
CS 110
Computer Architecture

Lecture 8:
Multiplication & Floats

Instructors:
Sören Schwertfeger & Chundong Wang

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

RISC-V ISA Specification

• Different modules
• Class covers RV32I Base Integer Instruction Set
– RV64I (used in textbook) and RV128I also available
– RV32E: Embedded Systems (only 16 registers)

• Various Extensions, named with letters
• The RISC-V Instruction Set Manual; Volume II:

Privileged Architecture
– For Operating System

2

RISC-V Specifications

• https://riscv.org/technical/specifications/
– ISA Specification
– Debug Specification
– Trace Specification
– Compliance Framework

• https://five-embeddev.com/riscv-isa-manual/latest/intro.html
– Manual

• https://github.com/riscv/riscv-isa-manual/releases/latest
– Latest draft document

3

https://riscv.org/technical/specifications/
https://five-embeddev.com/riscv-isa-manual/latest/intro.html
https://github.com/riscv/riscv-isa-manual/releases/latest

4

Clarifications

• RISC-V ISA Spec: Does NOT define Assembly
Syntax
– Defines Binary Machine Instructions and their

behavior
– Different Assemblers could have different syntax (i.e.

allow commas or not)
• Project 1 RISC-V emulator: behave exactly like

Venus!
• ALL I-Type instructions (including sltiu):
– do sign-extension
– (in Venus): input number is signed, even if hex

5

RISC-V instruction sizes

6

Compressed Instruction Set “C”

• Use 16 bit instead of 32 bit instructions =>
– Save space => faster

• E.g.:
– Use only 8 ”popular” registers -> only 3 bits needed
– Immediates have only 6 bits
– Stack-pointer based loads and stores
– R & I –type instructions: rs1 and rd the same
– etc.

• Can mix 32bit and 16bit instructions!

7

Format Comparison

8

Example

9

Project 1

• Project 1.1:
– In C89, write a program to compress RV32 to RV32C

(on Assembler level)
• Carefully read webpage and documentation

– Of course: Best results when compiler is aware of
compression (use according instructions/ registers)

• Project 1.2:
– In RISC-V, write a program to de-compress RV32C to

RV32

10

MULTIPLICATION AND DIVISION FOR
RV32I: EXTENSION M

11

Integer Multiplication (1/3)
• Paper and pencil example (unsigned):

Multiplicand 1000 8
Multiplier x1001 9

1000
0000
0000

+1000
01001000 72

• m bits x n bits = m + n bit product
12

• In RISC-V, we multiply registers, so:
– 32-bit value x 32-bit value = 64-bit value

• Multiplication is not part of standard RISC-V because:
– It requires a more complicated ALU
– The compiler can use a series of shifts and adds if the multiplier

isn't present
• Syntax of Multiplication (signed):

– mul rd, rs1, rs2
– mulh rd, rs1, rs2
– Multiplies 32-bit values in those registers and returns either the

lower or upper 32b result
• If you do mulh/mul back to back, the architecture can fuse them

– Also unsigned versions of the above

13

Integer Multiplication (2/3)

• Example:
– in C: a = b * c;
• int64_t a; int32_t b, c;
• These types are defined in C99, in stdint.h

• in RISC-V:
– let b be s2; let c be s3; and let a be s0 and s1

(since it may be up to 64 bits)
– mulh s1, s2, s3
mul s0, s2, s3

14

Integer Multiplication (3/3)

Integer Division (1/2)
• Paper and pencil example (unsigned):
– Quotient = 1001010 / 1000
– Remainder = 1001010 % 1000

Dividend = Quotient x Divisor + Remainder

Divisor 1000|1001010 Dividend
-1000

10
101
1010
-1000

10 Remainder
(or Modulo result)

Quotient1 0 0 1

15

• Syntax of Division (signed):
– div rd, rs1, rs2
rem rd, rs1, rs2

– Divides 32-bit rs1 by 32-bit rs2, returns the quotient
(/) for div, remainder (%) for rem

– Again, can fuse two adjacent instructions
• Example in C: a = c / d; b = c % d;
• RISC-V:

• a↔s0; b↔s1; c↔s2; d↔s3
– div s0, s2, s3
rem s1, s2, s3

16

Integer Division (2/2)

Note Optimization...

• A recommended convention
– mulh s1 s2 s3
mul s0 s2 s3

– div s0 s2 s3
rem s1 s2 s3

• Not a requirement but...
– RISC-V says "if you do it this way, and the

microarchitecture supports it, it can fuse the two
operations into one"

– Same logic behind much of the 16b ISA design:
If you follow the convention you can get significant
optimizations

17

“And in Conclusion…”
• Simplification works for RISC-V: Instructions are same

size as data word (one word) so that they can use the
same memory.

• Computer actually stores programs as a series of
these 32-bit numbers.

