CS 110
Computer Architecture

Amdahl’s Law, Data-level Parallelism

Instructors:
Soren Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkeley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

New-School Machine Structures
(It's a bit more compllcated')

Software Hardware
Parallel Requests
. Warehouse
Assigned to computer Scale B
e.g., Search “Katz” Computer &

Harness
Parallel Threads Parallelism &

Assigned to core Achieve High
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

Core

Functional

>1 data item @ one time Unit S

e.g., Add of 4 pairs of words
Hardware descriptions

All gates @ one time
Programming Languages

Lecture

Cache Memory /» ."
I
J

P
= Logic Gates
=1 g
="
@ 2
[0}

Why Parallel Processing?

* CPU Clock Rates are no longer increasing

— Technical & economic challenges

* Advanced cooling technology too expensive or
impractical for most applications

* Energy costs are prohibitive

e Parallel processing is only path to higher
speed

Using Parallelism for Performance

* Two basic ways:
— Multiprogramming
* run multiple independent programs in parallel
* “Easy”

— Parallel computing

* run one program faster
e “Hard”

 We'll focus on parallel computing for next few
lectures

Single-Instruction/Single-Data Stream
(SISD)

SISD Instruction Pool

=

o

o » | PU |«

-

o

(- . :
Processing Unit

Sequential computer
that exploits no
parallelism in either the
instruction or data
streams. Examples of
SISD architecture are
traditional uniprocessor
machines

— E.g. Our RISC-V
processor

— Superscalar is SISD
because programming

This is what we did up to now in CA.

model is sequential

Single-Instruction/Multiple-Data Stream
(SIMD or “sim-dee”)

* SIMD computer exploits

SIMD Instruction Pool muItipIe data streams
against a single
*[PY instruction stream to
S eyl operations that may be
- naturally parallelized,
é +|PU|+ e.g., Intel SIMD
Instruction extensions
*|PU [+ or NVIDIA Graphics

Processing Unit (GPU)

Today’s topic.

Multiple-Instruction/Multiple-Data Streams
(MIMD or “mim-dee”)

Instruction Pool

|

Data Pool

—> PU

* Multiple autonomous
pProcessors
simultaneously
executing different
instructions on different
data.

— MIMD architectures
include multicore and

Warehouse-Scale
Computers

Next lecture & following.

Multiple-Instruction/Single-Data Stream
(MISD)

* Multiple-Instruction,
Single-Data stream
computer that exploits
multiple instruction
streams against a single

Lipul< Ls|pyl— data stream.

MISD Instruction Pool

Data Pool

— Rare, mainly of historical
interest only

Few applications. Not covered in CA.

Flynn* Taxonomy, 1966

Data Streams

Multiple

Instruction
Streams

Single

SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Multiple

MISD: No examples today MIMD: Intel Xeon €5345 (Clovertown)

e Since about 2013, SIMD and MIMD most common parallelism
in architectures — usually both in same system!

* Most common parallel processing programming style: Single
Program Multiple Data (“SPMD”)

— Single program that runs on all processors of a MIMD
— Cross-processor execution coordination using synchronization

primitives

e SIMD (aka hw-level data parallelism): specialized function
units, for handling lock-step calculations involving arrays

— Scientific computing, signal processing, multimedia

(audio/video processing)

Big Idea: Amdahl’s (Heartbreaking) Law

* Speedup due to enhancement E is

Exec time w/o E
Speedup W/ E= —--m-mmmmemmmeeee
Exec time w/ E
* Suppose that enhancement E accelerates a fraction F (F <1)
of the task by a factor S (S>1) and the remainder of the task is

unaffected

] —

-

Execution Time w/ E = Execution Time w/o E x [(1-F) + F/S]

Speedupw/E = 1/[(1-F)+F/S]

10

Big Idea: Amdahl’s Law

Speedup = 1
(1-F) + F

Non-speed-up part — S Speed-up part

Example: the execution time of half of the program can
be accelerated by a factor of 2.
What is the program speed-up overall?

