(out key, out val)

— Combines all intermediate values for a particular key
— Produces a set of merged output values (usually just one)

37

MapReduce Word Count Example

Distribute

that that is|is that thatlis not is notlis that it it is
Map 1 Map 2 Map 3 Map 4

that dhibat dhdg 1 Is 1, that 1, thatl | is1,iwot,hos1,motD |isd, thatbitibitdhisdl| Local Sort

Shuffle .
|5111111 that11111
itl,1 not 1
Reduce 1 Reduce 2
is 6; it 2 not 2; that 5

Collect \ /

is6;it 2; not 2; that 5

38

MapReduce Word Count Example

User-written Map function reads the document data and

parses out the words. For each word, it writes the (key, value)
pair of (word, 1). That is, the word is treated as the intermediate
key and the associated value of 1 means that we saw the word

once.

Map phase: (doc name, doc contents) =2 list(word, count)
// “I do I learn” -»> [(*“I”,1),(“do”,1),(“I”,1),(“learn”,1)]
map(key, value):
for each word w in value:
emit(w, 1)

39

MapReduce Word Count Example

The intermediate data is then sorted by MapReduce by keys and
the user’s Reduce function is called for each unique key. In this
case, Reduce is called with a list of a "1" for each occurrence of
the word that was parsed from the document. The function adds
them up to generate a total word count for that word.

Reduce phase: (word, list(counts)) = (word, count_sum)
// (“T”, [1,1]) > (“I”,2)
reduce(key, values):

result = 0

for each v in values:
result += v

emit(key, result)

40

MapReduce Processing Example:
Count Word Occurrences

* Pseudo Code: for each word in input, generate <key=word, value=1>
* Reduce sums all counts emitted for a particular word across all mappers

map (String input key, String input value):
// input key: document name
// input value: document contents
for each word w in input value:
EmitIntermediate (w, "1"); // Produce count of words

reduce (String output key, Iterator intermediate values):
// output key: a word
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += Parselnt(v); // get integer from key-value
Emit (output key, result);

41

MapReduce Implementation

split 0

split 1 file 0

split 2

split 3

split 4 file 1
Input Map Intermediate files Reduce Output

files phasr {om local disks) phase files

MapReduce Execution

L 4)
(1) Split inputs, User
Program
start up programs) fork - () fork
on a cluster of o Wk)
machines e “'
2) .- ., @
assign assign
y .~map reduce
) -
split0 | /4
—— |nng @) local write file 0
split 2 () read @
splitd ||
split4 | file 1
— G
Input Map Intermediate files Reduce Output
files phasr {om local disks) phase files

43

MapReduce Execution

(2) Assign map & Program

reduce tasks to Work T o

idle workers

Master
{l’:]_.-" {lfl
assign assign

: _~map reduce
splitd | /4 .

split1 |

file 0

4) local write
3 d
il ,.:. >
splitd | -

_;;‘“-
split4 | \

file 1

Input Map Intermediate files Reduce Output
files phasr {om local disks) phase files

44

MapReduce Execution

(3) Perform a map task,

User
_ . Program
generate mtgrmed late fork .~ —"._(1)fork
key/value pairs s e
(4) Write to the buffers @
i@ @
assign assign
/ i ~map \reduc.g :
split 0 6) writ
split 1 ____,,/4) ead] e

4) local writ
N (3) read % WITEe |
split 2
)
split 3 N -

—< outp
split4 | \ file 1
G|]
NG ,
Input Map Intermediate files Reduce Output
files phasr {om local disks) phase files

45

MapReduce Execution

User (5) Read intermediate

Program .
Diork - /o key/value pairs,

Mfork ™. sort them by its key.

split 0

split 1 file 0

split 2

split 3

split4 | file 1
Input Map Intermediate files Reduce Output
files phasr {om local disks) phase files

46

MapReduce Execution

(6) Perform a reduce task

User
Jrogm for each intermediate key,
(1) fork : '-.__{1] fork .
ik . write the result to the
- -, output files
(2) .- ., (@) .
assign assign
y .nap reduce % 7 ™\
split0d | &) writ
litl] . e)[}WrIE"‘ file 0
Sp 3 p 4) local write
2)
split 3 —— utp
- L
split4 | file 1
.= . /
Input Map Intermediate files Reduce Output
files phasr {om local disks) phase files

47

Big Data Framework: Hadoop & Spark

* Apache Hadoop ,
— Open-source MapReduce Framework & DIDZIEJ

— Hadoop Distributed File System (HDFS)
— Hadoop YARN Resource Management

— MapReduce Java APIs
— more than half of the Fortune 50 used Hadoop (2013)&

* Apache Spark | SpQrK

— Fast and general engine for large-scale
data processing.
— Running on HDFS

— Provides Java, Scala, Python APIs for
e Database
* Machine learning
e Graph algorithm '

Word Count in Spark’s Python API

// RDD: primary abstraction of a distributed
collection of items

file = sc.textFile(“hdfs://..”)

// Two kinds of operations:

// Actions: RDD -2 Value

// Transformations: RDD -2 RDD

// e.g. flatMap, Map, reduceByKey

file.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)

49

And, in Conclusion ...

Warehouse-Scale Computers (WSCs)

— New class of computers

— Scalability, energy efficiency, high failure rate
Cloud Computing

— Benefits of WSC computing for third parties

— “Elastic” pay as you go resource allocation
Request-Level Parallelism

— High request volume, each largely independent of other
— Use replication for better request throughput, availability

MapReduce Data Parallelism
— Map: Divide large data set into pieces for independent parallel processing
— Reduce: Combine and process intermediate results to obtain final result
— Hadoop, Spark

50

