CS110-Discussion 3

Tianyuan Wu, ShanghaiTech University

Memory management in C

 Program’s address space contains 4 regions

- Stack: local variables inside functions,
grow downwards.

« Heap: Space for dynamic data, requested
via “malloc”, grows upwards.

- Static data: Variables defined outside
functions, does not grow or shrink.
But can be modified.

« Code: Loaded when program starts. Can
not be modified.

~ FFFF FFFF,,

stack

1

heap

static data

code

~ 0000 0000,

Example

#include <stdio.h>
#include <stdlib.h>
static const int year = 2019;

int main (void) {

char name[] = "Jose";

char xgame = "The Elder Scrolls";
int *ver = malloc(sizeof (int));
*ver = 5;

/* Break! =/

printf ("Until %d, %s’s favourite game 1is
%$s %d.\n", year, name, game, *ver);

return 0;

Expressions:

&year

name

game

VML

&ver

Solution

» &year: static
 name: stack
« game: static
* ver: heap

« &ver: stack

Observations

« Code, Static storage are easy: they never grow or
shrink

« Stack space is relatively easy: stack frames are
created and destroyed in last-in, first-out (LIFO) order

« Managing the heap is tricky: memory can be allocated /
deallocated at any time

sizeof () VS. strlen ()

<stdio.h>

<string.h>

nain(){

Common Memory Problems

« Using uninitialized values

« Using memory that you don’t own
» Deallocated stack or heap variable
« Out-of-bounds reference to stack or heap array
« Using NULL or garbage data as a pointer

 Improper use of free/realloc by messing with the
pointer handle returned by malloc/calloc

« Memory leaks (you allocated something you forgot to
later free)

Using Memory You Don’t Own

« What is wrong with this code?

« Using pointers beyond the range that had been malloc’d —May look
obvious, but what if mem refs had been result of pointer arithmetic
that erroneously took them out of the allocated range?

int *ipr, *ipw;

void ReadMem () {
ink. i, ;2
ipr = (*int) malloc (4 * sizeof (int));
i = *(ipr - 1000); j = *(ipr + 1000);
free (ipr);

}

void WriteMem() {
ipw = (*int) malloc (5 * sizeof (int)):;
*(ipw - 1000) = 0; *(ipw + 1000) = O;

free (ipw) ;

}

Using Memory You Don’t Own

« NULL pointer issues

typedef struct node {
struct node* next;
int val;

} Node;

int findLastNodeValue (Node* head) {
while (head->next != NULL) {
head = head->next;
}

return head->val;

Memory Leaks

« More mallocs than frees

int *pi;
void foo () {
pi = malloc(8*sizeof (int));

/* Allocate memory for pi */
/* Oops, leaked the old memory pointed to by pi */

free(pi); /* foo() is done with pi, so free it */

}

void main () {
pi = malloc(4*sizeof (int));

foo(); /* Memory leak: foo leaks it */

Potential Memory Leaks

 Handle has been changed, do you still have copy of it
that can correctly be used in a later free?

int *plk = NULL;
void genPLK () {
plk = mallec{Z2 * sizeof(int));

Pl Kb+

Misuse of free()

 Can’t free non-heap memory; Can't free memory that
hasn’t been allocated

void FreeMemX () {
int fnh = 0;
free (&£fnh) ;
}

void FreeMemY () {
int *fum = malloc (4 * sizeof (int));
free (fum+l) ;
free (fum) ;
free (fum) ;

Finding Bugs

char *append (const. char™ sl,
const int MAXSIZE =

char result[128];

int i=0,

(3=0;
result[i] =

3=0;
for

}

for (3=0;

result[i] =
}
result[++i] = "\0"';

return result;

128;

1<MAXSIZE-1 && j<strlen(sl);

s1[jl;

i<MAXSIZE-1 && j<strlen(s2);

s2[31;

const char *s2) 4

i++, J++)

i++, J++)

{

{

Bugs

char *append (const char* sl,

const int MAXSIZE = 128;

const char *s2) {

char result[128]; ——]

int i=0, 3=0;

resultisalocal array name —
stack memory allocated

for (j=0; i<MAXSIZE-1 && j<strlen(sl); i++,j++) {

result[i] = sl1l[j];

}

for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {

result[i] = s2[j];

}
result[++1i] =

return result;

“\NOY;

\

Function returns pointer to stack
memory —won’t be valid after
function returns

Finding Bugs!

int make_ca(char x str, size_t length){

char awesome[] = "CA is so awesome!";

(length < strlen(awesome)){
str = malloc((char) * strlen(awesome)):
}

strcpy(str, awesome);

main(int argc, char xargv[]){

char call NGARESROK T .
char * CA = malloc(6);
memcpy(CA, ca, strlen(ca));

make_ca(ca, strlen(ca));
make_ca(CA, strlen(CA));

printf(" %s %s ",ca, CA);

Bugs

* Line 9: comparison with strlen instead of sizeof (for O-
terminator)

 Line 10: strlen instead of sizeof (or +1) for malloc =>
« Line 13: write past end of array (if malloc was used)

* Line 4: Ownership of pointer str not clear =>
« Line 10: Potential memory leak

Lined4: New pointer is not returned/ no pointer to pointer is
use

Line 20: memcpy over length of CA

e Line 20: O-terminator is not copied!

