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Review
• Amdahl’s Law: Serial sections limit speedup
• Flynn Taxonomy
• Intel SSE SIMD Instructions
– Exploit data-level parallelism in loops
– One instruction fetch that operates on multiple 

operands simultaneously
– 128-bit XMM registers

• SSE Instructions in C
– Embed the SSE machine instructions directly into C 

programs through use of Intrinsics
– Achieve efficiency beyond that of optimizing compiler
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New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
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Simple Multiprocessor
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4 Core Processor with Graphics
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Multiprocessor Execution Model
• Each processor has its own PC and executes an 

independent stream of instructions (MIMD)
• Different processors can access the same memory space

– Processors can communicate via shared memory by 
storing/loading to/from common locations

• Two ways to use a multiprocessor:
1. Deliver high throughput for independent jobs via job-level 

parallelism
2. Improve the run time of a single program that has been 

specially crafted to run on a multiprocessor - a parallel-
processing program

Use term core for processor (“Multicore”) because 
“Multiprocessor Microprocessor” too redundant
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Transition to Multicore
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Current Multi-Core CPUs

• Intel Core i7: 4-10 real cores
• Intel Core i9: 10-18 real cores
• Intel Xeon Platinum: 16, 24, 26, 28 real cores
• AMD Epyc 2: 8 - 64 real cores
• Apple A13: 2 (high performance) + 4 (low power)  

Apple designed ARM CPUs
• Samsung S20 (Samsung Exynos 990): 1 + 3 + 4

1 x ARM Cortex-A77 2.85GHz 512kB L2$ 
3 x ARM Cortex-A77 2.4GHz 256kB L2$ 
4 x ARM Cortex-A55 1.8GHz 128kB L2$
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Parallelism the Only Path to Higher 
Performance

• Sequential processor performance not expected 
to increase much, and might go down

• If want apps with more capability, have to 
embrace parallel processing (SIMD and MIMD)

• In mobile systems, use multiple cores and GPUs
• In warehouse-scale computers, use multiple 

nodes, and all the MIMD/SIMD capability of each 
node
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Comparing Types of Parallelism…

• SIMD-type parallelism (Data Parallel) 
– A SIMD-favorable problem can map easily to a MIMD-

type fabric 
– SIMD-type fabrics generally offer a much higher 

throughput per $ 
• Much simpler control logic 
• Classic example: Graphics cards are massive supercomputers 

compared to the CPU: TeraFLOPS rather than gigaflops 
• MIMD-type parallelism (data-dependent 

Branches!) 
– A MIMD-favorable problem will not map easily to a 

SIMD-type fabric
– E.g.: some problems work well on GPU (e.g. Deep 

Learning). Others NOT (e.g. compiler) 10



Multiprocessors and You
• Only path to performance is parallelism
– Clock rates flat or declining
– CPI generally flat
– SIMD:

• 2011: 256b Intel & AMD
• 2016: 512b Intel & Fujitsu A64FX
• X: 1024b specified – no CPU planned yet
• GPUs: massive SIMD 

– MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, …
• Key challenge is to craft parallel programs that have high 

performance on multiprocessors as the number of 
processors increase – i.e., that scale
– Scheduling, load balancing, time for synchronization, 

overhead for communication
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Threads
• Thread: a sequential flow of instructions that 

performs some task
• Each thread has a PC + processor registers and 

accesses the shared memory
• Each processor provides one (or more) 

hardware threads that actively execute 
instructions

• Operating system multiplexes multiple 
software threads onto the available hardware 
threads
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Operating System Threads
Give the illusion of many active threads by time-

multiplexing software threads onto hardware 
threads

• Remove a software thread from a hardware 
thread by interrupting its execution and saving its 
registers and PC into memory
– Also if one thread is blocked waiting for network 

access or user input
• Can make a different software thread active by 

loading its registers into a hardware thread’s 
registers and jumping to its saved PC
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Hardware Multithreading 
(Hyperthreading)

• Basic idea: Processor resources are expensive and 
should not be left idle
– Long memory latency to memory on cache miss?

