
Computer Architecture I Mid-Term II May 11 2021

Computer Architecture I Mid-Term II

Chinese Name:

Pinyin Name:

Student ID:

E-Mail ... @shanghaitech.edu.cn:
Question: 1 2 3 4 5 6 7 8 9 Total

Points: 1 18 14 21 6 12 7 12 9 100

Score:

• This test contains 22 numbered pages, including the cover page, printed on both sides
of the sheet.

• We will use Gradescope for grading, so only answers filled in at the obvious places will
be used.

• Use the provided blank paper for calculations and then copy your answer here.

• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all
hats and headphones. Put everything in your backpack. Place your backpacks, laptops
and jackets out of reach.

• Unless told otherwise always assume a 32bit machine.

• The total estimated time is 120 minutes.

• You have 120 minutes to complete this exam. The exam is closed book; no computers,
phones, or calculators are allowed. You may use two A4 pages (front and back) of
handwritten notes in addition to the provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as
you can. We will deduct points if your solution is far more complicated than necessary.
When we provide a blank, please fit your answer within the space provided.

• Do NOT start reading the questions/ open the exam until we tell you so!

Email: Mid-Term II, Page 2 of 22 Computer Architecture I 2021

1.1 First Task (worth one point): Fill in you name

Fill in your name and email on the front page and your ShanghaiTech email on top of
every page (without @shanghaitech.edu.cn) (so write your email in total 22 times).

2. RISC-V Datapath

The following diagram is the RISC-V single-cycle control datapath.

(a)6 In the RISC-V datapath above, what is used for the jalr instruction. Some ques-
tions may have more than one answer, please select (fill in table below) all that
apply.

1. PCSel Mux:

A. pc + 4 branch
B. alu branch

C. Input dependent
D. * (don’t care)

2. ASel Mux:

A. pc branch
B. Reg[rs1] branch

C. Input dependent
D. * (don’t care)

3. BSel Mux:

A. imm branch
B. Reg[rs2] branch

C. mem branch
D. * (don’t care)

Email: Mid-Term II, Page 3 of 22 Computer Architecture I 2021

4. WBSel Mux:
A. pc+4 branch
B. alu branch

C. mem branch
D. * (don’t care)

5. Datapath units:
A. Branch Comp B. Imm. Gen

6. RegFile:
A. Value read from Reg[rs1]
B. Value read from Reg[rs2]

C. Writing to Reg[rd]

1 2 3 4 5 6

Solution: B; B; A; A; B; AC.

(b)6 In the RISC-V datapath above, what is used for the beq instruction. Some questions
may have more than one answer, please select (in the table below) all that apply.

1. PCSel Mux:
A. pc + 4 branch
B. alu branch

C. Input dependent
D. * (don’t care)

2. ASel Mux:
A. pc branch
B. Reg[rs1] branch

C. * (don’t care)

3. BSel Mux:
A. imm branch
B. Reg[rs2] branch

C. * (don’t care)

4. WBSel Mux:
A. pc+4 branch
B. alu branch

C. mem branch
D. * (don’t care)

5. Datapath units:
A. Branch Comp B. Imm. Gen

6. RegFile:
A. Read Reg[rs1]
B. Read Reg[rs2]

C. Write Reg[rd]

Email: Mid-Term II, Page 4 of 22 Computer Architecture I 2021

1 2 3 4 5 6

Solution: C; A; A; D; AB; AB.

(c)6 In the RISC-V datapath above, what is used for a mv instruction. Some questions
may have more than one answer, please select all that apply.
Please notice that mv is a pseudo instruction, you are required to find and use the
corresponding base instruction as specified on the green card.

1. PCSel Mux:

A. pc + 4 branch
B. alu branch

C. Input dependent
D. * (don’t care)

2. ASel Mux:

A. pc branch
B. Reg[rs1] branch

C. * (don’t care)

3. BSel Mux:

A. imm branch
B. Reg[rs2] branch

C. * (don’t care)

4. WBSel Mux:

A. pc+4 branch
B. alu branch

C. mem branch
D. * (don’t care)

5. Datapath units:

A. Branch Comp B. Imm. Gen

6. RegFile:

A. Read Reg[rs1]
B. Read Reg[rs2]

C. Write Reg[rd]

1 2 3 4 5 6

Solution: A; B; A; B; B; AC.