1 1

05+05 05+025 133

11

Example #1: Amdahl’s Law
Speedupw/E= 1/[(1-F)+F/S]

Consider an enhancement which runs 20 times faster but
which is only usable 25% of the time

Speedupw/E = 1/(.75+.25/20) = 1.31

What if its usable only 15% of the time?
Speedup w/ E = 1/(.85+.15/20) = 1.17

Amdahl’s Law tells us that to achieve linear speedup with
100 processors, none of the original computation can be
scalar!

To get a speedup of 90 from 100 processors, the
percentage of the original program that could be scalar
would have to be 0.1% or less

Speedup w/ E = 1/(.001 +.999/100) = 90.99

Strong and Weak Scaling

* To get good speedup on a parallel processor while
keeping the problem size fixed is harder than getting
good speedup by increasing the size of the problem.

— Strong scaling: when speedup can be achieved on a

parallel processor without increasing the size of the
problem

— Weak scaling: when speedup is achieved on a parallel
processor by increasing the size of the problem
proportionally to the increase in the number of processors

* Load balancing is another important factor: every
processor doing same amount of work

— Just one unit with twice the load of others cuts speedup
almost in half

SIMD Architectures

» Data parallelism. executing same operation
on multiple data streams
« Example to provide context:
— Multiplying a coefficient vector by a data vector
(e.qg., in filtering)
yv[i] := c[i]x x[1], O = 1 < n
» Sources of performance improvement:

— One instruction is fetched & decoded for entire
operation

— Multiplications are known to be independent
— Pipelining/ concurrency in memory access as well
— Special functional units may be faster

Intel “Advanced Digital Media Boost”

* To improve performance, Intel’s SIMD instructions

— Fetch one instruction, do the work of multiple instructions

Source 1 X3 X2 X1 X0
Source 2 Y3 Y2 Y1 YO
Destination X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP YO
SIMD Mode Scalar Mode

ADDE C DD

+

1
b BDOE D BE

= peErEel EE

15

Intel SIMD Extensions

* MMX 64-bit registers, reusing floating-point

registers [1992]

MMX 1997
1999 2000 2004 2006 2007 2008 2009 2010\11
SSE SSE2 SSE3 SSSE3 |[ssea.1 ||ssea2 || AES-NI || Avx

70 instr

Single-
Precision
Vectors

Streaming
operations

144 instr

Double-
precision
Vectors

8/16/32

64/128-bit
vector
integer

13 instr

Complex
Data

32 instr
Decode

47 instr
Video

Graphics
building
blocks

Advanced
vector instr

8 instr

String/XML
processing

POP-Count
CRC

7 instr

Encryption
and
Decryption

Key
Generation

~100 new
instr.

~300 legacy
sse instr
updated

256-bit
vector

3 and 4-
operand
instructions

Intel Advanced Vector eXtensions AVX

Intel Advanced Vector eXtensions
2011 2012 ‘ 2013

 getting wider, instruction set getting richer

87 GFLOPS 185 GFLOPS | ~225 GFLOPS | ~500 GFLOPS | tbd GFLOPS | tbd GFLOPS

Westmere 4 i ' Broadwell

32 nm 32 nm 22 nm 22 nm 14 nm 14 nm
SSE 4.2 AVX AVX?2 AVX 3.2
DDR3 (256 bit new (512 bit
PCle2 registers) jnstructions) registers)
DDR3 DDR4 DDR4
PCle3 PCle3 PCle4

17
https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/

https://chrisadkin.io/2015/06/04/under-the-hood-of-the-batch-engine-simd-with-sql-server-2016-ctp/

Intel Architecture SSE SIMD Data Types

* Note: in Intel Architecture (unlike RISC-V) a word is 16 bits
— Single-precision FP: Double word (32 bits)
— Double-precision FP: Quad word (64 bits)
— AVX-512 available (16x float and 8x double)

