
Student Name Chinese: _____________________

Student Name Pinyin: _____________________

Student Email: _____________________ (Shanghaitech email w/o “@shanghaitech.edu.cn”)

Student Id: _____________________

School: _____________________

Year of Entrance: _____________________

ShanghaiTech University Midterm I Examination Cover Sheet

April 6 2021

Academic Year : ___2020___to___2021__ Term: __Spring_______

Course-offering School: ____SIST____________

Instructor: Sören Schwertfeger & Chundong Wang

Course Name: Computer Architecture I

Course Number: CS110

Exam Instructions for Students:

1. All examination rules must be strictly observed throughout the entire test, and any form of

cheating is prohibited.

2. Other than allowable materials, students taking closed-book tests must place their books,

notes, tablets and any other electronic devices in places designated by the examiners.

3. Students taking open-book tests may use allowable materials authorized by the examiners.

They must complete the exam independently without discussion with each other or exchange

of materials.

For Marker’s Use:

Section 1 2 3 4 5 6 7 8 9 10 11 12 Total

Max 1 3 11 11 10 12 7 16 5 10 7 7 100

Marks

Recheck

Email: Mid-Term I, Page 2 of 14 Computer Architecture I 2021

1.1 First Task (worth one point): Fill in you name
Fill in your name and email on the front page and your ShanghaiTech email on top of
every page (without @shanghaitech.edu.cn) (so write your email in total 14 times).

2. Various Questions
(a)3 Name the 6 Great Ideas in Computer Architecture as taught in the lectures.

3. Number Representation
(a)3 Given the number 0x811F00FA. It can be interpreted as:

a binary number:

four unsigned bytes:

four two’s complement bytes:
(b)4 A quarter is a single byte split into the following fields (1 sign, 3 exponent, 4

mantissa): SEEEMMMM. It has all the properties of IEEE 754 (including denormal
numbers, NaNs and ±1) just with different ranges, precision and representations.
For a quarter, the bias of the exponent is 3, and the implicit exponent for denormal
numbers are �2.
What is the largest number smaller than 1?

In binary

In decimal
Which negative denormal number is closest to 0?

In binary

In decimal

Email: Mid-Term I, Page 3 of 14 Computer Architecture I 2021

(c)4 What is the value of q1, q2, c, d?
Hint Rounding mode: round toward even/0.

1 quarter q1, q2, q3, c, d;
2 q1 = -0.25;
3 q2 = -4.0;
4 q3 = 0.125;
5 c = q1 + (q2 + q3);
6 d = (q1 + q2) + q3;

q1 in binary

q2 in binary

c in decimal

d in decimal

4. C Basics
(a)5 Memory of C

1 #include <stdlib.h>
2
3 int main() {
4 static int p = 5;
5
6 char *str = ______________________;
7 /* some other codes, and you can skip it. */
8 return 0;
9 }

1. You need to allocate a string str containing p characters. Write the code above
(please use malloc).

2. Fill in the correct memory section based on what the given C expressions eval-
uate to.

&p

&str

str

Email: Mid-Term I, Page 4 of 14 Computer Architecture I 2021

(b)3 Catch bugs!

1. When you want to debug with GDB, what flag you will put in your compilation?

2. Write down some essential commands in GDB. Example: Start your program:
run/r

Set break point:

Show next line(stepping into function calls):

(c)3 C programming: Reverse singly linked list. For example, convert 1 ! 2 ! 3 !
NULL to 3 ! 2 ! 1 ! NULL. (You may not need all of the lines)

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /* Definition for singly-linked list. */
5 struct ListNode {
6 int val;
7 struct ListNode *next;
8 };
9

10 /* Given the head of a singly linked list, reverse
11 the list, and return the head of reversed list.*/
12 struct ListNode *reverse_list(struct ListNode *head) {
13 struct ListNode *prev = NULL;
14 struct ListNode *curr = head;
15 struct ListNode *next = head;
16 while (curr) {
17 next = next->next;
18
19 ____________________________
20
21 ____________________________
22
23 ____________________________
24
25 ____________________________
26
27 ____________________________
28
29 ____________________________
30 }
31 return prev;
32 }

Email: Mid-Term I, Page 5 of 14 Computer Architecture I 2021

5. Byte-Swap Operation
Assuming we are in a 32bit, little endian system. Little Dragon receives a 4-byte inte-
ger num, he wants to swap the value of num’s ith byte and jth byte (i, j 2 {0, 1, 2, 3}, i 6=
j) to get a new number!
(a)3 Idea I: Little Dragon wants to directly retrieve the ith and jth byte of num, then

swap them.
First of all, define a MACRO to get the ith byte of num. Read the following C
code, then help Little Dragon to fill in the blank lines (Line 4 and 10) so the output
should be Ox34. When defining the MACRO, use &, |, ^, ~, >>, << operators only.
Remember to write a meaningful MACRO such that Little Dragon can reuse it
again (directly return Ox34 is not allowed)!

