
CS 110
Computer Architecture

Thread-Level Parallelism (TLP)
and OpenMP Intro

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

School of Information Science and Technology

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

Review
• Amdahl’s Law: Serial sections limit speedup
• Flynn Taxonomy
• Intel SSE SIMD Instructions
– Exploit data-level parallelism in loops
– One instruction fetch that operates on multiple

operands simultaneously
– 128-bit XMM registers

• SSE Instructions in C
– Embed the SSE machine instructions directly into C

programs through use of Intrinsics
– Achieve efficiency beyond that of optimizing compiler

2

New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Katz”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates @ one time

• Programming Languages
3

Smart
Phone

Warehouse
Scale

Computer

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory (Cache)

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Simple Multiprocessor

4

Processor 0

Control

Datapath
PC

Registers
(ALU)

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers
(ALU)

Processor 1
Memory
Accesses

4 Core Processor with Graphics

5

Multiprocessor Execution Model
• Each processor has its own PC and executes an

independent stream of instructions (MIMD)
• Different processors can access the same memory space

– Processors can communicate via shared memory by
storing/loading to/from common locations

• Two ways to use a multiprocessor:
1. Deliver high throughput for independent jobs via job-level

parallelism
2. Improve the run time of a single program that has been

specially crafted to run on a multiprocessor - a parallel-
processing program

Use term core for processor (“Multicore”) because
“Multiprocessor Microprocessor” too redundant

6

Transition to Multicore

7

MIPS
R2000

Intel
Pentium Pro

Intel
Pentium 4

AMD
Phenom
(4 cores)

AMD Epic (32 cores)

Number
of Cores

Typical Power
(Watts)

Single Thread
App Performance
(SpecINT x 103)
Frequency
(MHz)

Parallel
App Performance

Transistors
(Thousands)

Current Multi-Core CPUs

• Intel Core i7: 4-10 real cores
• Intel Core i9: 10-18 real cores
• Intel Xeon Platinum: 16, 24, 26, 28 real cores
• AMD Epyc 2: 8 - 64 real cores
• Apple A13: 2 (high performance) + 4 (low power)

Apple designed ARM CPUs
• Samsung S20 (Samsung Exynos 990): 1 + 3 + 4

1 x ARM Cortex-A77 2.85GHz 512kB L2$
3 x ARM Cortex-A77 2.4GHz 256kB L2$
4 x ARM Cortex-A55 1.8GHz 128kB L2$

8

Parallelism the Only Path to Higher
Performance

• Sequential processor performance not expected
to increase much, and might go down

• If want apps with more capability, have to
embrace parallel processing (SIMD and MIMD)

• In mobile systems, use multiple cores and GPUs
• In warehouse-scale computers, use multiple

nodes, and all the MIMD/SIMD capability of each
node

9

Comparing Types of Parallelism…

• SIMD-type parallelism (Data Parallel)
– A SIMD-favorable problem can map easily to a MIMD-

type fabric
– SIMD-type fabrics generally offer a much higher

throughput per $
• Much simpler control logic
• Classic example: Graphics cards are massive supercomputers

compared to the CPU: TeraFLOPS rather than gigaflops
• MIMD-type parallelism (data-dependent

Branches!)
– A MIMD-favorable problem will not map easily to a

SIMD-type fabric
– E.g.: some problems work well on GPU (e.g. Deep

Learning). Others NOT (e.g. compiler) 10

Multiprocessors and You
• Only path to performance is parallelism
– Clock rates flat or declining
– CPI generally flat
– SIMD:

• 2011: 256b Intel & AMD
• 2016: 512b Intel & Fujitsu A64FX
• X: 1024b specified – no CPU planned yet
• GPUs: massive SIMD

– MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, …
• Key challenge is to craft parallel programs that have high

performance on multiprocessors as the number of
processors increase – i.e., that scale
– Scheduling, load balancing, time for synchronization,

overhead for communication
11

Threads
• Thread: a sequential flow of instructions that

performs some task
• Each thread has a PC + processor registers and

accesses the shared memory
• Each processor provides one (or more)

hardware threads that actively execute
instructions

• Operating system multiplexes multiple
software threads onto the available hardware
threads

12

Operating System Threads
Give the illusion of many active threads by time-

multiplexing software threads onto hardware
threads

• Remove a software thread from a hardware
thread by interrupting its execution and saving its
registers and PC into memory
– Also if one thread is blocked waiting for network

access or user input
• Can make a different software thread active by

loading its registers into a hardware thread’s
registers and jumping to its saved PC

13

Hardware Multithreading
(Hyperthreading)

• Basic idea: Processor resources are expensive and
should not be left idle
– Long memory latency to memory on cache miss?