• We have covered all RISC-V instructions and registers
– R-type, I-type, S-type, B-type, U-type and J-type instructions
– Practice assembling and disassembling

• Introduced Compressed Instructions for Project 1
• RISC-V Multiplication and Division

Admin

• Midterm I
– March 29 during lecture hours
• We start sharp at 8:15!
• We expect you to sit in your seat at 8:05 – so we can

distribute the exams!
• Be there at 8:00!

• Contents:
– Everything till (including) Datapath (March 24

lecture)

Midterm I
• Switch cell phones off!

(not silent mode – off!)
– Put them in your bags.

• Bags in the front. On the table: nothing but:
pen, 1 drink, 1 snack, your student ID card and your
cheat sheet!

• The RISC V green card will be provided
• No other electronic devices are allowed!
– No ear plugs, music, smartwatch…

• Anybody touching any electronic device will FAIL the
course!

• Anybody found cheating (copy your neighbors answers,
additional material, ...) will FAIL the course!

20

21

22

23

24

Cheat Sheet

• 1 A4 Cheat Sheet allowed (double sided)
– Midterm II: 2 pages
– Final: 3 pages

• Rules:
– Hand-written – not printed!
– Your name in pinyin on the top!
– Cheat Sheets not complying to this rule will be

confiscated!

25

26

27

28

29

Review of Integer Numbers

• Computers are made to deal with numbers
• What can we represent in N bits?
– 2N things, and no more! They could be…
– Unsigned integers:

0 to 2N - 1
(for N=32, 2N–1 = 4,294,967,295)
– Signed Integers (Two’s Complement)

-2(N-1) to 2(N-1) - 1
(for N=32, 2(N-1) = 2,147,483,648)

30

What about other numbers?
1. Very large numbers? (seconds/millennium)

=> 31,556,926,00010 (3.155692610 x 1010)
2. Very small numbers? (Bohr radius)

=> 0.000000000052917710m (5.2917710 x 10-11)
3. Numbers with both integer & fractional parts?

=> 1.5
First consider #3.
…our solution will also help with #1 and #2.

31

Representation of Fractions
“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

xx.yyyy
21 20 2-1 2-2 2-3 2-4

Example 6-bit
representation:

10.1010two = 1x21 + 1x2-1 + 1x2-3 = 2.625ten

If we assume “fixed binary point”, range of 6-bit
representations with this format:

0 to 3.9375 (almost 4)

32

Fractional Powers of 2

0 1.0 1
1 0.5 1/2
2 0.25 1/4
3 0.125 1/8
4 0.0625 1/16
5 0.03125 1/32
6 0.015625
7 0.0078125
8 0.00390625
9 0.001953125
10 0.0009765625
11 0.00048828125
12 0.000244140625
13 0.0001220703125
14 0.00006103515625
15 0.000030517578125

i 2-i

33

Representation of Fractions with Fixed Pt.
What about addition and multiplication?

Addition is
straightforward:

01.100 1.5ten
+ 00.100 0.5ten
10.000 2.0ten

Multiplication a bit more complex:

01.100 1.5ten
00.100 0.5ten
00 000
000 00
0110 0
00000
00000
0000110000

Where’s the answer, 0.11? (need to remember where point is)
34

Representation of Fractions
So far, in our examples we used a “fixed” binary point.
What we really want is to “float” the binary point. Why?

Floating binary point most effective use of our limited bits
(and thus more accuracy in our number representation):

… 000000.001010100000…

Any other solution would lose accuracy!

example: put 0.1640625ten into binary. Represent
with 5-bits choosing where to put the binary point.

Store these bits and keep track of the binary
point 2 places to the left of the MSB

With floating-point rep., each numeral carries an exponent
field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very
large and small numbers can be represented. 35

Scientific Notation (in Decimal)

• Normalized form: no leadings 0s
(exactly one digit to left of decimal point)

• Alternatives to representing 1/1,000,000,000

– Normalized: 1.0 x 10-9

– Not normalized: 0.1 x 10-8,10.0 x 10-10

6.02ten x 1023

radix (base)decimal point

mantissa exponent

36

Scientific Notation (in Binary)

• Computer arithmetic that supports it called
floating point, because it represents numbers
where the binary point is not fixed, as it is for
integers
– Declare such variable in C as float

• double for double precision.

1.01two x 2-1

radix (base)“binary point”

exponentmantissa

37

Floating-Point Representation (1/2)
• Normal format: +1.xxx…xtwo*2yyy…ytwo

• Multiple of Word Size (32 bits)
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
•S represents Sign

Exponent represents y’s
Significand represents x’s

•Represent numbers as small as
2.0ten x 2-126 to as large as 2.0ten x 2127

•2126 = 8.507059173023462 e37 ≈ 1038 38

Floating-Point Representation (2/2)
• What if result too large?

