
CS 110
Computer Architecture

Lecture 3: Introduction to C II

Instructors:
Sören Schwertfeger & Chundong Wang

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

2

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

3

Address vs. Value
• Consider memory to be a single huge array
– Each cell of the array has an address associated

with it
– Each cell also stores some value
– For addresses do we use signed or unsigned

numbers? Negative address?!

• Don’t confuse the address referring to a
memory location with the value stored there

4

23 42 101 102 103 104 105 ...

Pointers
• An address refers to a particular memory

location; e.g., it points to a memory location
• Pointer: A variable that contains the address

of a variable

5

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

Pointer Syntax

• int *x;
– Tells compiler that variable x is address of an int

• x = &y;
– Tells compiler to assign address of y to x
– & called the “address operator” in this context

• z = *x;
– Tells compiler to assign value at address in x to z
– * called the “dereference operator” in this context

6

Creating and Using Pointers

7

• How to create a pointer:
& operator: get address of a variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

•How get a value pointed to?
“*” (dereference operator): get the value that the pointer points to

printf(“p points to value %d\n”,*p);

Note the “*” gets used
2 different ways in this
example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

Using Pointer for Writes

• How to change a variable pointed to?
– Use the dereference operator * on left of

assignment operator =

8

p x 5*p = 5;

p x 3

Pointers and Parameter Passing

• C passes parameters “by value”
– Procedure/function/method gets a copy of the

parameter, so changing the copy cannot change the
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains equal to 3

9

Pointers and Parameter Passing

• How can we get a function to change the value
held in a variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is now equal to 4

10

What would you use in C++?

Call by reference:
void add_one (int &p) {

p = p + 1; // or p += 1;
}

Types of Pointers

• Pointers are used to point to any kind of data
(int, char, a struct, etc.)

• Normally a pointer only points to one type
(int, char, a struct, etc.).
– void * is a type that can point to anything

(generic pointer)
– Use void * sparingly to help avoid program bugs,

and security issues, and other bad things!

11

More C Pointer Dangers
• Declaring a pointer just allocates space to hold

the pointer – it does not allocate the thing
being pointed to!

• Local variables in C are not initialized, they
may contain anything (aka “garbage”)

• What does the following code do?

12

void f()
{

int *ptr;
*ptr = 5;

}

Pointers and Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr).x;

/* This works too */
p1 = p2;

13

Note: C structure assignment is not a ”deep copy”.
All members are copied, but not things pointed to
by members.

Pointers in C
• Why use pointers?
– If we want to pass a large struct or array, it’s easier /

faster / etc. to pass a pointer than the whole thing
– In general, pointers allow cleaner, more compact code

• So what are the drawbacks?
– Pointers are probably the single largest source of bugs

in C, so be careful anytime you deal with them
• Most problematic with dynamic memory management
• Dangling references and memory leaks

14

Why Pointers in C?

• At time C was invented (early 1970s), compilers
often didn’t produce efficient code
– Computers 100,000 times faster today, compilers

better
• C designed to let programmer say what they want

code to do without compiler getting in way
– Even give compilers hints which registers to use!

• Today’s compilers produce much better code, so
may not need to use pointers in application code

• Low-level system code still needs low-level access
via pointers

15

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

16

C Arrays

• Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};

declares and initializes a 2-element integer array

17

C Strings
• String in C is just an array of characters

char string[] = "abc";

• How do you tell how long a string is?
– Last character is followed by a 0 byte

(aka “null terminator”)

18

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array Name / Pointer Duality
• Key Concept: Array variable is a “pointer” to the first

(0th) element
• So, array variables almost identical to pointers
– char *string and char string[] are nearly

identical declarations
– Differ in subtle ways: incrementing, declaration of filled

arrays, sizeof
• Consequences:
– ar is an array variable, but works like a pointer
– ar[0] is the same as *ar
– ar[2] is the same as *(ar+2)
– Can use pointer arithmetic to conveniently access arrays

19

Changing a Pointer Argument?

• What if want function to change a pointer?
• What gets printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

20

Pointer to a Pointer

• Solution! Pass a pointer to a pointer, declared
as **h

• Now what gets printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

21

C Arrays are Very Primitive
• An array in C does not know its own length,

and its bounds are not checked!
– Consequence: We can accidentally access off the

end of an array
– Consequence: We must pass the array and its size

to any procedure that is going to manipulate it

• Segmentation faults and bus errors:
– These are VERY difficult to find;

be careful!

22

Use Defined Constants
• Array size n; want to access from 0 to n-1, so you should use

counter AND utilize a variable for declaration & incrementation
– Bad pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE SOURCE OF TRUTH
– You’re utilizing indirection and avoiding maintaining two copies of the

number 10
– DRY: “Don’t Repeat Yourself”

23

Pointing to Different Size Objects
• Modern machines are “byte-addressable”

– Hardware’s memory composed of 8-bit storage cells, each has a
unique address

• A C pointer is just abstracted memory address
• Type declaration tells compiler how many bytes to fetch on

each access through pointer
– E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

24

424344454647484950515253545556575859

int *x

32-bit integer
stored in four bytes

short *y

16-bit short stored
in two bytes

char *z

8-bit character
stored in one byte

Byte address

sizeof() operator

• sizeof(type) returns number of bytes in object
– But number of bits in a byte is not standardized
• In olden times, when dragons roamed the earth, bytes

could be 5, 6, 7, 9 bits long

• By definition, sizeof(char)==1
• Can take sizeof(arr), or sizeof(structtype)
• We’ll see more of sizeof when we look at

dynamic memory management

25

26

Pointer Arithmetic
pointer + number pointer – number
e.g., pointer + 1 adds 1 something to a pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In each, p now points to b
(Assuming compiler doesn’t
reorder variables in memory.

