C in Practice

Kaiyuan Xu

February 21, 2022

Make it work, but also make it good!

Compile and run your code while writing it!

Useful tools: Google Test (test framework), Valgrind (detects
memory bugs), Gcov (coverage and profiling).

Pitfall: Ignoring warnings.

Always use -Wall -Wextra flags.

)

o~ +

-_
)

“!

e

Get even more advice from a linter - CL
such as Clang-Tidy.

0 error(s), 0 warning(s)

Fallacy: The code works (compiles) will always work
(compile).

C is not designed carefully, so many things could go wrong if you do
not know what you are doing.

problematic header files
linkage errors

>
>
» runtime errors
» memory leak
>

Make C program link correctly

Declaration Vs. Definition.

You can declare a function/structure (exactly the same) as many
times as you want, but you can only define a function/structure
once.

int fn(void); /* declaration */

int fn(void) { return 0; } /* definition */
struct a; /* declaration */

struct a {

int first;
}; /* definition */

© 00N U WN

Translation Unit

A translation unit is the ultimate input to the compiler from
which an object the file is generated.

The compiler can only see part of the program, which means some
errors can only be discovered at link time.

executable

three.o

gcc is run three times. Id is run once.

Linkage Error: Why it happens?

/usr/bin/1ld: b.o: in function “fn_a':
b.c:(.text+0x0): multiple definition of “fn_a';
a.o:a.c:(.text+0x0): first defined here
/usr/bin/ld: a.o: in function “main':
a.c:(.text+0x52): undefined reference to “var_c'
collect2: error: 1d returned 1 exit status

Where is My Symbol?

Section Headers:

[Nr] Name Type Flags
[1] .text PROGBITS AX
[4] .bss NOBITS WA
1 int fn_a(void) { Symbol table '.symtab':
2 return O; Size Type Bind Vis Ndx Name
3} 15 FUNC GLOBAL DEFAULT 1 fn_a
4 static int fn_b(void) { 15 FUNC LOCAL DEFAULT 1 fn_b
5 return O; 0 NOTYPE GLOBAL DEFAULT UND fn_c
6 } 0 NOTYPE GLOBAL DEFAULT UND fn_d
7 extern int fn_c(void); 4 O0BJECT GLOBAL DEFAULT 4 var_a
8 int fn_d(void); 4 0BJECT LOCAL DEFAULT 4 var_b
9 int var_a = 0; 0 NOTYPE GLOBAL DEFAULT UND var_c
10 static int var_b = 0; 4 OBJECT GLOBAL DEFAULT COM var_d
11 extern int var_c;
12 int var_d; Relocation section '.rela.text':
Offset Type Sym. Name + Addend
00000000004c R_X86_64_PLT32 fn_c - 4
00000000005¢c R_X86_64_PLT32 fn_d - 4
000000000052 R_X86_64_PC32 var_c - 4

000000000062 R_X86_64_PC32 var_d - 4

Global Variables are Evil!

Linker could merge any COMMON global variable against any other
global variable (even with a different type) with the same name.
Using -fno-common flag (default in GCC 10) can avoid generating
COMMON global variables.

Using extern variables in header files is better but global variables
are still bad.

Never use global variables! Define a static variable and access it
through some functions instead. This could help prevent concurrent
bugs.

How to write header files

#include: Nothing magical!

Preprocessor simply replaces #include directive with the file
specified.

Header files are used to avoid writing things multiple times in
different translation units.

Mistake: Not using #include guard.

This will not necessarily cause errors, but is considered as bad
practice.

#ifndef PROJECT_PATH_NAME_H
#define PROJECT_PATH_NAME_H

*
* The code here will never be 'included' twice.

1
2
3
4
5 /kkxxx
6
7
8 * The #include guard should be used in all header files.

9 *

10 kkkkx/
11

12

13 #endif /* PROJECT_PATH_NAME_H */

Mistake: Recursive include.

With include guard, one of the recursive includes will have of effect.
This could lead to some mysterious ‘undefined reference’ errors.

Reorder your header file and break the recursive dependency.
Declare the function you need instead of including it if necessary.

Mistake: Not making the header file compilable by
itself.

A header file should include any dependency file, not relying on the
file it includes.

one.h two.h three.h

L— 1~

one.c two.c three.c

What should go into an header file?

Header files are used to provide information needed in different
translation units. Things can be put in header files:

» macro definitions

» structure (enum, typedef) definitions (declarations)

» function declarations

» static inline functions which are small and simple (since C99)

Mistake: Place static variable in header file.

Compiler will generate the same static variable multiple times in
each translation unit!

What about static functions?
inline is introduced in C99, this could prevent generating

duplicate functions and even improve performance in some
situations.

Debugging and Compiling

GDB: Locate runtime errors.

Using -g flag to generate debug information for gdb. Using
command gdb to invoke debugger.

» b: set break point.

» c: Continues running the program until the next breakpoint or
error.

s: Runs the next line of the program.
bt: show the current stack back trace.
p: print variable.

vvyyvyy

info stack full: show the current stack along with all
variables on stack.

Mordern Compilers: Faster than assembly.

Nowadays compiler can generate highly optimized code probably
better than handwritten assembly.

» different optimization levels: -01, -02, -03, -0s.
» link time optimization: -flto.

Make it work, but also make it good!
Make C program link correctly
How to write header files

Debugging and Compiling

Q. & A.

«4Or «F>r « >

«E

DA

	Make it work, but also make it good!
	Make C program link correctly
	How to write header files
	Debugging and Compiling
	Q. & A.