4x float

I 2x double

16x byte

SSE and AVX-128 types

8x 16-bit word
4x 32-bit doubleword

2x 64-bit quadword

1x 128-bit doublequadword
AVX-256 types

SSE/SSE2 Floating Point Instructions

Move
does
both
load
and
store

Datatransfer | Arithmetic | Compare

MOV{A/U}{SS/PS/SD/ ADD{SS/PS/SD/PD} xmm, CMP{SS/PS/SD/
PD} xmm, mem/xmm mem/ Xxmm PD}
SUB{SS/PS/SD/PD} xmm,
mem/xmm
MOV {H/L} {PS/PD] MUL{SS/PS/SD/PD} xmm,
Xmm, mem/xmm mem/ xmm
DIV{SS/PS/SD/PD} xmm,
mem/ xmm
SQRT{SS/PS/SD/PD} mem/xmm
MAX {SS/PS/SD/PD} mem/xmm
MIN{SS/PS/SD/PD} mem/xmm

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register

{SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register

{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
{A} 128-bit operand is aligned in memory

{U} means the 128-bit operand is unaligned in memory

{H} means move the high half of the 128-bit operand

{L} means move the low half of the 128-bit operand 19

Packed and Scalar Double-Precision
Floating-Point Operations

X1 X0

X YO

Packed

X1 0P Y1 X0 OP YO

X1 X0

Y1 YO0

Scalar
Y

X1 X0 OP YO

(intel) Intrinsics Guide

Technologies
I MMX
) SSE
1 SSE2

~1 SSE3

~1 SSSE3

~1 SSE4.1

1 SSE4.2

AVX
1 AVX2

FMA

AVX-512

KNC

SVML
Other

Categories

~1 Application-Targeted
Arithmetic
Bit Manipulation
Cast

~ Compare

X86 SIMD Intrinsics

__m256d _mm256_mul_pd (__m256d a, __m256d b)
Synopsis . .
 Intrinsic

__m256d _mm256_mul_pd (__m256d a, __m256d b)
#include "immintrin.h" 1 T
Instruction: vmulpd ymm, ymm, ymm 4 assem bly lnStrUCtlon
CPUID Flags: AVX
Description
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.

i « 4 parallel multiplies
@

FOR j := 0 to

i = j*

dst[i+63:1] := al[i+63:i] * b[i+63:i]
ENDFOR
dst[MAX:256] := 0

Performance
Architecture Latency Throughy . : B
— . 2 instructions per clock cycle (CPI = 0.5)
Ivy Bridge 5 1
Sandy Bridge 5 1

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

21

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Raw Double-Precision Throughput

Theoretical Peak Performance, Double Precision

104 N r f ? 1 L QQ
L . 3 . ;Q'\ g
: : : &
: : : O SV
' ' ' N
:] : &
il i EEERE SRR TLRRERRPT RS o M S SRS AR B o
g : &
o
Q
L
O
RS
102 F- - - TEES. - SR LTS AR i SRR LD R P B N B B G R B B SR R
: ; INTEL Xeon CPUs ===]
. o o l NVIDIA Tesla GPUs —JlF— |
(,_&% QDQ)Q ' 1
‘Q';T ‘? S E ¥ ! AMD Radeon GPUs —)— -
& < & INTEL Xeon Phis =g 1
L L 1 1 1
2008 2010 2012 2014 2016

End of Year
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

22

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Example: SIMD Array Processing

for each £ in array
f = sqrt(f)

for

{

" for

each £ in

load £ to
calculate
write the

each 4 members in array A

load 4 members to the SSE register

calculate
store the

array

the floating-point register
the square root
result from the register to memory

4 square roots in one operation >
4 results from the register to memory

SIMD style

23

Data-Level Parallelism and SIMD

SIMD wants adjacent values in memory that
can be operated in parallel

Usually specified in programs as loops
for(1=1000; i>0; i=i-1)
x[1] = x[1] + s;
How can reveal more data-level parallelism
than available in a single iteration of a loop?
Unroll loop and adjust iteration rate

24

Assumptions:
- tlisinitially the address of the element in the array with the highest

address

Looping in RISC-V

* D Standard Extension (double) — builds upon F standard extension (float)

- fO contains the scalar value s
- 8(t2) is the address of the last element to operate on

CODE:

I Loop:

4

fld £Z .;
fadd.d f10,
fsd E10,
addi £l
bne , = K

0(tl)