Email: Mid-Term II, Page 5 of 22 Computer Architecture I 2021

3. Hazardous Bit Fiddling

Consider a typical 5-stage (Fetch, Decode, EXecute, Memory, WriteBack) pipeline. As-
sume pipeline registers exist where the dotted lines are.

For this question, note the following considerations:

• We can read and write from the same registers or memory address in the same
clock cycle.

• No other optimizations are implemented in this datapath (unless explicitly stated
in the question).

1 mystery:
2 srai t0, a0, 31
3 add a0, a0, t0
4 xor a0, a0, t0
5 ret
6
7 mystery_alternative:
8 bge __, __, end
9 sub __, __, __

10 end:
11 ret

(a)2 How many hazard(s) are there in mystery (lines 1 to 5)? What kind(s) of hazard(s)
are they?

Solution:
3, instruction (2, 3), (3, 4), (2, 4); Data Hazard.

Email: Mid-Term II, Page 6 of 22 Computer Architecture I 2021

Data hazards involve pairs of instructions. An instruction in itself cannot lead
to data hazards. Also, instructions concerned with the same hazard may not be
adjacent to each other.

(b)1 How many stalls would need to be added for the program to be executed correctly
on the pipelined machine? (Ignore ret)

Solution:

1 mystery:
2 srai t0, a0, 31
3 nop
4 nop
5 add a0, a0, t0
6 nop
7 nop
8 xor a0, a0, t0
9 ret

4
A typical data hazard stalls the pipeline for 3 cycles if we don’t allow write and
read to the register file in the same cycle and 2 cycles otherwise. We do not need
to stall extra cycles for (srai, xor) since t0 is already written to the register file
before add is executed.

(c)1 Assuming that forwarding is implemented, count the total number of cycles it
takes to complete mystery (excluding ret)

Solution: 3

(d)2 Try to walk through mystery with a few inputs and see what it outputs. Suggest a
C function signature for mystery that best conveys its semantics. (function name
and type, e.g. type function_name(type param);)

Solution:
int abs(int a);

• Function name should imply absolute value. input -1 output 1, input 2
output 2.

Email: Mid-Term II, Page 7 of 22 Computer Architecture I 2021

• We are dealing with signed 2’s complement values, so the type of the
parameter and return value should both be int

• According to the RISC-V calling convention, the first integer parameter
is passed in a0, and integer return values are stored in a0 too.

(e)2 Fill in the register operands in mystery_alternative, such that it performs the same
functionality as mystery.

bge

sub

Solution:

1 mystery_alternative:
2 bge a0, x0, end
3 sub a0, x0, a0
4 end:
5 ret

(f)2 How many hazard(s) are present in mystery_alternative? What kind(s) of haz-
ard(s) are they?

Solution: 1; Control Hazard

(g)2 Suppose that you decided to implement a branch predictor with the following con-
figuration. A predicted branch takes 1 cycle and a mispredicted branch takes 5
cycles. Assuming the prediction accuracy is p, calculate on average how many cy-
cles it takes to execute bge (line 8) in function mystery_alternative? (Write your
answer as a formula containing p)

Solution: p+ (1− p)× 5 = 5− 4× p

(h)2 Compare your answer in (g) against (c), under what condition would you favor the
first function against the second function? (For simplicity, ignore the time it takes
to execute the sub instruction. Give a range of p)

Email: Mid-Term II, Page 8 of 22 Computer Architecture I 2021

Solution:
5− 4× p > 3⇒ p < 1

2

Modern CPUs usually have much deeper pipelines and thus heavier branch mis-
prediction penalty. Therefore the compiler attempts to aggressively optimize
out simple branches, like the absolute value function. In this case, the opti-
mization may not worth the effort because of the shallow pipeline. A random
predictor predicts correctly 50% of the time.
The motivation for crafting this question is as following

• While this question mainly focuses on pipeline hazards, it also synthesize
points from number representation and RISC-V convention.

