DISCUSSION 10: Cache
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Memory Reference Pattern

® |ocality

® Temporal locality: Recently referenced items are likely to be referenced in the
near future.

® Spatial locality: Items with nearby addresses tend to be referenced close together
1n time.

® | ocality Example sum = 0;
for (i = 0; i < n; i++)

sum += a[1i];
return sum;

* Reference array elements in succession reference pattern): Spatial locality

® Reference sum each iteration: Temporal locality



Locality Example

® Which program has a good locality?

= 2048 (anyway, a large number)

® Assume

int sumarrayrows (int a[M] [N]) int sumarraycols (int a[M] [N])

{ {

int 1, j, sum = 0; int 1, j, sum = 0;

for (i = 0; 1 < M; i++) for (J = 0; 3 < N; J++)
for (j = 0; j < N; j++) for (1 = 0; 1 < M; 1i++)
sum += a[i] []J]~ sum += a[i][j];
return sum; return sum;




Adding Cache to Computer
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Address —> T/1/0

Tag I Index ' Byte Offset
TAG: Used to distinguish different blocks
that use the same index. Valid Tag Data
ftbits=address bits—Index Bits—Offset Bits L "

Index: The set that this piece of memory
will be placed 1in.

Bb1ts = Jog, (# of indices)

Offset: The location of the byte in the

g&g%g _ log,(size of block)

4 Bytes



Cache Design

* Fully Associative: need 1 comparator/line (block), and have to look
through all blocks.

® Direct Mapped: use a hash on address to limit line on one place.
®* One comparator
®* # sets = # blocks

® N-way Set Associative: N places for a line

®* N comparators

* # sets = # blocks / N
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Direct Mapped Cache

Hit 3130 ... 131211 ... 43210 Byte OffSEt Dat:
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N-way set—associative cache
N % # sets = #+ blocks

e 23=256 sets each with four ways (each with one block)
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COIIIpUlSOl"YZ First time you ask the cache for a certain block. A miss that must

occur when you first bring in a block. Reduce compulsory misses by having longer
cache lines (bigger blocks), which bring in the surrounding addresses along with
our requested data. Can also pre—fetch blocks beforehand using a hardware
prefstcher (a special circuit that tries to guess the next few blocks that you will
want).

Conflict: occurs 1f, hypothetically, you went through the ENTIRE string of

accesses with a fully associative cache (with an LRU replacement policy) and
wouldn’ t have missed for that specific access. Increasing the associativity or
improving the replacement policy would remove the miss.

Capacity: Capacity misses are independent of the associativity of your cache.

[f you hypothetically ran the ENTIRE string of memory accesses with a fully
associative cache (with an LRU replacement policy) of the same size as your cache,
and it was a miss for that specific access, then this miss is a capacity miss. The
only way to remove the miss i1s to increase the cache capacity.



Example

Assu

bloc.

ne we have a direct—
K size of 8B and 32

napped byte—adc
hits 1n each address

Address T/1/0 Hit, Miss, Replace
0x00000004 Tag @, Index @, Offset 4 M, Compulsory
0x00000005 Tag @, Index @, Offset 5 H

0x00000068 Tag 3, Index 1, Offset 0@ M, Compulsory
0x000000C3 Tag 6, Index 1, Offset 0 R, Compulsory
0x00000068 Tag 3, Index 1, Offset @ R LONTLLEE
0x000000DD Tag 6, Index 3, Offset 5 M, Compulsory
0x00000045 Tag 2, Index @, Offset 5 R, Compulsory
0x00000004 Tag @, Index @, Offset 4 R, Capacity
0x000000C38 Tag 6, Index 1, Offset @ | R, Capacity

you went through the ENTIRE string of accesses with a fully associative
cache (with an LRU replacement policy) :

hit: Conflict
miss: Capacity

ressed cache with capacity 32B and
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