
Computer Architecture I
Spring, 2022

Homework 6
Reference Solution

ShanghaiTech University

Due: May 7, 2022, 23:59

Instructions

This homework will help you review CPU caches. Remember to go through the textbook and all the lecture
slides related.

Submission Guideline

• Both hand-writing and typesetting are accepted. You may find a LaTeX template helpful on our course
website.

• Only PDF submissions to Gradescope will be counted. If you choose to write by hand, make sure it is
transformed into a PDF document. Both scanning and taking photos are accepted.

• Please assign your answers properly on Gradescope. Any submission without proper assignment will
result in a 25% point reduction.

1

1 Shut Up and Take My Cache!

In this section, we will review some basics of cache. A program is run on a byte-addressed system with a
single-level cache. After a while, the entire cache has the state in Figure 1.

 11 10 9 0

Address

 V Tag Data

 1 101001

 0 000011

 1 011010

 1 100110

 1 110101

 0 001001

 1 100010

 0 001110

 V Tag Data

= =

2->1

Multiplexer

Figure 1: Layout for a cache implementation

Page 2

1. (2 points) In Figure 1, what is a row stands for?

A. One set. B. One cache block. C. One entire cache. D. Not listed in choices.

Solution:
√

A ⃝ B ⃝ C ⃝ D

2. (2 points) In Figure 1, what is V stands for?

A. Valid bit. B. Vacant bit. C. Visited bit.

Solution:
√

A ⃝ B ⃝ C

3. (2 points) What is the type of the cache described in Figure 1?

A. Direct-Mapped cache.

B. Set-Associative Cache (If you choose this, write down its associativity).

C. Fully-Associative Cache (If you choose this, write down its associativity).

Solution:

⃝ A

√
B (Associativity: 2)

⃝ C (Associativity:)

4. (3 points) What is the (Tag : Set Index : Byte Offset) breakdown of memory addresses in Figure 1?

Solution:

1. Tag: 6

2. Index: 2

3. Byte Offset: 4

5. (2 points) Is it TRUE that conflict misses cannot occur in fully-associated caches?

A. Yes. B. No.

Solution:
√

A ⃝ B

Page 3

6. (3 points) Tell the difference(s) between Conflict Miss and Capacity Miss.

Solution: Conflict misses only occur with set-associative or direct-mapped caches, while capacity
misses will occur even with full associativity.

Conflict misses are caused when multiple blocks compete for the same set, while capacity misses occur
when blocks are replaced and then later retrieved. Conflict misses are caused by set competition,
capacity misses occur because caches cannot contain all the blocks needed to satisfy the request.
Although they sound very similar, but one is caused by collision and the other one is simply out of
cache size.

7. (12 points) For each of the following accesses to the cache described in Figure 1, determine if each access
would be a hit or miss based on the cache state shown above. If it is a miss, classify the miss type(s).

If multiple miss types may exist depending on prior memory accesses, select all possible miss types. For
each access, you will get

• 2 points if you choose all correct choice(s),

• 1 point if you choose partial correct choice(s), and,

• 0 point if you give no choice(s) or wrong choice(s).

Each memory access should be considered dependently. In particular, Do update the cache status after
each memory access. If a replacement happens, data in the first slot will always be evicted.

Order Address Access Outcome
1 0b 101001 000100 1
2 0b 011010 110100 2
3 0b 111110 101000 3
4 0b 000011 111100 4
5 0b 000011 011001 5
6 0b 100110 101100 6

Solution:

Description: The crux of this question is that data is always set to some garbage (there’s no such
thing as blank in binary, and we often don’t zero out data if we can avoid it; as such, the cache
generally ends up containing whatever data used to be there the last time a program ran), even if
the cache block is empty. As such, the valid bit is needed to tell if a block is actually there. If the
valid bit is 0, then the block is considered empty, regardless of the corresponding tag.

Description: Plus, it should be pointed out that we consider the cache as a simple cache with neither
cache maintenance operations nor coherence protocol invalidation request.

1.
√

Hit ⃝ Compulsory Miss ⃝ Conflict Miss

Description: Tag: 0b101001 Set: 0b00. This is a hit because the tag matches for the given
set and the valid bit is on.

2. ⃝ Hit
√

Compulsory Miss ⃝ Conflict Miss

Description: Tag: 0b011010 Set: 0b11. This is a miss because the tag is not in the set. This
is a compulsory miss because the address we load may be accessed for the first time and we
still have an empty slot in this index. This is NOT a conflict miss because we only ever kick
out a block when the cache is full, and only to replace that block with a new one; as such, we
can’t have kicked out a block while there is still empty space in the cache.