1 #include <stdio.h>
2 #include <stdint.h>
3
4 #define GET_BYTE(num, ind) _________________________________
5
6 int main(){
7 int number, index;
8 int8_t byte;
9 number = 0x12345678;

10
11 index = ___________; /* index is one of {0, 1, 2, 3} */
12 byte = GET_BYTE(number, index);
13 printf("%#x\n", byte); /* should print Ox34 */
14 return 0;
15 }

Write your answer above.

Email: Mid-Term I, Page 6 of 14 Computer Architecture I 2021

(b)4 Idea II: An alternative way to fetch the ith byte is Union. Little Dragon wrote the
following code, but he is a little confused about the concept of little endian and big
endian. Help him answer the questions below!

1 #include <stdio.h>
2 #include <stdint.h>
3
4 /* Tip on union: data type that stores its members
5 in the same memory location */
6 typedef union {
7 struct {
8 uint8_t byte0;
9 uint8_t byte1;

10 uint8_t byte2;
11 uint8_t byte3;
12 } bytes;
13 int all_bits;
14 } MyInt;
15
16 int main() {
17 MyInt intA;
18 intA.all_bits = 0x12345678;
19 printf("%#x, %#x\n", intA.bytes.byte1, intA.bytes.byte3);
20 return 0;
21 }

What is the expected output (in hexadecimal format) of Line 19:

• if the system is little endian?

• if the system is big endian?

(c)3 Idea III: Little Dragon is fasczinated in playing with bitwise operations. He wrote
the following function in C.
1 void byte_xor(int num, int a, int b) {
2 char *ret_val = (char *) #
3
4 ret_val[b] ?? ret_val[a];
5 ret_val[a] ?? ret_val[b];
6 ret_val[b] ?? ret_val[a];
7
8 printf("%#x\n", num);
9 }

What operators are expected to substitute the ?? in Line 4, 5, and 6, such that the
result of byte_xor(0x1133CCFF, 1, 3) will be OxCC3311FF?

A. &=, &=, &= B. &=, ^=, ^= C. |=, ^=, ~= D. ^=, ^=, ^=

Email: Mid-Term I, Page 7 of 14 Computer Architecture I 2021

6. RISC-V programming
In this question, you are asked to implement a simple recursive function in RISC-V.
The function takes a decimal number as input, then outputs it’s octal representation
encoded as decimal digits. For example, if the input to this function is 100, then the
output would be 144.
The recursive function implemented in C is given below:

1 int find_octal(unsigned int decimal) {
2 if (decimal == 0) {
3 return 0;
4 } else {
5 return decimal % 8 + 10 * find_octal(decimal / 8);
6 }
7 }

A skeleton of RISC-V code is given below.
DO NOT fill in them immediately. Do some warm-ups first!

1 find_octal:
2 addi sp, sp, -8
3 sw ra, 4(sp)
4 sw s0, 0(sp)
5
6 beq a0, x0, _____
7
8 _____________________ # set s0 to something
9

10 _____________________ # set a0 to something
11
12 jal ra, _________ # recursive call
13
14 _____________________
15 mul a0, t0, a0
16
17 _____________________ # a0 = ???
18 postamble:
19
20 _____________________ # Restore ra
21
22 _____________________ # restore ...
23
24 _____________________ # restore ...
25 end:
26 jr ra

(a)2 Translate the following RISC-V instructions into machine code.

sw ra, 4(sp)

andi s0, a0, 7

Email: Mid-Term I, Page 8 of 14 Computer Architecture I 2021

(b)2 What is one pseudo instruction in the RISC-V code above? How can you change it
into one base instruction?

Pseudo instruction:

After your change:

(c)8 Fill in the missing code above.

7. RISC-V Basic
(a)5 Write a function in RISC-V code to return 0 if the input 32-bit float is an infinite

value, else a non-zero value. The input and output will be stored in a0, as usual.
Do not use pseduo instructions!
is_not_infinity:

ret # <= Return instruction

(b)2 True or False.

1. Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into
s0.