• Hardware switches threads to bring in other 
useful work while waiting for cache miss
– Cost of thread context switch must be much less than 

cache miss latency
• Put in redundant hardware so don’t have to save 

context on every thread switch:
– PC, Registers

• Attractive for apps with abundant TLP
– Commercial multi-user workloads
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Hardware Multithreading 
(Hyperthreading)
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imm

Hyper-threading (simplified)

• Duplicate all elements that hold the state (registers)
• Use the same CL blocks
• Use muxes to select which state to use every clock cycle
• => run 2 independent processes

– No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, …)

• Speedup?       
– No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable 

resources (e.g. wait for memory) 16
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100s of (Mostly Dead) 
Parallel Programming Languages
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OpenMP

• OpenMP is a language extension used for 
multi-threaded, shared-memory parallelism
– Compiler Directives (inserted into source code)
– Runtime Library Routines (called from your code)
– Environment Variables (set in your shell)

• Portable
• Standardized
• Easy to compile: cc –fopenmp name.c
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Shared Memory Model with Explicit 
Thread-based Parallelism

• Multiple threads in a shared memory 
environment, explicit programming model with 
full programmer control over parallelization

• Pros:
– Takes advantage of shared memory, programmer need 

not worry (that much) about data placement
– Compiler directives are simple and easy to use
– Legacy serial code does not need to be rewritten

• Cons:
– Code can only be run in shared memory environments
– Compiler must support OpenMP 
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OpenMP in CS110

• OpenMP is built on top of C, so you don’t have to 
learn a whole new programming language
– Make sure to add  #include <omp.h>
– Compile with flag:  gcc -fopenmp

– Mostly just a few lines of code to learn
• You will NOT become experts at OpenMP
– Use slides as reference, will learn to use in lab

• Key ideas:
– Shared vs. Private variables
– OpenMP directives for parallelization, work sharing, 

synchronization
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OpenMP Programming Model
• Fork - Join Model:

• OpenMP programs begin as single process (master thread) 
and executes sequentially until the first parallel region 
construct is encountered
– FORK:  Master thread then creates a team of parallel threads
– Statements in program that are enclosed by the parallel region 

construct are executed in parallel among the various threads
– JOIN: When the team threads complete the statements in the 

parallel region construct, they synchronize and terminate, 
leaving only the master thread
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OpenMP Extends C with Pragmas 

• Pragmas are a preprocessor mechanism C 
provides for language extensions

• Commonly implemented pragmas: 
structure packing, symbol aliasing, floating 
point exception modes (not covered)

• Good mechanism for OpenMP because 
compilers that don't recognize a pragma are 
supposed to ignore them
– Runs on sequential computer even with 

embedded pragmas
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parallel Pragma and Scope

• Basic OpenMP construct for parallelization:
#pragma omp parallel 
{

/* code goes here */
}
– Each thread runs a copy of code within the block
– Thread scheduling is non-deterministic

• OpenMP default is shared variables
– To make private, need to declare with pragma:
#pragma omp parallel private (x)
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This is annoying, but curly brace MUST go on separate 
line from #pragma



Thread Creation

• How many threads will OpenMP create?
• Defined by OMP_NUM_THREADS 

environment variable (or code procedure call)
– Set this variable to the maximum number of 

threads you want OpenMP to use 
– Usually equals the number of physical cores * 

number of threads/core in the underlying 
hardware on which the program is run
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What Kind of Threads?

• OpenMP threads are operating system (software) 
threads.

• OS will multiplex requested OpenMP threads onto 
available hardware threads.

• Hopefully each gets a real hardware thread to run on, 
so no OS-level time-multiplexing.

• But other tasks on machine can also use hardware 
threads!
– And you may want more threads than hardware if you 

have a lot of I/O so that while waiting for I/O other threads 
can run
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OMP_NUM_THREADS

• OpenMP intrinsic to set number of threads:
omp_set_num_threads(x);

• OpenMP intrinsic to get number of threads:
num_th = omp_get_num_threads();

• OpenMP intrinsic to get Thread ID number:
th_ID = omp_get_thread_num();
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Parallel Hello World
#include <stdio.h>
#include <omp.h>
int main () {
int nthreads, tid;

/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num(); /* get thread id */
printf("Hello World from thread = %d\n", tid);

if (tid == 0) {
/* Only master thread does this */
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master and terminate */

}
27



Results
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omp_set_num_threads
#include <stdio.h>
#include <omp.h>
int main () {
int nthreads, tid;
omp_set_num_threads(8); // Newly-added here.