Page 4

3. ⃝ Hit
√

Compulsory Miss
√

Conflict Miss

Description: Tag: 0b111110 Set: 0b10. This is a miss because the tag is not in the set. This
can either be compulsory or conflict, since we don’t know if this block has been accessed before
and ejected.

4. ⃝ Hit
√

Compulsory Miss ⃝ Conflict Miss

Description: Tag: 0b000011 Set: 0b11. It’s important to note this access is proceeded by 2,
where the cache set still has room. As with 2.

5. ⃝ Hit
√

Compulsory Miss ⃝ Conflict Miss

Description: Tag: 0b000011 Set: 0b01. As with 2.

6. ⃝ Hit
√

Compulsory Miss
√

Conflict Miss

Description: Tag: 0b100110 Set: 0b10. As with 3.

8. (6 points) The specification sheet of the system is given below. What is the Average Memory Access
Time (AMAT) of memory accesses in Question 7? What is the AMAT if we remove this cache? Please
give your answer in nanosecond (ns). You shall have the formula, the unit of results and the deriving
procedure presented in your answer. (Note: A 1 gigahertz (GHz) processor ticks a cycle for each 1
nanosecond)

System Frequency 2 GHz
Cache Access Latency 2 Cycles
Main Memory Access Latency 600 Cycles

Table 1: Specification Sheet

Solution:

Miss rate: 5/6,

AMAT:

2 (Time for a hit) + 5/6 (Miss rate)× 600 (Cycles) = 502 Cycles = 251 ns.

AMAT If no cache presented:
600 Cycles = 300 ns

Page 5

2 Oops . . . Too many bites (bytes)

In this sections, we will review the implementation of caches and replacement policies.

1. (15 points) Let’s Draw It Out!

Sketch the organization of a four-way set associative cache with a cache block size of 16 bytes and a
total size of 128 bytes. Your sketch should have a style similar to Figure 1. The memory addresses are
12-bit long.

In your sketch, the following components should be also presented.

1. the width of set index, tag and data fields of memory addresses (3 points),

2. logical components used for comparison and selection (2 points),

3. the type of multiplexer (e.g. 2 → 1, 4 → 1, 8 → 1, 16 → 1, etc.) (1 point),

4. the number of sets (1 point) , and,

5. an implementation layout including wiring and placement of cache elements (8 points).

Solution:

1. the width of tag, set index, and data fields of memory addresses : 7, 1, 4
(3 points, both explicit length and bit distribution are accepted),

2. logical components used for comparison and selection: The logical gate components shown
below (2 points),

3. the type of multiplexer: 4 → 1 (1 point),

4. the number of sets: 2
(1 point, both explicit number and implication in the sketch are accepted) , and,

5. an implementation layout including wiring and placement of cache elements
(8 points. Byte selection inside a cache block is optional. An incorrect byte selection sketch
does not result in point reduction but the correctness will be notified).

 11 10 9 8 7 6 5 4 3 2 1 0

Address

 V Tag Data

 1 101001

 0 000011

 V Tag Data

 1 101010

 0 000010

 V Tag Data

 1 101011

 0 000001

 V Tag Data

 1 101000

 0 000000

= ===

4->1

Multiplexer

Page 6

In the following questions, we will examine how replacement policies affect miss rate.

After the system is cold start, the address sequence of warm-up accesses is:
0x2A, 0x3C, 0x7D, 0xCE, 0x5B, 0x01, 0x2C, 0x1D, 0x9B, 0x3E.

After all warm-up accesses are done, the address sequence of follow-up accesses is:
0x30, 0x40, 0x52, 0x44, 0x56, 0x48, 0x5A, 0x4C, 0x10, 0x3B, 0x5C, 0x30, 0x5E.

2. (2 points) Which locality(s) can you observe in the follow-up accesses?

Solution: Note: There may exist(s) one or more correct choice(s).√
Spatial locality

√
Temporal locality

Description: For example, spatial locality is given by
0x30, 0x40, 0x52 , 0x44, 0x56 , 0x48, 0x5A , 0x4C, 0x10, 0x3B, 0x5C , 0x30, 0x5E ,
and temporal locality can be observed in
0x30 , 0x40, 0x52, 0x44, 0x56, 0x48, 0x5A, 0x4C, 0x10, 0x3B, 0x5C, 0x30 , 0x5E.

