
CS110-Discussion 3
Tianyuan Wu, ShanghaiTech University



Memory management in C
• Program’s address space contains 4 regions

• Stack: local variables inside functions,
grow downwards.

• Heap: Space for dynamic data, requested
via “malloc”, grows upwards.

• Static data: Variables defined outside
functions, does not grow or shrink.
But can be modified.

• Code: Loaded when program starts. Can
not be modified.



Example



Solution

• &year: static 
• name: stack
• game: static 
• ver: heap 
• &ver: stack



Observations

• Code, Static storage are easy: they never grow or 
shrink
• Stack space is relatively easy: stack frames are 
created and destroyed in last-in, first-out (LIFO) order 
• Managing the heap is tricky: memory can be allocated / 
deallocated at any time



sizeof() vs. strlen()



Common Memory Problems

• Using uninitialized values 
• Using memory that you don’t own 
• Deallocated stack or heap variable 
• Out-of-bounds reference to stack or heap array
• Using NULL or garbage data as a pointer 

• Improper use of free/realloc by messing with the 
pointer handle returned by malloc/calloc 
• Memory leaks (you allocated something you forgot to 
later free)



Using Memory You Don’t Own

• What is wrong with this code? 
• Using pointers beyond the range that had been malloc’d –May look 

obvious, but what if mem refs had been result of pointer arithmetic 
that erroneously took them out of the allocated range?



Using Memory You Don’t Own

• NULL pointer issues



Memory Leaks

• More mallocs than frees



Potential Memory Leaks

• Handle has been changed, do you still have copy of it 
that can correctly be used in a later free?



Misuse of free()

• Can’t free non-heap memory; Can’t free memory that 
hasn’t been allocated



Finding Bugs



Bugs



Finding Bugs!



Bugs
• Line 9: comparison with strlen instead of sizeof (for 0-
terminator)
• Line 10: strlen instead of sizeof (or +1) for malloc =>

• Line 13: write past end of array (if malloc was used) 
• Line 4: Ownership of pointer str not clear => 

• Line 10: Potential memory leak
• Line 4: New pointer is not returned/ no pointer to pointer is 
used
• Line 20: memcpy over length of CA
• Line 20: 0-terminator is not copied!
• Line 22 &23: better: call with array size
• Line 14 & 27: return missing!



Managing the Heap

• realloc(p,size):
• Resize a previously allocated block at p to a new size
• If p is NULL, then realloc behaves like malloc 
• If size is 0, then realloc behaves like free, deallocating the 

block from the heap 
• Returns new address of the memory block; NOTE: it is likely 

to have moved!
• calloc(p,size):
• Allocation with initialization: malloc() + memset()



Finding Bugs!



Bugs

• Improper matched usage of memory handles



Can we do better?

• Many language implements more advanced MM
• C++: Smart pointers, RAII, …



Can we do better?



Can we do better?

• Rust: Ownerships – References and Borrowing



Can we do better?

• Rust: Ownerships – References and Borrowing



Can we do better?

• Java, Python,…: Garbage collection



Conclusion
• All data is in memory

• Each memory location has an address to use to refer to it and a 
value stored in it 

• Pointer is a C version (abstraction) of a data address 
• * “follows” a pointer to its value 
• & gets the address of a value 
• Arrays and strings are implemented as variations on pointers 

• C is an efficient language, but leaves safety to the 
programmer
• Variables not automatically initialized 
• Use pointers with care: they are a common source of bugs in 

programs



Conclusion Cont’d

• C has three main memory segments in which to 
allocate data:
• Static Data: Variables outside functions
• Stack: Variables local to function
• Heap: Objects explicitly malloc-ed/free-d.

• Heap data is biggest source of bugs in C code



Thanks!


