
CS 110
Computer Architecture 

Amdahl’s Law, Data-level Parallelism 
(Auxiliary Slides)

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/22s/


DGEMM Speed Comparison
• Double precision GEneral Matrix Multiply: DGEMM
• Intel Core i7-5557U CPU @ 3.10 GHz

– Instructions per clock (mul_pd) 2; Parallel multiplies per instruction 4
– => 24.8 GFLOPS

• Python:

2



C versus Python

3

240x!



Vectorized dgemm

• 4x faster
• Still << theoretical 25 GFLOPS

4



Loop Unrolling

N
GFlops

scalar avx unroll

32 1.30 4.56 12.95

160 1.30 5.47 19.70

480 1.32 5.27 14.50

960 0.91 3.64 6.91 5?



FPU versus Memory Access

• How many floating-point operations does matrix 
multiply take? 
– F = 2 x N3 (N3 multiplies, N3 adds) 

• How many memory load/stores? 
– M = 3 x N2 (for A, B, C) 

• Many more floating-point operations than 
memory accesses 
– q = F/M = 2/3 * N 
– Good, since arithmetic is faster than memory access 
– Let’s check the code …

6



But memory is accessed repeatedly

• q = F/M = 1.6! (1.25 loads and 2 floating-point operations)

7



Cache Blocking

• Where are the operands (A, B, C) stored? 
• What happens as N increases? 
• Idea: arrange that most accesses are to fast cache!

8

• Rearrange code to use values loaded in cache many times
• Only “few” accesses to slow main memory (DRAM) per 

floating point operation 
– -> throughput limited by FP hardware and cache, not slow DRAM

P&H, RISC-V edition p. 465



Blocking Matrix Multiply
(divide and conquer: sub-matrix multiplication)

9



Memory Access Blocking

10



Performance

• Intel i7-5557U theoretical limit (AVX2): 24.8 GFLOPS
• Cache:

– L3: 4 MB 16-way set associative shared cache
– L2: 2 x 256 KB 8-way set associative caches
– L1 Cache: 2 x 32KB 8-way set associative caches (2x: D & I)

• Maximum memory bandwidth (GB/s): 29.9

11

N Size
GFlops

scalar avx unroll blocking

32 3x 8KiB 1.30 4.56 12.95 13.80

160 3x 200KiB 1.30 5.47 19.70 21.79

480 3x 1.8MiB 1.32 5.27 14.50 20.17

960 3x 7.2MiB 0.91 3.64 6.91 15.82



Intel Math Kernel Library
• AVX programming too hard? Use MKL! 

– C/C++ and Fortran for Windows, Linux, macOS

• Knowledge about AVX still very helpful for using MKL (e.g. 
Cache blocking, …)

• MKL also for multi-threading…

12


