DISCUSSION 10: Cache

. Where Cached Latency
Memory Hierarchy -

CPUregisters | 0

" iy memery Rerarchy? orovemts | °

®* Huge and increasing processor—DRAM gap. On-Chip L1 _
Off-Chip L2 10

® Hundreds of clock cycles per memory access. Main memory ﬂ

T olow DRAN access has a disastrous impact on - Imainmemory | 100

CPU performance!
Local disk 10,000,000
- Local disk :
* Memory hierarchy! 1,000,000,000
disks

Memory Hierarchy

Processor

Inner |ncreaSing

distance from
. Processor,
Levels in decreasing
memory speed
hierarchy

Outer

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down.

Memory Reference Pattern

® |ocality

® Temporal locality: Recently referenced items are likely to be referenced in the
near future.

® Spatial locality: Items with nearby addresses tend to be referenced close together
1n time.

® | ocality Example sum = 0;
for (i = 0; i < n; i++)

sum += a[1i];
return sum;

* Reference array elements in succession reference pattern): Spatial locality

® Reference sum each iteration: Temporal locality

Locality Example

® Which program has a good locality?

= 2048 (anyway, a large number)

® Assume

int sumarrayrows (int a[M] [N]) int sumarraycols (int a[M] [N])

{ {

int 1, j, sum = 0; int 1, j, sum = 0;

for (i = 0; 1 < M; i++) for (J = 0; 3 < N; J++)
for (j = 0; j < N; j++) for (1 = 0; 1 < M; 1i++)
sum += a[i] []J]~ sum += a[i][j];
return sum; return sum;

Adding Cache to Computer

P
rocessor coble?
Read/Write
Control
v
Datapath Cache
Address
PC
: Write
Registers Nats
. : : . A
Arithmetic & Logic Unit
m Read
Data
-

Memory

Input

| Program

Bytes

Data
Output
>

_/

Y

Processor-Memory Interface

\)
Y

|/O-Memory Interfaces

Address —> T/1/0

Tag I Index ' Byte Offset
TAG: Used to distinguish different blocks
that use the same index. Valid Tag Data
ftbits=address bits—Index Bits—Offset Bits L "

Index: The set that this piece of memory
will be placed 1in.

Bb1ts = Jog, (# of indices)

Offset: The location of the byte in the

g&g%g _ log,(size of block)

4 Bytes

Cache Design

* Fully Associative: need 1 comparator/line (block), and have to look
through all blocks.

® Direct Mapped: use a hash on address to limit line on one place.
®* One comparator
®* # sets = # blocks

® N-way Set Associative: N places for a line

®* N comparators

* # sets = # blocks / N

Fully Associative Cache

Tag

e
Data
Word
or Byte

Direct Mapped Cache

Hit 3130 ... 131211 ... 43210 Byte OffSEt Dat:

Word offset

|
What kind of locality are we taking adva%tage of ?

N-way set—associative cache
N % # sets = #+ blocks

e 23=256 sets each with four ways (each with one block)

3130 ... 109 ... 210/Byte0ffset

Set Index I ‘1
Tag 2

Index

V Tag Data V Tag Data V Tag Data V Tag Data
0 | 0 0 | 0 I

i et v

253 253 253 253
254 254 254 (] 254
255 255 255 255

U U v U

\ ﬁ _j \
—
—_\\ﬂxl SfIECt /
21

Hit Data

32

3Cs

COIIIpUlSOl"YZ First time you ask the cache for a certain block. A miss that must

occur when you first bring in a block. Reduce compulsory misses by having longer
cache lines (bigger blocks), which bring in the surrounding addresses along with
our requested data. Can also pre—fetch blocks beforehand using a hardware
prefstcher (a special circuit that tries to guess the next few blocks that you will
want).

Conflict: occurs 1f, hypothetically, you went through the ENTIRE string of

accesses with a fully associative cache (with an LRU replacement policy) and
wouldn’ t have missed for that specific access. Increasing the associativity or
improving the replacement policy would remove the miss.

Capacity: Capacity misses are independent of the associativity of your cache.

[f you hypothetically ran the ENTIRE string of memory accesses with a fully
associative cache (with an LRU replacement policy) of the same size as your cache,
and it was a miss for that specific access, then this miss is a capacity miss. The
only way to remove the miss i1s to increase the cache capacity.

Example

Assu

bloc.

ne we have a direct—
K size of 8B and 32

napped byte—adc
hits 1n each address

Address T/1/0 Hit, Miss, Replace
0x00000004 Tag @, Index @, Offset 4 M, Compulsory
0x00000005 Tag @, Index @, Offset 5 H

0x00000068 Tag 3, Index 1, Offset 0@ M, Compulsory
0x000000C3 Tag 6, Index 1, Offset 0 R, Compulsory
0x00000068 Tag 3, Index 1, Offset @ R LONTLLEE
0x000000DD Tag 6, Index 3, Offset 5 M, Compulsory
0x00000045 Tag 2, Index @, Offset 5 R, Compulsory
0x00000004 Tag @, Index @, Offset 4 R, Capacity
0x000000C38 Tag 6, Index 1, Offset @ | R, Capacity

you went through the ENTIRE string of accesses with a fully associative
cache (with an LRU replacement policy) :

hit: Conflict
miss: Capacity

ressed cache with capacity 32B and

000|o o|oo0