* Line 22 &23: better: call with array size
e Line 14 & 27/: return missing!

Managing the Heap

*realloc(p,size):
« Resize a previously allocated block at p to a new size
« If p is NULL, then realloc behaves like malloc

« If size is O, then realloc behaves like free, deallocating the
block from the heap

« Returns new address of the memory block; NOTE: it is likely
to have moved!

*calloc(p,size).
 Allocation with initialization: malloc() + memset()

Finding Bugs!

int* init array(int *ptr, int new size) {
ptr = realloc(ptr, new size*sizeof(int));
memset (ptr, 0, new size*sizeof (int));

return ptr;

int* fill fibonacci(int *fib, int size) {
int 1i;
init array(fib, size);
/* f£ib[0] = 0; */ fib[l] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];

return fib;

Bugs

« Improper matched usage of memory handles

int* init array(int *ptr, int new size) {

ptr = realloc(ptr, new_size*sizeof(int)):

memset (ptr, 0, new siz&¥sizeof (int));

return ptr;

Remember: real10oc may move entire block

int* £ill fibonacci (int *fib;: int :size)

int i

/* oops, forgot: fib = */ init array(fib, size);

£* £ib[0] = 0y */ Eib[1] = 1;

for (i=2; i<size; i++)

\ What if array is moved to

fib[i] = fib[i-1] + fib[i-2]; new location?

return fib;

Can we do better?

 Many language implements more advanced MM
 C++: Smart pointers, RAII, ...

Can we do better?

Pointer categories
unique_ptr(C++11)
shared_ptr (C++11)

weak_ptr (C++11)

(deprecated in C++11)

BEOL K (removed in C++17)

Helper classes
owner_less (C++11)

enable_shared_from_this (C++11)
bad_weak_ptr (C++11)

default_delete (C++11)

Smart pointer adaptors

out_ptr_t(C++23)

out_ptr(C++23)

inout_ptr_t(C++23)

inout_ptr (C++23)

smart pointer with unique object ownership semantics
(class template)

smart pointer with shared object ownership semantics
(class template)

weak reference to an object managed by std: :shared ptr
(class template)

smart pointer with strict object ownership semantics
(class template)

provides mixed-type owner-based ordering of shared and weak pointers

(class template)

allows an object to create a shared_ptr referring to itself

(class template)

exception thrown when accessing a weak ptr which refers to already destroyed
object

(class)

default deleter for unique ptr

(class template)

interoperates with foreign pointer setters and resets a smart pointer on
destruction

(class template)

creates an out_ptr_t with an associated smart pointer and resetting
arguments

(function template)

interoperates with foreign pointer setters, obtains the initial pointer value from
a smart pointer, and resets it on destruction

(class template)

creates an inout_ptr_t with an associated smart pointer and resetting
arguments

(function template)

Can we do better?

* Rust: Ownerships — References and Borrowing

Filename: src/main.rs

fn main() {
let s = String::from("hello");

change(&s);
}

fn change(some_string: &String) {
some_string.push_str (", world");

}

Can we do better?

* Rust: Ownerships — References and Borrowing

$ cargo run vl
Compiling ownership v0.1.0 (file:///projects/ownership)
error[E@596]: cannot borrow "*some_string as mutable, as it is behind a '& reference
=3 src/main.rs:8:5

7 | fn change(some_string: &String) {
e help: consider changing this to be a mutable reference
8 | some_string.push_str(", world");
|

ANAAAAAAAAN “some_string” 1is a & reference, so the data it refers to cannot be

For more 1information about this error, try ‘rustc --explain E0596° .
error: could not compile ‘ownership’ due to previous error

Can we do better?

 Java, Python,...: Garbage collection

Java Garbage Collection Basics

o Topic List v Expand All Topics - Hide All Images & Print

@ Describing Garbage Collection

What is Automatic Garbage Collection?

Automatic garbage collection is the process of looking at heap memory, identifying which objects are in use and which are
not, and deleting the unused objects. An in use object, or a referenced object, means that some part of your program still
maintains a pointer to that object. An unused object, or unreferenced object, is no longer referenced by any part of your
program. So the memory used by an unreferenced object can be reclaimed.

In a programming language like C, allocating and deallocating memory is a manual process. In Java, process of deallocating
memory is handled automatically by the garbage collector. The basic process can be described as follows.

Conclusion

 All data is in memory

« Each memory location has an address to use to refer to it and a
value stored in it

« Pointer is a C version (abstraction) of a data address
« * “follows” a pointer to its value

« & gets the address of a value
« Arrays and strings are implemented as variations on pointers

« C is an efficient language, but leaves safety to the
programmer
« Variables not automatically initialized

« Use pointers with care: they are a common source of bugs in
programs

Conclusion Cont’d

* C has three main memory segments in which to
allocate data:
« Static Data: Variables outside functions
« Stack: Variables local to function
« Heap: Objects explicitly malloc-ed/free-d.

 Heap data is biggest source of bugs in C code

Thanks!

