— ."7"‘.:”’.‘
= “L :‘ 'l. s h
!,

—

DISCUSSION 6: CALL & SD¥

WEIQI WU

. {

-

CALL

WHAT IS CALL?

» C: Compiler
» A: Assembler

» L: Linker

» L: Loader

CALL

CALL PIPELINE

CALL

COMPILER

» Translates high-level programming language into assembly
» Input: foo.c, foo.cpp, etc.
» Output: foo.s

» Pipeline: Lexer, Parser, Semantic Analysis + Optimization, Code
generation

» Many compilers for a programming language: GCC C, Turbo C, Quick C,
etc.

CALL D

ASSEMBLER

» Translates assembly codes to machine codes

» Input: foo.s

» Output: foo.o

» Read and Uses Directives

» Expand pseudo-instructions into basic one (look up your RISC-V Green Card)

» Produce Machine language & object file

CALL

DIRECTIVES

» Give directions to assembler, but do not produce machine instructions

Directive Effect
.data Store subsequent items in the [[static segment|Memory Segments]] at the next available address.
.text Store subsequent instructions in the [[text segment|Memory Segments]] at the next available address.
.byte Store listed values as 8-bit bytes.
.asciiz Store subsequent string in the data segment and add null-terminator.
.word Store listed values as unaligned 32-bit words.
.globl Makes the given label global.
.float Reserved.
.double Reserved.

.align Reserved.

CALL

SYMBOL TABLE

» List of file labels and data that can be referenced across files

» Key: Label, Value: information about label (which section, offset within
that section...)

» Contains:
1. Labels: tunction calling

2. Data: .data segment, vars which may accessed across files

CALL

RELOCATION TABLE

» Identity lines of code that need Linker to handle the address
» Contains:
1. Any external label jumped to: jal, jalr

2. Any piece of data in static section: la

CALL

Relocation Table

Labels used Address
array ©x00061C006
_print_int ©x00661C30
Address Assembled Code
0x00061C00 auipc to, ?2?2??
0x80061C04 addi te, te, 27?7
0x00061CO8 addi t1, xe, 4
0x00061COC addi t2, xo0, ©
0x00061C10 blt tl1, x6, 28
0x00v61C14 s11i t3, t1, 2
0x00061C18 add t3, to, t3
0x00061C1C 1w t3, O(t3) Symbol Table
0x00061C20 add t2, t2, t3 Labels Address {
0x00061C24 addi t1, t1, -1 sum Ox0e061C08
0x00061C28 jal xo0, -24 loop oxeeesclcle
0x00061C2C addi ae, t2, O end Bx0080861C2C
0x00061C30 jal ra, ??22?

la tO, array

11 tl, ‘4

mv t2, x0

blt t1, x©, end
slli t3, t1, 2
add t3, te, t3
lw t3, o(t3)
add t2, €2, 3
addi t1, t1, -1
j loop

mv ao, t2

jal ra, print_int

|
|
|
J

CALL

10

LINKER

» Input: foo.o, libc.o
» Output: foo.out
» Pipeline:
» Take text segment from .o file and put them together

» Take data segment from .o file, put them together, and concatenate this
onto end of text segments

» Resolve references, till in all absolute addresses

CALL

11

LOADER

» Input: foo.out (exec file on disk)
» Output: (program load into memory & running)

» Operating system task

CALL 12

LOADER... WHAT DOES IT DO?

» Reads exec file's header to determine size of text and data segments
» Creates new address space (text, data, stack segments) for program
» Copies instructions and data from exec file into new address space

» Copies arguments passed to the program onto stack

» Initialize machine registers, sp -> 1st free stack location

» Jump to start-up routine that copies arguments from stack to register &
sets the PC

SDS

WHAT IS SDS?

» S: synchronous

» All operations coordinated by a central clock

» D: digital
o @
'
‘\

» Combinational Logic: output is a function of the inputs only

» 1/0 Representation, discrete values

» High Voltage(Vdd) = True = On switch = 1

» Low Voltage(QV) = False = Off switch = 0

» S: system

» Sequential Logic: circuits that store history information

SDS

CMOS TRANSISTOR

» Act as voltage-controlled switches

Gate Gate
i &
source L Drain Source S R
n-channel transitor p-channel transistor
Negative Positive
Oft: Voltage at Gate is low On: Voltage at Gate is low

On: V(Gate) > V(Threshold) Off: V(Gate) > V(Threshold)

SDS

CMOS NETWORKS

» A two-input network example (which is a NAND gate)

X Y Z
0 0 1
0 1 1
1 0 1

SDS

COMBINATIONAL LOGIC

» Logic gates

DD DDDD

NOT, AND, OR, XOR, NAND, NOR, XNOR

» AND: A-B/AB
» OR: A+ B

» NOT: A

» XOR: A®B

SDS

TRUTH TABLE & BOOLEAN ALGEBRA

x v | z AA=0
X0=0
X1=X
0 0 1 Y Y =
XY =YX
0 1 1 (XY)Z=X(Y2Z)
X(Y+Z2)=XY+XZ
1 0 1 XY +X =X
XY+X=X+Y
1 1 0 XY=X+Y

X+X=1 Complementarity
X+1=1 Laws of O’'s and 1’s
X+0=X Identities
X+X=X ldempotent Laws
X+Y=Y+X Commutativity

(X+Y)+Z=X+(Y+2Z) Associativity
X+YZ=(X+Y)(X+2Z) Distribution
Uniting Theorem
Uniting Theorem v. 2
DeMorgan’s Law

SDS

CIRCUIT & BOOLEAN EXPRESSION

ABC + (A + B)(CD)

= A+B+C+ (A+ B)(C +

= A+ B+C+ AC + AD +

= A+B+C+AD+ BD
= A+B+C+D

» 2021 Midterm |

SDS

SEQUENTIAL LOGIC

» State elements (e.qg. registers) change value based on a
clock signal

» clk-to-g delay: the time between rising edge ot clock signal
and the time register’s output reflects the input change

» Setup time: the amount of time before rising edge of clock EESEVEEE
that the input must be stable

» Hold time: the amount of time after rising edge of clock
that the input must be stable

SDS

TIMING DIAGRAM FOR SDS
» 2021 Midterm 1

» NOT: 2ns, Reg clk-to-g: 2ns, setup: 2ns

SDS

TIME CONSTRAINT FOR SDS

» Maximum Hold time for Register B
clk-to-g delay of A

+ combinational delay

3ns + 2ns = 5ns

Inverter Delay = 2ns

Clk-to-q delay of registers = 3 ns

Set up time of registers = 2ns

max hold time = 5ns

SDS

TIME CONSTRAINT FOR SDS

» Minimum clock cycle time
= clk-to-g delay
+ longest combinational delay
+ setup time
= 3ns + 4ns + 2ns = 9ns

Inverter Delay = 2ns

3NS 4ns

—
clk | |
—

Clk-to-q delay of registers = 3 ns

Set up time of registers = 2ns

Period = 9ns

CALL & SDS

23

SUMMARY
» CALL:

» Concept & Function of Compiler, Assembler, Linker, Loader

» SDS:

» Circuit, Boolean Expression, Truth Table

» Sequential Analysis