• The 2 functions presented in this question each represents a kind of pipeline
hazard and may perform differently under different hardware configura-
tion, whose trade off should be made aware of by the students when doing
performance engineering.

Email: Mid-Term II, Page 9 of 22 Computer Architecture I 2021

4. Superscalar

(a)8 This section involves T / F questions. Please fill your answer (T or F) in the table
below.

1. A superscalar CPU can execute more than one process or thread at a given
time.

2. The number of clock cycles a floating point multiplier needs depends on the
values of the operands.

3. Bypassing can not prevent increased write back latency from slowing down
single cycle integer operations.

4. Out-of-order superscalar processors exploit instruction-level parallelism and
adds more complexity to the compiler.

5. Superscalar processors use multiple execution units for additional instruction
level parallelism.

6. A superscalar processor can execute more than one instructions per clock cycle,
it allows performance gain in latency at a given clock rate.

7. According to Flynn’s Law, a single-core superscalar processor is classified as an
SIMD processor.

8. All but simplest machines have out-of-order completion, due to different laten-
cies of functional units and desire to bypass values as soon as possible.

1 2 3 4 5 6 7 8

Solution: F; F; F; F; T; F; F; T.

(b)2 Assume the execution latency of the longest-latency instruction in a 4-wide super-
scalar, out-of-order machine implementing one algorithm is 500 cycles.
How large should the instruction window be such that the decode of instructions
does not stall in the presence of this longest-latency instruction?

Solution:
2000 instructions.
500 cycles/stall× 4 instructions to buffer every cycle⇒ Need a 2000-instruction-
entry window.

(c)2 Assume your friend at a processor design company designed a 1-instruction-wide
processor with out-of-order execution. Every instruction in this machine takes a
single cycle.

Email: Mid-Term II, Page 10 of 22 Computer Architecture I 2021

What would you suggest to your friend to simplify the design of the above processor?
Please explain yourself briefly.

Solution:
Execute in-order. Out-of-order execution will not improve performance because
instructions have fixed latency and never stall.

Email: Mid-Term II, Page 11 of 22 Computer Architecture I 2021

(d)2 What is the definition of CPI? Please use an equation to show it.

Solution:

CPI =
Cycles

Instruction
(1pt)

=
Time

Program
÷ (

Instructions
Program

× Time
Cycle

) (2pts)

(e)2 Calculate the CPI (cycle per instruction) of a program with following parameters.

Operation Freqi CPIi
ALU 45% 2
Load 30% 5
Store 15% 4
Branch 25% 3

Solution: 45%× 2 + 30%× 5 + 15%× 4 + 25%× 3 = 3.75 (cycles).

(f)5 Here is a simplified datapath schematic diagram of a superscalar processor. Fill in
the following blanks.

Email: Mid-Term II, Page 12 of 22 Computer Architecture I 2021

1. Issue buffer sits between stage and stage .
2. Using this processor and fetching two instructions per cycle, it issues both

simultaneously if one is and other is .

Solution:

1. 2; 3.

2. integer/memory; floating point.

Email: Mid-Term II, Page 13 of 22 Computer Architecture I 2021

5. Performance

(a)2 A given program written in C runs 15 seconds on machine A. Suppose an optimized
C compiler is released which compiles that program into 60% as much instructions
as the old compiler. However, half of the instructions require 120% CPI than before.
How long would the program complied by the newer compiler run on machine A?
Give your calculation steps.

Solution:

15× 60%× (50% + 50%× 120%) = 9.9 sec

(b)2 Consider an ISA that instructions can be divided into four different classes (A, B,
C, D) according to their CPI. P1 with a clock rate of 2.5 GHz and CPIs of 1, 2,
3 and 3; and P2 with a clock rate of 3 GHz and CPIs of 3, 2, 2 and 2. Given a
program that contains 1 × 106 instructions with 10% A, 20% B, 50 % C and 20%
D.