£2,

fo0

0(tl)

t1,
t2,

-8
Loop

T T T Tl

Sf2=array element
add s to S$f2
store result

tl = tl1 -8

repeat loop if tl

t2

25

1 Loop

w

,,,,,

Fid
fadd.d
fsd

Fid
fadd.d
fsd

Fid
fadd.d
fsd

Fid
fadd.d
fsd

addi

bne

£2 ,
£10,
£10,

£3 ,
£1l.,
£1l.,

f4 ,
£12,
£12,

EL3,
EL3,

o
o

0(tl)
£, 560
0(tl)

-8(tl)
B, §E0
-8 (tl)

-16(t1)
£4, f0
-16(t1)

~24(tl)
£5, £0
~24(tl)

tl, -32
t2,

Loop

Loop Unrolled

NOTE:
1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if
loop_limit(mod 4) =0
3. Using different registers for each iteration
eliminates data hazards in pipeline

26

f1d
f1d
f1d
f1d

fadd.d
fadd.d
fadd.d
fadd.d

fsd
fsd
fsd
fsd

addi

bne

£2 . 0(EL)
£3 , -8(tl)

£4 , -16(tl)
£5 , -24(tl)

£10, f£2,
1, &5
£12, f4,
£13, f£5,

fo0
fo0
fo0
fo0

£10, 0(tl)
£11, -8(it1)

£12, -16(tl)
£13, -24(tl)

tl, t1,

=32
tl, t2, Loop

Loop Unrolled Scheduled

——

- 4 Loads side-by-side:
Could replace with 4-wide SIMD Load

___ 4 Adds side-by-side:
Could replace with 4-wide SIMD Add

4 Stores side-by-side:
Could replace with 4-wide SIMD Store

27

Loop Unrolling in C

* |nstead of compiler doing loop unrolling, could do it

yourself in C

for (1=1000; i>0; i=1i-1)

x[1i] + s;

e Could be rewritten What is downside of doing it in C?
for (1=1000; i>0; i=i-4) {

x[1] =

x[1]
x[1i-1]
x[1-2]
x[1-3]
}

x[1i] + s;

x[1-1] + s;
x[1-2] + s;
x[1-3] + s;

Generalizing Loop Unrolling

* Aloop of n iterations
* k copies of the body of the loop
 Assuming (hmod k) #0

Then we will run the loop with 1 copy of the

body (n mod k) times and with k copies of the
body floor(n/k) times

29

RISC-V Vector Extension

* 32 vector registers * vflw.s: vector float load word .
stride: load a single word, put in
* Need to setup length of data and v1 ‘vector length’ times
number of parallel registers to e vsetvl: ask for certain vector
work on before usage (vconfig)! length — hardware knows what it

can do (maxvl)!

WN =

-—

vconfig 0x63
vflw.s vl.s, 0(x4)

loop
vsetvl x2, x1
vflw vo, 0(tl)
vfadd.s v2, vl1l, v@
vsw v2, 0(t1)
STl x5 x2, 2
add 1.8 t1 8 x5
sub x1, x1, x2
bne x1, x@, loop

5
6
7
Q
O

Hardware Support up to CPU

2-lane implementation

1stclock: a+i, b+j
2" clock: c+k, d+l
3dclock: e+m, 0
4t clock: up toyou

&?8666

L 0 1 0| 0 Je+m| d+ [crk|b+ila+i]

4-lane implementation

1%t clock: ati, b+j, c+
2" clock: e+m, 0,0, 0

Number of lanes is transparent to programmer
Same code runs independent of # of lanes

, d+l

8-lane implementation (a.k.a. SIMD)

1%t clock: a+i, b+j, c+k, d+l, e+tm, 0,0, 0

31

Example: Add Two Single-Precision
Floating-Point Vectors

Computation to be performed:

mov a ps: move from mem to XMM register,

vec_res.x = vl.x + v2.x; memory aligned, packed single precision
vec_res.y = vl.y + v2.y; add ps: add from mem to XMM register,
vec_res.z = vl.z + v2.z; packed single precision

vec_res.w = vl.w + v2.w;

mov a ps: move from XMM register to mem,

: memory aligned, packed single precision
SSE Instruction Sequence; yalgned, p glep