(> 2.0x1038 , < -2.0x1038)
– Overflow! => Exponent larger than represented in 8-bit

Exponent field
• What if result too small?

(>0 & < 2.0x10-38 , <0 & > -2.0x10-38)
– Underflow! => Negative exponent larger than represented

in 8-bit Exponent field

• What would help reduce chances of overflow and/or
underflow?

0 2x10-38 2x10381-1 -2x10-38-2x1038

underflow overflowoverflow

39

Single Precision (Double Precision similar):

• Sign bit: 1 means negative 0 means positive

• Significand in sign-magnitude format (not 2’s complement)
– To pack more bits, leading 1 implicit for normalized numbers
– 1 + 23 bits single, 1 + 52 bits double
– always true: 0 < Significand < 1 (for normalized numbers)

• Note: 0 has no leading 1, so reserve exponent value 0 just for
number 0

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

IEEE 754 Floating Point Standard (1/3)

40

IEEE 754 Floating Point Standard (2/3)

• IEEE 754 uses “biased exponent”
representation
– Designers wanted FP numbers to be used even if no

FP hardware; e.g., sort records with FP numbers
using integer compares

– Wanted bigger (integer) exponent field to represent
bigger numbers

– 2’s complement poses a problem (because negative
numbers look bigger)
• Use just magnitude and offset by half the range

41

IEEE 754 Floating Point Standard (3/3)

• Summary (single precision):

•Called Biased Notation, where bias is
number subtracted to get final number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual
value for exponent

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

42

Question
• Guess this Floating Point number:
1 1000 0000 1000 0000 0000 0000 0000 000

A: -1x 2128

B: +1x 2-128

C: -1x 21

D: +1.5x 2-1

E: -1.5x 21

43

Representation for ± ∞

• In FP, divide by 0 should produce ± ∞, not
overflow.
•Why?
– OK to do further computations with ∞

E.g., X/0 > Y may be a valid comparison

• IEEE 754 represents ± ∞
– Most positive exponent reserved for ∞
– Significands all zeroes

44

Representation for 0

• Represent 0?
– exponent all zeroes
– significand all zeroes
– What about sign? Both cases valid
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

45

Special Numbers
• What have we defined so far? (Single Precision)

Clever idea:
– Use exp=0,255 & Sig!=0

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

46

Representation for Not a Number

• What do I get if I calculate
sqrt(-4.0)or 0/0?

– If ∞ not an error, these shouldn’t be either
– Called Not a Number (NaN)
– Exponent = 255, Significand nonzero

• Why is this useful?
– Hope NaNs help with debugging?
– They contaminate: op(NaN, X) = NaN
– Can use the significand to identify which!

47

Representation for Denorms (1/2)

• Problem: There’s a gap among representable FP
numbers around 0
– Smallest representable pos num:

• a = 1.0… 2 * 2-126 = 2-126

– Second smallest representable pos num:
• b = 1.000……1 2 * 2-126

= (1 + 0.00…12) * 2-126

= (1 + 2-23) * 2-126

= 2-126 + 2-149

– a - 0 = 2-126

– b - a = 2-149 b
a0 +-

Gaps!

Normalization
and implicit 1
is to blame!

48

Representation for Denorms (2/2)
•Solution:

• We still haven’t used Exponent = 0,
Significand nonzero

• DEnormalized number: no (implied)
leading 1, implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

49

Special Numbers

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NAN

50

Summary
• Floating Point lets us:
– Represent numbers containing both integer and fractional parts; makes

efficient use of available bits.
– Store approximate values for very large and very small #s.

• IEEE 754 Floating-Point Standard is most widely accepted
attempt to standardize interpretation of such numbers (Every desktop or
server computer sold since ~1997 follows these conventions)

• Summary (single precision):
031

S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)

Can
store
NaN,
± ∞

Play with: https://www.h-schmidt.net/FloatConverter/IEEE754.html

• Double precision identical, except with exponent bias of 1023
(half, quad similar)

51

https://www.h-schmidt.net/FloatConverter/IEEE754.html

RISC-V Single-Precision Floating-Point:
F Extension

• 32 new registers f0 – f32 – each 32bit
– Named registers: temporary, saved, argument

• Floating-point control and status register fcsr
– Operating mode and exception status

52

Instruction Examples
• Load/ store – similar to int – e.g.:

– flw f1, 0(s1)
load from address s1 to float reg 1

• Arithmetic: append .s for “single precision”
– fsub.s f2, f3, f1

• Fused Multiply Add:
– Fmadd.s rd, rs1, rs2, rs3

[rd] = [rs1] * [rs2] + [rs3]

• Int / float conversions:
– fcvt.w.s f4, s4
convert int in s4 to float in f4

53

54