1. What is the average CPI of that program for P1 and P2? Give your calculation
steps.

2. Which processor runs faster for that program? Justify your answer.

Solution:

1. P1: 10%× 1 + 20%× 2 + 70%× 3 = 2.6;

P2: 10%× 3 + 90%× 2 = 2.1.

2.
2.6

2.5
>

2.1

3
; P2 runs faster.

(c)2 Assume for arithmetic, load/store and branch instructions, a processor has CPIs
of 1, 12 and 5. Also assume that on a single core processor a program requires
2.56× 109 arithmetic instructions, 1.28× 109 load/store instructions and 2.56× 108

instructions. Assume that each processor core runs on 2GHz clock.

Email: Mid-Term II, Page 14 of 22 Computer Architecture I 2021

Say that the program is parallelized to run over multiple cores. The number of
arithmetic and load/store instructions per core is divided by 0.7× p (where p is the
number of cores) but the number of branch instructions per core remains the same.
To what should the CPI of load/store instructions be reduced in order for a sin-
gle core processor to match the performance of four core processors? Give your
calculation steps.

Solution:

2.56× 109 × 1 + 1.28× 109 × CPInew + 2.56× 108 × 5

=
2.56× 109

0.7 ∗ 4
× 1 +

1.28× 109

0.7 ∗ 4
× 12 + 2.56× 108 × 5

Therefore

CPInew = 3

Email: Mid-Term II, Page 15 of 22 Computer Architecture I 2021

6. Cache

(a)3 We have an 8-bit address space and a 2-way set associative cache with properties
as follows:

1. Cache size is 32 Bytes;
2. Block size is 8 Bytes;

Calculate the bit width of tag, index, and offset bits.

TAG Set Index Block Offset

Solution: 4, 1, 3.

(b)6 We will access the data of addresses as follows. Fill in the blanks. It is about
T/I/O (tag/index/offset, write down the value in decimal), classify the access as a
Hit, Miss or Replace. (each line worth 1 pt.)

Address T/I/O Hit, Miss or Replace
0b00000100

0b00000101

0b01101000

0b11001000

0b01101000

0b11011101

Solution:

Address T/I/O Hit, Miss or Replace
0b00000100 0/0/4 Miss
0b00000101 0/0/5 Hit
0b01101000 6/1/0 Miss
0b11001000 12/1/0 Miss
0b01101000 6/1/0 Hit
0b11011101 13/1/5 Replace

(c)3 Assume we have a single-level, 1 KiB direct-mapped L1 cache, whose bit width of
tag, index, and offset bits are 22, 6, 4 separately. An integer is 4 bytes. The array
is block-aligned. Given the following C source code, what is the hit rate?

Email: Mid-Term II, Page 16 of 22 Computer Architecture I 2021

1 #define LEN 512
2
3 int array[LEN];
4 int main() {
5 for (int i = 0; i < LEN; i += 128) {
6 array[i] = 0;
7 }
8 for (int i = LEN - 128; i >= 0; i -= 128) {
9 array[i] = 0;

10 }
11 return 0;
12 }

Solution: 1/4

7. Multilevel Cache

(a)2 This section involves T / F questions. Please fill your answer (T or F) in the table
below. Incorrect answers on T / F questions are penalized with negative credit (in
total no less than 0 point). Notice: NO selection will be treated as a wrong choice.

1. Using multi-level cache will increase miss penalty.
2. Non-inclusive cache may yields higher performance.
3. Prefetching can eliminate compulsory cache misses.
4. A misprediction in prefetching will affect correctness.

1 2 3 4

Solution: F; T; T; F.

(b)3 Suppose you have the following system that consists of an:

• L1 cache with a local hot rate of 80% and a hit time of 2 cycles;
• L2 cache with a global miss rate of 8% and a hit time of 15 cycles.

DRAM accesses take 50 cycles.

What is AMAT?:

L2 cache local miss rate:

AMAT of L1 cache:

Email: Mid-Term II, Page 17 of 22 Computer Architecture I 2021

Solution:
Average memory access time (considering both hits and misses in the cache);
40%;
9.

(c)2 We want to improve AMAT of L1 cache, make sure that it will not greater than 6
cycles, by improving L2 cache’s hit rate.
The minimum local hit rate for L2 cache to meet our requirement is:

Solution: 90%.