3. (2 points) Assume Least Recently Used (LRU) replacement policy is applied. Circle out all access(es)
with cache hit in the follow-up accesses.

Solution: Circle the access(es) that meets a cache hit! (like this: 0xFF)

0x30 , 0x40, 0x52 , 0x44 , 0x56 , 0x48 ,

0x5A , 0x4C , 0x10 , 0x3B , 0x5C , 0x30 , 0x5E .

Description: You may categorize all these access into two categories easily: the odd number of the
left-most hexadecimal bit always goes to the second set, and the even one goes to the first set. And
these two set accesses will not interrupt each other.
For set 0:
Warm-Up: 0x2A, 0xCE, 0x01, 0x2C

Follow-Up: 0x40, 0x44, 0x48, 0x4C.
Therefore, except the first 0x40, the rest will be hit.
For set 1:
Warm-Up: 0x3C, 0x7D, 0x5B, 0x1D, 0x9B, 0x3E

Follow-Up: 0x30, 0x52, 0x56, 0x5A, 0x10, 0x3B, 0x5C, 0x30, 0x5E

Therefore, the accesses can be considered as below:
Way 1: 0x3C(0,M) -> 0x9B(4,M)

Way 2: 0x7D(1,M) -> 0x3E(5,M) -> 0x30(6,H) -> 0x3B(11,H) -> 0x30(13,H)

Way 3: 0x5B(2,M) -> 0x52(7,H) -> 0x56(8,H) -> 0x5A(9,H) -> 0x5C(12,H) -> 0x5E(14,H)

Way 4: 0x1D(3,M) -> 0x10(10,H)

Page 7

4. (2 points) Assume Most Recently Used (MRU) replacement policy is applied. Circle out all access(es)
with cache hit in the follow-up accesses.

Solution: Circle the access(es) that meets a cache hit! (like this: 0xFF)

0x30 , 0x40, 0x52 , 0x44 , 0x56 , 0x48 ,

0x5A , 0x4C , 0x10, 0x3B , 0x5C, 0x30, 0x5E.

Description: For set 0:
Warm-Up: 0x2A, 0xCE, 0x01, 0x2C

Follow-Up: 0x40, 0x44, 0x48, 0x4C.
Therefore, except the first 0x40, the rest will be hit.
For set 1:
Warm-Up: 0x3C, 0x7D, 0x5B, 0x1D, 0x9B, 0x3E

Follow-Up: 0x30, 0x52, 0x56, 0x5A, 0x10, 0x3B, 0x5C, 0x30, 0x5E

Therefore, the accesses can be considered as below:
Way 1: 0x3C(0,M) -> 0x3E(5,H) -> 0x30(6,H) -> 0x3B(11,H) -> 0x5C(12,M) -> 0x30(13,M)

-> 0x5E(14,M)

Way 2: 0x7D(1,M)
Way 3: 0x5B(2,M) -> 0x52(7,H) -> 0x56(8,H) -> 0x5A(9,H) -> 0x10(10,M)

Way 4: 0x1D(3,M) -> 0x9B(4,M)

5. (6 points) The specification sheet of the system is given below. What is the Average Memory Access
Time (AMAT) of memory accesses in the question 3 and 4? Please give your answer in nanosecond (ns).
You shall have the formula, the unit of results and the deriving procedure presented in your answer.
(Note: A 1 gigahertz (GHz) processor ticks a cycle for each 1 nanosecond)

System Frequency 2 GHz
Cache Access Latency 2 Cycles
Main Memory Access Latency 130 Cycles

Table 2: Specification Sheet

Solution:

Miss rate: 1/13,

AMAT:
2 (Time for a hit) + 1/13 (Miss rate)× 130 (Cycles) = 12 Cycles = 6 ns.

Miss rate: 5/13,

AMAT:
2 (Time for a hit) + 5/13 (Miss rate)× 130 (Cycles) = 52 Cycles = 26 ns.

Page 8

3 Let’s See Some Real World Example

3.1 A Statement On Problem 3 Grading on May 7, 2022.

We found a mistake in Problem 3, Homework 6 related to memory alignment, thanks to Peng Cheng.
The structure log entry given in this problem was originally designed with no memory alignment con-

sideration. According to the ISO C standard, each non-bit-field member of a structure or union object is
aligned in an implementation defined manner appropriate to its type., where the alignment requires that
objects of a particular type be located on storage boundaries with addresses that are particular multiples of a
byte address. Therefore, according to gcc’s doc, the alignment of any given struct or union type is required
by the ISO C standard to be at least a perfect multiple of the lowest common multiple of the alignments of
all of the members of the struct or union.