• Hardware switches threads to bring in other
useful work while waiting for cache miss
– Cost of thread context switch must be much less than

cache miss latency
• Put in redundant hardware so don’t have to save

context on every thread switch:
– PC, Registers

• Attractive for apps with abundant TLP
– Commercial multi-user workloads

14

Hardware Multithreading
(Hyperthreading)

15

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor

Control

Datapath
PC 0

Registers 0

(ALU)

PC 1

Registers 1

• Two copies of PC and Registers inside
processor hardware
• Looks like two processors to software
(hardware thread 0, hardware thread 1)
• Control logic decides which instructions
to issue next – can be from different
threads!

imm

Hyper-threading (simplified)

• Duplicate all elements that hold the state (registers)
• Use the same CL blocks
• Use muxes to select which state to use every clock cycle
• => run 2 independent processes

– No Hazards: registers different; different control flow; memory different;
Threads: memory hazard should be solved by software (locking, mutex, …)

• Speedup?
– No obvious speedup; Complex pipeline: make use of CL blocks in case of unavailable

resources (e.g. wait for memory) 16

in
st

ru
ct

io
n

m
em

or
y

+4

re
gi

st
er

s

ALU

Da
ta

m
em

or
y

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

re
gi

st
er

s

PC
PC

rs2
rs1
rd

100s of (Mostly Dead)
Parallel Programming Languages

17

ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join Oz
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALSA
APL E LabVIEW Scala
Axum Eiffel Limbo SISAL
Chapel Erlang Linda SR
Cilk Fortan 90 MultiLisp Stackless Python
Clean Go Modula-3 SuperPascal
Clojure Io Occam VHDL
Concurrent C Janus occam-π XC

OpenMP

• OpenMP is a language extension used for
multi-threaded, shared-memory parallelism
– Compiler Directives (inserted into source code)
– Runtime Library Routines (called from your code)
– Environment Variables (set in your shell)

• Portable
• Standardized
• Easy to compile: cc –fopenmp name.c

18

Shared Memory Model with Explicit
Thread-based Parallelism

• Multiple threads in a shared memory
environment, explicit programming model with
full programmer control over parallelization

• Pros:
– Takes advantage of shared memory, programmer need

not worry (that much) about data placement
– Compiler directives are simple and easy to use
– Legacy serial code does not need to be rewritten

• Cons:
– Code can only be run in shared memory environments
– Compiler must support OpenMP

19

OpenMP in CS110

• OpenMP is built on top of C, so you don’t have to
learn a whole new programming language
– Make sure to add #include <omp.h>
– Compile with flag: gcc -fopenmp

– Mostly just a few lines of code to learn
• You will NOT become experts at OpenMP
– Use slides as reference, will learn to use in lab

• Key ideas:
– Shared vs. Private variables
– OpenMP directives for parallelization, work sharing,

synchronization
20

OpenMP Programming Model
• Fork - Join Model:

• OpenMP programs begin as single process (master thread)
and executes sequentially until the first parallel region
construct is encountered
– FORK: Master thread then creates a team of parallel threads
– Statements in program that are enclosed by the parallel region

construct are executed in parallel among the various threads
– JOIN: When the team threads complete the statements in the

parallel region construct, they synchronize and terminate,
leaving only the master thread

21

OpenMP Extends C with Pragmas

• Pragmas are a preprocessor mechanism C
provides for language extensions

• Commonly implemented pragmas:
structure packing, symbol aliasing, floating
point exception modes (not covered)

• Good mechanism for OpenMP because
compilers that don't recognize a pragma are
supposed to ignore them
– Runs on sequential computer even with

embedded pragmas
22

parallel Pragma and Scope

• Basic OpenMP construct for parallelization:
#pragma omp parallel
{

/* code goes here */
}
– Each thread runs a copy of code within the block
– Thread scheduling is non-deterministic

• OpenMP default is shared variables
– To make private, need to declare with pragma:
#pragma omp parallel private (x)

23

This is annoying, but curly brace MUST go on separate
line from #pragma

Thread Creation

• How many threads will OpenMP create?
• Defined by OMP_NUM_THREADS

environment variable (or code procedure call)
– Set this variable to the maximum number of

threads you want OpenMP to use
– Usually equals the number of physical cores *

number of threads/core in the underlying
hardware on which the program is run

24

What Kind of Threads?

• OpenMP threads are operating system (software)
threads.

• OS will multiplex requested OpenMP threads onto
available hardware threads.

• Hopefully each gets a real hardware thread to run on,
so no OS-level time-multiplexing.