(Note: Destination on thg Jighlt in x86 assembly)

movaps address-of-vl, %x
// vli.w | vi.z |
addps address-of-v2, %xmmO
// vli.wtv2.w | vl

movaps %xmm0, address-of-vec res

| vi.x -> xmm0

+v2.z | vli.y+v2.y | vl.x+v2.x -> xmm0

32

Intel SSE Intrinsics

* Intrinsics are C functions and procedures for
inserting assembly language into C code, including
SSE instructions

— With intrinsics, can program using these instructions
indirectly

— One-to-one correspondence between SSE instructions and
intrinsics

33

Example SSE Intrinsics

Intrinsics: Corresponding SSE instructions:
* Vector data type:
~m128d
* Load and store operations:
_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double
* Load and broadcast across vector
_mm_loadl pd MOVSD + shuffling/duplicating
* Arithmetic:
~_mm_add_pd ADDPD/add, packed double

_mm_mul_pd MULPD/multiple, packed double

34

Definition of Matrix Multiply:

Example: 2 x 2 Matrix Multiply

C.;=(AxB);; = Z A X By

Bl,l

Bl,Z

2

k=1

C119A11B1 1+ A15Bo g

Cy,15A21B1 1|+ A2 2B5 4

C1,1= 1*1 +0*2=1

C2’1= 0*1 + 1*2=2

C12=A11B12+A1,B5 >

C,2=A;1B1 2+A; 7B

Ci,=1*%3+0%4=3

C2’2= 0*3+1*4=4

35

Definition of Matrix Multiply:

Example: 2 x 2 Matrix Multiply

C.;=(AxB);; = Z A X By

Bl,l

Bl,Z

2

k=1

C11=A11B11HA1,B5 1

Cy1=A;1B11 AZ'ZBZ'fl

C1,1= 1*1 +0*2=1

C2’1= 0*1 + 1*2=2

C12=A11B12+A1,B5 >

C,2=A;1B1 2+A; 7B

Ci,=1*%3+0%4=3

C2’2= 0*3+1*4=4

36

Example: 2 x 2 Matrix Multiply

* Using the XMM registers

— 64-bit/double precision/two doubles per XMM reg

Cy
G

Cy1 ! Cy1
Ci | Cyo
Aq ! A,
Bi: ! Bi.
Bi» ! Bi»

Stored in memory in Column order

_Kﬁ -
Ci1,1 Cip2
Co1 Coo

./
C, C,

37

Example: 2 x 2 Matrix Multiply

e |nitialization

C 0 i 0
C, 0 ! 0

Example: 2 x 2 Matrix Multiply

* |nitialization

A1,1

Ayl

0 | 0
0 ! 0
Al,l i A2,1
Bl,l i Bl,l
Bl,Z i Bl,Z

C113A11B1afF A 5By

C2,1:

Ay 1Byt A8, 4

C2=A;11B1 1A 1B,

C,,=A,1B1,+A, 5B,

~mm_load _pd: Load 2 doubles into XMM
reg, Stored in memory in Column order

~mm_load1_ pd: SSE instruction that loads
a double word and stores it in the high and

low double words of the XMM register
(duplicates value in both halves of XMM)

39

Example: 2 x 2 Matrix Multiply

e First iteration intermec

Al,l A1,2

Ara A,

Bis B, Ci13AL1B A ALLBy C2=A;11B1 1A 1B,

B4 B, Cy13A,,1B1 1|+ Ay 5By 4 C,,=A,1B1,+A, 5B,

0+A;1B11 i 0+A;,1B1,1
O+A1,1B1,2 i 0+A2,1Bl,2
A1 i Az
B11 i Bi1
B1, ! Bi.

late result

cl=_mm_add pd(cl,_ mm_mul_pd(a,bl));
c2=_mm_add_pd(c2,_ mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in
Column order

~mm_load1_ pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

40

Example: 2 x 2 Matrix Multiply

e First iteration intermec

0+A;1B11 i 0+A;,1B1,1
O+A1,1B1,2 i 0+A2,1Bl,2
A LAy
B> i Bs1
B, i Bz

B1,1 Bl,2 C1,1= A1,131,1

C,=A11B1 1A 1B,

B2,1 Bz,z C2,1: AZ,IBl,l

iate result

C,,=A,1B1 %A, 5B,),

cl=_mm_add pd(cl,_ mm_mul_pd(a,bl));
c2=_mm_add_pd(c2,_ mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in
Column order