/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num(); /* get thread id */
printf("Hello World from thread = %d\n", tid);

if (tid == 0) {
/* Only master thread does this */
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master and terminate */

} 29



omp_set_num_threads
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Data Races and Synchronization

• Two memory accesses form a data race if from 
different threads to same location, and at least 
one is a write, and they occur one after another

• If there is a data race, result of program can vary 
depending on chance (which thread first?)

• Avoid data races by synchronizing writing and 
reading to get deterministic behavior

• Synchronization done by user-level routines that 
rely on hardware synchronization instructions

• (more later)
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Lock Synchronization (1/2)

• Use a “Lock” to grant access to a region 
(critical section) so that only one thread can 
operate at a time
– Need all processors to be able to access the lock, 

so use a location in shared memory as the lock

• Processors read lock and either wait (if locked) 
or set lock and go into critical section
– 0 means lock is free / open / unlocked / lock off
– 1 means lock is set / closed / locked / lock on
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Lock Synchronization (2/2)

• Pseudocode:

Check lock

Set the lock

Critical section

(e.g. change shared variables)
Unset the lock
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Can loop/idle here
if locked



Possible Lock Implementation

• Lock (a.k.a. busy wait)
Get_lock:                  # s0 -> addr of lock

addiu t1,zero,1     # t1 = Locked value 
Loop:  lw t0,0(s0)      # load lock

bne t0,zero,Loop  # loop if locked

Lock:  sw t1,0(s0)      # Unlocked, so lock

• Unlock
Unlock:

sw zero,0(s0)

• Any problems with this?
34



Possible Lock Problem

• Thread 1
addiu t1,zero,1

Loop: lw t0,0(s0)

bne t0,zero,Loop

Lock: sw t1,0(s0)

• Thread 2

addiu t1,zero,1
Loop: lw t0,0(s0)

bne t0,zero,Loop

Lock: sw t1,0(s0)
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Time
Both threads think they have set the lock!  

Exclusive access not guaranteed!



Hardware Synchronization

• Hardware support required to prevent an 
interloper (another thread) from changing the 
value 
– Atomic read/write memory operation
– No other access to the location allowed between the 

read and write
• How best to implement in software?
– Single instr?  Atomic swap of register ↔memory
– Pair of instr?  One for read, one for write

• Needed even on uniprocessor systems 
– Interrupts can happen: can trigger thread context 

switches...
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RISC-V: Two solutions!

• Option 1: Read/Write Pairs
– Pair of instructions for “linked” read and write
– Load reserved and Store conditional
– No other access permitted between read and 

write
• Must use shared memory (multiprocessing)

• Option 2: Atomic Memory Operations
– Atomic swap of register ↔memory
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Read/Write Pairs

• Load reserved: lr rd, rs
– Load the word pointed to by rs into rd, and add a 

reservation 

• Store conditional: sc rd, rs1, rs2 
– Store the value in rs2 into the memory location 

pointed to by rs1, only if the reservation is still valid 
and set the status in rd
• Returns 0 (success) if location has not changed since the lr
• Returns nonzero (failure) if location has changed: 

Actual store will not take place
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Synchronization in RISC-V Example

• Atomic swap (to test/set lock variable) 
• Exchange contents of register and memory: 

s4 ↔ Mem(s1)

try: 
lr t1, s1 #load reserved 
sc t0, s1, s4 #store conditional
bne t0, x0, try #loop if sc fails 
add s4, x0, t1 #load value in s4
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sc would fail if another thread executes sc here



And in Conclusion, …
• Sequential software is slow software
– SIMD and MIMD only path to higher performance

• Multithreading increases utilization, Multicore 
more processors (MIMD)

• OpenMP as simple parallel extension to C
– Threads, Parallel for, private, critical sections, … 
– ≈ C: small so easy to learn, but not very high level 

and it’s easy to get into trouble
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