As such, it is correct to have the struct aligned to its greatest alignment requirement, i.e. the 8-byte
long. The struct will be like this in a real program:

struct log_entry {

int src_ip; // 4 Bytes: [0 - 3]

char URL[128]; // 128 Bytes: [4 - 131]

// Padding // 4 Bytes: [132 - 135]

long reference_time; // 8 Bytes: [136 - 143]

char browser[64]; // 64 Bytes: [144 - 207]

int status; // 4 Bytes: [208 - 211]

// Padding // 4 Bytes: [212 - 215]

} log[NUM_ENTRIES];

However, considering the current situation that the memory alignment in type is beyond our course scope,
we hereby announce,

1. the correct answer in Problem 3 done with either padded or unpadded structure format will be equally
graded;

2. we will release two versions of answer later on (i.e. in this answer), and,

3. if you choose to write an answer with padded structure, please use the format given above.

Page 9

3.2 Unpadded Version

Each time when you access the course website, your activity will be recorded into our web server logs! This
is the definition of the web server log for our Computer Architecture course website. Assume our web server
is a 32-bit machine. In this question, we will examine code optimizations to improve log processing speed.
The data structure for the log is defined below.

struct log_entry {

int src_ip; /* Remote IP address */

char URL[128]; /* Request URL. You can consider 128 characters are enough. */

long reference_time; /* The time user referenced to our website. */

char browser[64]; /* Client browser name */

int status; /* HTTP response status code. (e.g. 404) */

} log[NUM_ENTRIES];

Assume the following processing function for the log. This function determines the most frequently observed
source IPs during the given hour that succeed to connect our website.

topK_success_sourceIP (int hour);

1. (2 points) Which field(s) in a log entry will be accessed for the given log processing function?

Solution: Note: There may exist(s) one or more correct choice(s).√
src ip ⃝ URL

√
reference time ⃝ browser

√
status

2. (1 point) Assuming 32-byte cache blocks and no prefetching, how many cache misses per entry does the
given function incur on average?

Solution: 2.25

Description: The cold start access will get 3 misses. For all accesses, reference time and status

will always be miss. But for src ip, the situation is complicated. After the cold start, the access of
src ip will be hit as the loading of previous entry’s status. But still, these two accesses may still
located in different cache blocks. So the difficult part is to find out which accesses are miss. For 3n
accesses, there will be 2n accesses missed at reference time and status. The rest n accesses for
src ip should be considered in three situations:

1. Cold start (n=1), this is a miss;

2. Hit with previous status;

3. Miss due to different blocks location with previous status.

Given the cache block size is 32 bytes, for the log entry with 208 bytes, for n+1’s access that falls
in the third situation:

(208n+ 204) mod 32 > 32− 8.

which gives n = 2z + 1, z = 0, 1, So the average miss is given by

1

n
(2n (reference time & status miss)+ (1 + ⌊n

4
⌋) (src ip)) → 2.25.

Page 10

3. (3 points) How can you reorder the data structure to improve cache utilization and access locality?
Justify your modification.

Solution:

struct log_entry {

int src_ip;

int status;

long reference_time;

char URL[128];

char browser[64];

} log[NUM_ENTRIES];

As the fields of status and reference time is reordered closer (1 point) to each other, we can
observe spatial locality (1 point). And we can reduce the cache miss(es) per entry to 1 since a cache
block is 32 bytes long (1 point).

4. (6 points) To mitigate the miss in the question 2, design a different data structure. How would you
rewrite the program to improve the overall performance?

Your answer shall include:

• A new layout of data structure of our server logs.

• A description of how your function would improve the overall performance.

• How many cache misses per entries does your improved design incur on average?

Solution:

Grading Criteria:

• For layout, all information from the original structure should be correctly presented with no
loss (1 point). And justify the structure is better for cache optimization (1 point)

• For function, state how the function looks like, or name techniques involved (e.g. loop un-
rolling) (1 point). Qualitatively analyze your function (1 point) and give the misses per entries
(2 points).

Reference Solution:

• (Layout) src ip, reference time and status and other fields can be saved into separate
arrays, thus serial accesses will benefit from previous accesses greatly since all data used will
be consecutively loaded.

• (Function) To determine the most frequently observed IP’s during the given hour with success
state, a most naive implementation would take all logs and iterate on them. To make the
function more effecient with the new layout, we can first use binary search to locate the
eagered period involved in reference time[] before iteration. For each iteration, due to
array’s locality, the misses per entry can be reduced to 0.75. (Description: For n entries,
n
8 misses for either src ip or status, and n

4 misses for reference time, giving the result
approaches to 0.75).