~mm_load1_ pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

41

Example: 2 x 2 Matrix Multiply

e Second iteration intermediate result
Ci1 Cs1
Ci [A11By1+A15By1 1Ay 1By 1+A; 5B, s cl=_mm_add_pd(cl,_ mm_mul_pd(a,bl));

C, |Ay1B12t+A1,B;, i A, 1B1+A, 5B; 5 c2=_mm_add_pd(c2, mm_mul_pd(a,b2));
Cisy C,, SSE instructions first do parallel multiplies
' and then parallel adds in XMM registers

A A;, i A, _mm_load_pd: Stored in memory in
Column order

B, B, 1 ! B, 1 _mm_load1_pd: SSE instruction that loads
B 5 : 5 a double word and stores it in the high and
2 22 ! 2.2 low double words of the XMM register

(duplicates value in both halves of XMM)

42

Example: 2 x 2 Matrix Multiply
(Part 1 of 2)

#include <stdio.h>
// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in
// commentsasvl=[a [b]

// where v1 is a variable of type __m128d and
// a, bare doubles

int main(void) {
// allocate A,B,C aligned on 16-byte boundaries
double A[4] __ attribute__ ((aligned (16)));
double B[4] __ attribute _ ((aligned (16)));
double C[4] __ attribute__ ((aligned (16)));
int Ida = 2;
inti=0;
// declare several 128-bit vector variables
. m128dcl,c2,a,bl,b2;

// Initialize A, B, C for example
J*¥A= (note column order!)
10
01
¥/
A[0] =1.0; A[1] =0.0; A[2] =0.0; A[3] =1.0;

/*B= (note column order!)
13

24
*/
B[0] = 1.0; B[1] =2.0; B[2] =3.0; B[3] =4.0;

/*C= (note column order!)
00

00
*/
C[0] =0.0; C[1] = 0.0; C[2] =0.0; C[3] =0.0;

43

Example: 2 x 2 Matrix Multiply

// used aligned loads to set
//cl=[c 11 [c 21]
cl=_mm_load pd(C+0*Ida);
//c2=[c 12 [c 22]
c2=_mm_load pd(C+1*Ida);

for(i=0;i<2;i++){
/*a=
i=0:[a_ 11| a 21]
i=1:[a 12 | a_22]
*/
a=_mm_load_pd(A+i*lda);
/*bl =
i=0:[b 11 [b _11]
i=1:[b 21| b 21]
*/
bl=_mm_loadl pd(B+i+0*Ida);
/*b2 =
i=0:[b 12 | b _12]
i=1:[b 22 | b_22]
*/
b2 =_mm_loadl_pd(B+i+1*Ida);

(Part 2 of 2)

/*cl=
i=0:[c 11+q 11*b 11 [c 21+qa 21*b_11]
i=1:[c 11+a 21*b 21 [c 21+qa _22*b_21]
*
/
cl=_mm_add_pd(cl, mm_mul _pd(a,bl));
/¥c2 =
i=0:[c 12+a 11*b 12 [c 22 +qa_21*b_12]
i=1:[c 12+a 21*b 22 [c 22 +qa_22*b_22]
*
/
c2=_mm_add_pd(c2,_ mm_mul_pd(a,b2));

// store c1,c2 back into C for completion
_mm_store_pd(C+0*Ida,cl);
_mm_store_pd(C+1*Ida,c2);

// print C

printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return O;

44

And in Conclusion, ...

Amdahl’s Law: Serial sections limit speedup
Flynn Taxonomy

Intel SSE SIMD Instructions

— Exploit data-level parallelism in loops

— One instruction fetch that operates on multiple
operands simultaneously

— 128-bit XMM registers
SSE Instructions in C

— Embed the SSE machine instructions directly into C
programs through use of intrinsics

— Achieve efficiency beyond that of optimizing compiler