Never code like this!!!!)

Adds 1*sizeof(char)
to the memory address

Adds 1*sizeof(int)
to the memory address

Pointer arithmetic should be used cautiously

27

Arrays and Pointers

• Array » pointer to the initial (0th) array
element

a[i] º *(a+i)

• An array is passed to a function as a pointer
– The array size is lost!

• Usually bad style to interchange arrays and
pointers
– Avoid pointer arithmetic!

Really int *array

int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays:

28

Arrays and Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)

{
int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What does this print (32bit)?

What does this print (32bit)?

4

40

... because array is really
a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

29

Arrays and Pointers

int i;
int array[10];

for (i = 0; i < 10; i++)
{

array[i] = …;
}

int *p;
int array[10];

for (p = array; p < &array[10]; p++)
{

*p = …;
}

These code sequences have the same effect!

C Strings
• String in C is just an array of characters

char string[] = "abc";

• How do you tell how long a string is?
– Last character is followed by a 0 byte

(aka “null terminator”)

31

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Concise strlen()
int strlen(char *s)
{

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

What happens if there is no zero character
at end of string?

32

Point past end of array?

• Array size n; want to access from 0 to n-1, but
test for exit by comparing to address one
element past the array
int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;
– Is this legal?
• C defines that one element past end of array

must be a valid address, i.e., not cause an error

33

Valid Pointer Arithmetic

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array)
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that the

pointer points to nothing)

Everything else illegal since makes no sense:
• adding two pointers
• multiplying pointers
• subtract pointer from integer

34

Arguments in main()

• To get arguments to the main function, use:
– int main(int argc, char *argv[])

• What does this mean?
– argc contains the number of strings on the

command line (the executable counts as one, plus
one for each argument). Here argc is 2:

unix% sort myFile

– argv is a pointer to an array containing the
arguments as strings

35

Example

• foo hello 87
• argc = 3 /* number arguments */
• argv[0] = "foo",
argv[1] = "hello",
argv[2] = "87"

–Array of pointers to strings

36

Summary

• Pointers and arrays are virtually same
• C knows how to increment pointers
• C is an efficient language, with little protection

• Array bounds not checked
• Variables not automatically initialized

• (Beware) The cost of efficiency is more overhead for
the programmer.

• “C gives you a lot of extra rope but be careful not to
hang yourself with it!”

37

Agenda

• Pointers
• Pointers & Arrays
• C Memory Management
• C Bugs

38

C Memory Management
• How does the C compiler determine where to

put all the variables in machine’s memory?
• How to create dynamically sized objects?
• To simplify discussion, we assume one

program runs at a time, with access to all of
memory.

• Later, we’ll discuss virtual memory, which lets
multiple programs all run at same time, each
thinking they own all of memory.

39

C Memory
Management

• Program’s address space
contains 4 regions:
– stack: local variables inside

functions, grows downward
– heap: space requested for

dynamic data via malloc();
resizes dynamically, grows
upward

– static data: variables declared
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified.

– code: loaded when program
starts, does not change

code

static data

heap

stack~ FFFF FFFFhex

~ 0000 0000hex

4040

Memory Address
(32 bits assumed here)

Where are Variables Allocated?

• If declared outside a function,
allocated in “static” storage

• If declared inside function,
allocated on the “stack”
and freed when function
returns
– main() is treated like

a function

int myGlobal;
main() {
int myTemp;

}

41

The Stack
• Every time a function is called, a new frame

is allocated on the stack
• Stack frame includes:

– Return address (who called me?)
– Arguments
– Space for local variables

• Stack frames contiguous
blocks of memory; stack pointer
indicates start of stack frame

• When function ends, stack frame is tossed
off the stack; frees memory for future stack
frames

• We’ll cover details later for RISC-V processor fooD frame

fooB frame

fooC frame

fooA frame

Stack Pointer
42

fooA() { fooB(); }
fooB() { fooC(); }
fooC() { fooD(); }

Stack Animation

• Last In, First Out (LIFO) data structure
main ()
{ a(0);
}

void a (int m)
{ b(1);
}
void b (int n)
{ c(2);
}
void c (int o)
{ d(3);
}
void d (int p)
{
}

stack

Stack PointerStack
grows
down

43

Managing the Heap

C supports five functions for heap management:

• malloc() allocate a block of uninitialized memory
• calloc() allocate a block of zeroed memory
• free() free previously allocated block of memory
• realloc() change size of previously allocated block

• careful – it might move!

44

Malloc()
• void *malloc(size_t n):

– Allocate a block of uninitialized memory
– NOTE: Subsequent calls might not yield blocks in contiguous addresses
– n is an integer, indicating size of allocated memory block in bytes
– size_t is an unsigned integer type big enough to “count” memory bytes
– sizeof returns size of given type in bytes, produces more portable code
– Returns void* pointer to block; NULL return indicates no more memory
– Think of pointer as a handle that describes the allocated block of memory;

Additional control information stored in the heap around the allocated
block!

• Examples:
int *ip;
ip = (int *) malloc(sizeof(int));

typedef struct { … } TreeNode;
TreeNode *tp = (TreeNode *) malloc(sizeof(TreeNode));

45

“Cast” operation, changes type of a variable.
Here changes (void *) to (int *)