• But other tasks on machine can also use hardware
threads!
– And you may want more threads than hardware if you

have a lot of I/O so that while waiting for I/O other threads
can run

25

OMP_NUM_THREADS

• OpenMP intrinsic to set number of threads:
omp_set_num_threads(x);

• OpenMP intrinsic to get number of threads:
num_th = omp_get_num_threads();

• OpenMP intrinsic to get Thread ID number:
th_ID = omp_get_thread_num();

26

Parallel Hello World
#include <stdio.h>
#include <omp.h>
int main () {
int nthreads, tid;

/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num(); /* get thread id */
printf("Hello World from thread = %d\n", tid);

if (tid == 0) {
/* Only master thread does this */
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master and terminate */

}
27

Results

28

omp_set_num_threads
#include <stdio.h>
#include <omp.h>
int main () {
int nthreads, tid;
omp_set_num_threads(8); // Newly-added here.

/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num(); /* get thread id */
printf("Hello World from thread = %d\n", tid);

if (tid == 0) {
/* Only master thread does this */
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master and terminate */

} 29

omp_set_num_threads

30

Data Races and Synchronization

• Two memory accesses form a data race if from
different threads to same location, and at least
one is a write, and they occur one after another

• If there is a data race, result of program can vary
depending on chance (which thread first?)

• Avoid data races by synchronizing writing and
reading to get deterministic behavior

• Synchronization done by user-level routines that
rely on hardware synchronization instructions

• (more later)

31

Lock Synchronization (1/2)

• Use a “Lock” to grant access to a region
(critical section) so that only one thread can
operate at a time
– Need all processors to be able to access the lock,

so use a location in shared memory as the lock

• Processors read lock and either wait (if locked)
or set lock and go into critical section
– 0 means lock is free / open / unlocked / lock off
– 1 means lock is set / closed / locked / lock on

32

Lock Synchronization (2/2)

• Pseudocode:

Check lock

Set the lock

Critical section

(e.g. change shared variables)
Unset the lock

33

Can loop/idle here
if locked

Possible Lock Implementation

• Lock (a.k.a. busy wait)
Get_lock: # s0 -> addr of lock

addiu t1,zero,1 # t1 = Locked value
Loop: lw t0,0(s0) # load lock

bne t0,zero,Loop # loop if locked

Lock: sw t1,0(s0) # Unlocked, so lock

• Unlock
Unlock:

sw zero,0(s0)

• Any problems with this?
34

Possible Lock Problem

• Thread 1
addiu t1,zero,1

Loop: lw t0,0(s0)

bne t0,zero,Loop

Lock: sw t1,0(s0)

• Thread 2

addiu t1,zero,1
Loop: lw t0,0(s0)

bne t0,zero,Loop

Lock: sw t1,0(s0)

35

Time
Both threads think they have set the lock!

Exclusive access not guaranteed!

Hardware Synchronization

• Hardware support required to prevent an
interloper (another thread) from changing the
value
– Atomic read/write memory operation
– No other access to the location allowed between the

read and write
• How best to implement in software?
– Single instr? Atomic swap of register ↔memory
– Pair of instr? One for read, one for write

• Needed even on uniprocessor systems
– Interrupts can happen: can trigger thread context

switches...
36

RISC-V: Two solutions!

• Option 1: Read/Write Pairs
– Pair of instructions for “linked” read and write
– Load reserved and Store conditional
– No other access permitted between read and

write
• Must use shared memory (multiprocessing)

• Option 2: Atomic Memory Operations
– Atomic swap of register ↔memory

37

Read/Write Pairs

• Load reserved: lr rd, rs
– Load the word pointed to by rs into rd, and add a

reservation

• Store conditional: sc rd, rs1, rs2
– Store the value in rs2 into the memory location

pointed to by rs1, only if the reservation is still valid
and set the status in rd
• Returns 0 (success) if location has not changed since the lr
• Returns nonzero (failure) if location has changed:

Actual store will not take place

38

Synchronization in RISC-V Example

• Atomic swap (to test/set lock variable)
• Exchange contents of register and memory:

s4 ↔ Mem(s1)

try:
lr t1, s1 #load reserved
sc t0, s1, s4 #store conditional
bne t0, x0, try #loop if sc fails
add s4, x0, t1 #load value in s4

39

sc would fail if another thread executes sc here

And in Conclusion, …
• Sequential software is slow software
– SIMD and MIMD only path to higher performance

• Multithreading increases utilization, Multicore
more processors (MIMD)

• OpenMP as simple parallel extension to C
– Threads, Parallel for, private, critical sections, …
– ≈ C: small so easy to learn, but not very high level

and it’s easy to get into trouble

46

