
DISCUSSION 10: Cache
Yibo Zhao

Memory Hierarchy

• Why memory hierarchy?

• Huge and increasing processor-DRAM gap.

• Hundreds of clock cycles per memory access.

• Slow DRAM access has a disastrous impact on
CPU performance!

• Solution:
• Memory hierarchy!

Memory Hierarchy

Memory Reference Pattern

• Locality

• Temporal locality: Recently referenced items are likely to be referenced in the
near future.

• Spatial locality: Items with nearby addresses tend to be referenced close together
in time.

• Locality Example

• Reference array elements in succession reference pattern): Spatial locality

• Reference sum each iteration: Temporal locality

Locality Example

• Which program has a good locality?

• Assume � = � = 2048 (anyway, a large number)

Adding Cache to Computer

nAddress --> T/I/O

TAG: Used to distinguish different blocks
that use the same index.
#bits=address bits-Index Bits-Offset Bits

Index: The set that this piece of memory
will be placed in.
#bits =

Offset: The location of the byte in the
block.
#bits =

Cache Design

• Fully Associative: need 1 comparator/line (block), and have to look
through all blocks.

• Direct Mapped: use a hash on address to limit line on one place.

• One comparator

• # sets = # blocks

• N-way Set Associative: N places for a line

• N comparators

• # sets = # blocks / N

Fully Associative Cache

Direct Mapped Cache

N-way set-associative cache

3Cs

Compulsory: First time you ask the cache for a certain block. A miss that must
occur when you first bring in a block. Reduce compulsory misses by having longer
cache lines (bigger blocks), which bring in the surrounding addresses along with
our requested data. Can also pre-fetch blocks beforehand using a hardware
prefetcher (a special circuit that tries to guess the next few blocks that you will
want).

Conflict: Occurs if, hypothetically, you went through the ENTIRE string of
accesses with a fully associative cache (with an LRU replacement policy) and
wouldn’t have missed for that specific access. Increasing the associativity or
improving the replacement policy would remove the miss.

Capacity: Capacity misses are independent of the associativity of your cache.
If you hypothetically ran the ENTIRE string of memory accesses with a fully
associative cache (with an LRU replacement policy) of the same size as your cache,
and it was a miss for that specific access, then this miss is a capacity miss. The
only way to remove the miss is to increase the cache capacity.

Assume we have a direct-mapped byte-addressed cache with capacity 32B and
block size of 8B and 32 bits in each address

Example

you went through the ENTIRE string of accesses with a fully associative
cache (with an LRU replacement policy):
hit: Conflict
miss: Capacity

000|0 0|000