Page 11

3.3 Padded Version

Each time when you access the course website, your activity will be recorded into our web server logs! This
is the definition of the web server log for our Computer Architecture course website. Assume our web server
is a 32-bit machine. In this question, we will examine code optimizations to improve log processing speed.
The data structure for the log is defined below.

struct log_entry {

int src_ip; // 4 Bytes: [0 - 3]

char URL[128]; // 128 Bytes: [4 - 131]

// Padding // 4 Bytes: [132 - 135]

long reference_time; // 8 Bytes: [136 - 143]

char browser[64]; // 64 Bytes: [144 - 207]

int status; // 4 Bytes: [208 - 211]

// Padding // 4 Bytes: [212 - 215]

} log[NUM_ENTRIES];

Assume the following processing function for the log. This function determines the most frequently observed
source IPs during the given hour that succeed to connect our website.

topK_success_sourceIP (int hour);

1. (2 points) Which field(s) in a log entry will be accessed for the given log processing function?

Solution: Note: There may exist(s) one or more correct choice(s).√
src ip ⃝ URL

√
reference time ⃝ browser

√
status

2. (1 point) Assuming 32-byte cache blocks and no prefetching, how many cache misses per entry does the
given function incur on average?

Solution: 2.75

Description: The cold start access will get 3 misses. For all accesses, reference time and status

will always be miss. But for src ip, the situation is complicated. After the cold start, the access of
src ip will be hit as the loading of previous entry’s status. But still, these two accesses may still
located in different cache blocks. So the difficult part is to find out which accesses are miss. For 3n
accesses, there will be 2n accesses missed at reference time and status. The rest n accesses for
src ip should be considered in three situations:

1. Cold start (n=1), this is a miss;

2. Hit with previous status;

3. Miss due to different blocks location with previous status.

Given the cache block size is 32 bytes, for the log entry with 216 bytes, for n+1’s access that falls
in the third situation:

(216n+ 208) mod 32 > 32− 12.

which gives n = 4z + 3, z = 0, 1, So the average miss is given by

1

n
(2n (reference time & status miss)+ (⌊3n

4
⌋) (src ip)) → 2.75.

Page 12

3. (3 points) How can you reorder the data structure to improve cache utilization and access locality?
Justify your modification.

Solution:

struct log_entry {

int src_ip; // 4 Bytes: [0 - 3]

int status; // 4 Bytes: [4 - 7]

long reference_time; // 8 Bytes: [8 - 15]

char URL[128]; // 128 Bytes: [16 - 143]

char browser[64]; // 64 Bytes: [144 - 207]

} log[NUM_ENTRIES];

As the fields of status and reference time is reordered closer (1 point) to each other, we can
observe spatial locality (1 point). And we can reduce the cache miss(es) per entry to 1 since a cache
block is 32 bytes long (1 point).

Description: As is tested here, there’s no padding.

4. (6 points) To mitigate the miss in the question 2, design a different data structure. How would you
rewrite the program to improve the overall performance?

Your answer shall include:

• A new layout of data structure of our server logs.

• A description of how your function would improve the overall performance.

• How many cache misses per entries does your improved design incur on average?

Solution: Grading Criteria:

• For layout, all information from the original structure should be correctly presented with no
loss (1 point). And justify the structure is better for cache optimization (1 point)

• For function, state how the function looks like, or name techniques involved (e.g. loop un-
rolling) (1 point). Qualitatively analyze your function (1 point) and give the misses per entries
(2 points).

Reference Solution:

• (Layout) src ip, reference time and status and other fields can be saved into separate
arrays, thus serial accesses will benefit from previous accesses greatly since all data used will
be consecutively loaded.

• (Function) To determine the most frequently observed IP’s during the given hour with success
state, a most naive implementation would take all logs and iterate on them. To make the
function more effecient with the new layout, we can first use binary search to locate the
eagered period involved in reference time[] before iteration. For each iteration, due to
array’s locality, the misses per entry can be reduced to 0.75. (Description: For n entries,
n
8 misses for either src ip or status, and n

4 misses for reference time, giving the result
approaches to 0.5).

Page 13

https://godbolt.org/z/Graj8W3xM

	Shut Up and Take My Cache!
	Oops …Too many bites (bytes)
	Let's See Some Real World Example
	A Statement On Problem 3 Grading on May 7, 2022.
	Unpadded Version
	Padded Version