2. After calling a function and having that function return, the t registers may have
been changed during the execution of the function, while a registers cannot.

1 2

Email: Mid-Term I, Page 9 of 14 Computer Architecture I 2021

8. CALL
Answer the following questions with regard to the following C program.

1 #include <stdio.h>
2
3 int main(int argc, char *argv[]) {
4 if (argc == (1 + 1)) {
5 printf("Hello, %s.\n", argv[1]);
6 } else {
7 printf("Goodbye.\n");
8 }
9

10 return 0;
11 }

(a)8 Select which stage of CALL is responsible for the following actions. Please fill you
answer (A, B, C or D) in the table below.

A. Compiler B. Assembler C. Linker D. Loader

1. Removes all pseudo instructions.
2. Provide the address to the string "Goodbye.\n".
3. Remove most duplicate instructions in the program in order to optimize the

program.
4. Put arguments in the address of argv so that the program could read from it.
5. Incorporating dynamic libraries so that the program could call printf in the C

standard library.
6. Creates the symbol table so that we can know the address to the function main

in future stages.
7. The parser is used to determine the operator precedence in argc == (1 + 1).
8. Determine the jump address the if statement is jumping to.

1 2 3 4 5 6 7 8

(b)8 True or False. Please fill your answer (T or F) in the table below.
1. Pseudo instructions are not allowed in the output of compiler.
2. Statically-linked libraries are incorporated into the program during the load

stage.
3. Dynamically-linked libraries are incorporated into the program during the link

stage.
4. The interpreted program (like Python) runs way faster than a compiled one

(like C) in most cases.
5. The assembler takes two passes over the code to resolve PC-Relative target

addresses.

Email: Mid-Term I, Page 10 of 14 Computer Architecture I 2021

6. Copying arguments passed to the program onto the stack is done during the
linking stage.

7. Assembler can always provide the correct immediate value when translating all
la instructions.

8. Compiling stage is the one most often responsible for code optimization.

1 2 3 4 5 6 7 8

9. Logic
(a)5 The circuit shown below can be simplified. Please write down the boolean expres-

sion that exactly corresponds to the circuit shown (no simplification). Then simplify
this prepossession step by step, applying one rule at a time. Then draw the circuit
according to the simplified boolean expression using the minimum number of one-
or two-input logic gates.

Email: Mid-Term I, Page 11 of 14 Computer Architecture I 2021

10. SDS
(a)6 Draw the Timing Diagram for the circuit below. NOT gates have a 2 ns propagation

delay. For each register, the clk-to-q delay is 2 ns and setup time is 2 ns. The clock
period is 8 ns, and each grid in the following diagram is a unit of 1 ns. The initial
values of clock and output are given in the diagram. Use any of the two empty
graphs to put in your answer (so you can re-do it). Clearly mark your final
answer if you use more than one graph!

Email: Mid-Term I, Page 12 of 14 Computer Architecture I 2021

(b)4 Consider the following circuit. Assume the clock has a frequency of 50 MHz, all
gates have a propagation delay of 6 ns, X changes 10 ns after the rising edge of clk,
Reg1 and Reg2 have a clk-to-q delay of 1 ns.

What is the longest possible setup time such that there are no setup time
violations?

What is the longest possible hold time such that there are no hold time viola-
tions?

Email: Mid-Term I, Page 13 of 14 Computer Architecture I 2021

11. FSM

00start 01 10

0/0

1/0

1/0 0/0

1/1

0/0

(a)3 Fill in the truth table for the FSM above.

state bit1 state bit0 input next state bit1 next state bit0 output
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

(b)1 What does the given FSM output with the input bit string ‘0100101010’?

(c)1 What does the given FSM implement (Describe when the FSM will output 1)?

(d)2 Draw a FSM that outputs 1 when it receives two or more successive ‘0’.

00start 01 10

Email: Mid-Term I, Page 14 of 14 Computer Architecture I 2021

12. RISC-V Datapath
Here is the datapath we learnt from class:

(a)2 Assume our single-cycle CPU works in 1Ghz, fill in the two blanks.

Stage IF EXE MEM WB
Time Cost(ps) 200 350 170 130

(b)2 Which of following instructions involves all stages of execution?

A. addi B. jalr C. lw D. auipc

(c)3 Assume t3 = 0x8fffffff, t4 = 0x0fffffff. Write down control signals for blt t3, t4,
label. Please use * to indicate that what this signal is does not matter.

PCSel ImmSel RegWEn BrUn BrEq BrLT ASel BSel ALUSel MemRW WBSel