Email: Mid-Term II, Page 18 of 22 Computer Architecture I 2021

8. Data-level Parallelism

(a)2 A program spends 3% of its time traversing the network, and 7% of its time
transferring data.If the new hardware speeds up the first part by a factor of 1.5 and
also speeds up transmission by a factor of 1.75, what is the speed up of the whole
program? Write down the original formula without simplification.

Solution: 1
1−0.1+ 0.03

1.5
+ 0.07

1.75

(b)2 Explain why loop unrolling can improve performance.

Solution: less loop overhead; it can avoid data hazards; SIMD instructions can
be used

(c)2 Name one SIMD instruction set.

Solution: SSE; AVX.

(d)6 Use SIMD to speed up the calculation of sum of squares. You can use function
given below. Convert pointer type when needed.

1. __m128i _mm_load_si128(const __m128i *mem_addr);
Load 128 bits from mem_addr to a __m128i variable.

2. __m128i _mm_mullo_epi32(__m128i a, __m128i b);
Multiply corresponding 32-bit integers in a and b respectively, and return
__m128i variable containing four 32-bits integers.

3. __m128i _mm_add_epi32(__m128i a, __m128i b);
Add corresponding 32-bit integers in a and b, and return __m128i variable
containing four 32-bits integers.

1 /* a is an array pointer, n is number of element in the array.
2 No tail case in this question. (n is multiple of 4) */
3 int sum_of_square(int *a, int n) {
4 int ans[4];
5 __m128i batch = _mm_setzero_si128(); /* set all bits to 0 */
6 __m128i temp_square = _mm_setzero_si128();
7 __m128i result = _mm_setzero_si128();
8 for (int i = 0; i < N; i += 4) {
9

Email: Mid-Term II, Page 19 of 22 Computer Architecture I 2021

10 batch = ___;
11
12 temp_square = ___;
13
14 result = __;
15 }
16 /* store the vectorization result to int array */
17 _mm_storeu_si128((__m128i *) ans, result);
18
19 return ans[0] + ans[1] + ans[2] + ans[3];
20 }

Solution:

1 _mm_load_si128((__m128i *) (a+i))
2 _mm_mullo_epi32 (batch, batch)
3 _mm_add_epi32(result, temp_square)

Email: Mid-Term II, Page 20 of 22 Computer Architecture I 2021

9. OpenMP Intro
We try to accelerate the calculation of Frobenius Norm of a matrix under the assistance
of OpenMP. Read the following code.

1 #include <omp.h>
2 #include <math.h>
3 /* Given a matrix ‘mat_a‘ of size m * n, calculate its Frobenius norm.
4 Hint: mat_a[i][j] := *((double *) mat_a + n * i + j) */
5 double frobenius_norm(double **mat_a, int m, int n) {
6 omp_set_num_threads(4);
7 double norm = 0.0;
8 int i, j = 0;
9 #pragma omp parallel for private(j)

10 for (i = 0; i < m; i++) {
11 for (j = 0; j < n; j++) {
12 norm += pow(*((double *) mat_a + n * i + j), 2);
13 }
14 }
15 return sqrt(norm);
16 }

(a)3 Identify the data sharing attributes of the following variables with shared or private.

norm

i

j

Solution: shared; private; private

(b)2 What is wrong with the code?

Solution:
The summation of shared variable norm happens inside parallel section; a data
race may happen.

(c)2 Fix the bug using reduction(operation: var). (You may want to modify a line of
code or insert a new line of code. Clearly specify the line id, then write down the
new line of code)

Email: Mid-Term II, Page 21 of 22 Computer Architecture I 2021

Solution:
Line 9. #pragma omp parallel for private(j) reduction(+: norm)

(d)2 Fix the bug using #pragma omp critical. (You may want to modify a line of code
or insert a new line of code. Clearly specify the line id, then write down the new
line of code)

Solution:
Between Line 11 and Line 12. #pragma omp critical

Email: Mid-Term II, Page 22 of 22 Computer Architecture I 2021

No question here!

