
CS 110
Computer Architecture

Sync & OpenMP

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

School of Information Science and Technology

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

Review: TLP, OpenMP, and Sync

• Multicore
– Hyperthreading

• OpenMP
– Shared memory
– Language extension

• Lock for synchronization
– Data race
• At least one write operation

2

Possible Lock Implementation

• Lock (a.k.a. busy wait)
Get_lock: # s0 -> addr of lock

addiu t1,zero,1 # t1 = Locked value
Loop: lw t0,0(s0) # load lock

bne t0,zero,Loop # loop if locked

Lock: sw t1,0(s0) # Unlocked, so lock

• Unlock
Unlock:

sw zero,0(s0)

• Any problems with this?
3

Possible Lock Problem

• Thread 1
addiu t1,zero,1

Loop: lw t0,0(s0)

bne t0,zero,Loop

Lock: sw t1,0(s0)

• Thread 2

addiu t1,zero,1
Loop: lw t0,0(s0)

bne t0,zero,Loop

Lock: sw t1,0(s0)

4

Time
Both threads think they have set the lock!

Exclusive access not guaranteed!

RISC-V: Two solutions!

• Option 1: Read/Write Pairs
– Pair of instructions for “linked” read and write
– Load reserved and Store conditional
– No other access permitted between read and

write
• Must use shared memory (multiprocessing)

• Option 2: Atomic Memory Operations
– Atomic swap of register ↔memory

5

Read/Write Pairs

• Load reserved: lr rd, rs
– Load the word pointed to by rs into rd, and add a

reservation

• Store conditional: sc rd, rs1, rs2
– Store the value in rs2 into the memory location

pointed to by rs1, only if the reservation is still valid
and set the status in rd
• Returns 0 (success) if location has not changed since the lr
• Returns nonzero (failure) if location has changed:

Actual store will not take place

6

Synchronization in RISC-V Example

• Atomic swap (to test/set lock variable)
• Exchange contents of register and memory:

s4 ↔ Mem(s1)

try:
lr t1, s1 #load reserved
sc t0, s1, s4 #store conditional
bne t0, x0, try #loop if sc fails
add s4, x0, t1 #load value in s4

7

sc would fail if another thread executes sc here

Test-and-Set

• In a single atomic operation:
– Test to see if a memory location is set

(contains a 1)
– Set it (to 1) if it isn’t (it contained a zero

when tested)
• Otherwise indicate that the Set failed, so the

program can try again
– While accessing, no other instruction

can modify the memory location,
including other Test-and-Set instructions

• Useful for implementing lock
operations

8

Test-and-Set in RSIC-V using lr/sc
• Example: RISC-V sequence for implementing

a T&S at (s1)

li t2, 1
Try:

lr t1, s1
bne t1, x0, Try
sc t0, s1, t2
bne t0, x0, Try

Locked:
critical section

Unlock:
sw x0,0(s1)

9

Option 2: RISC-V Atomic Memory
Operations (AMOs)

• Encoded with an R-type instruction format
– swap, add, and, or, xor, max, min
– AMOSWAP rd, rs2, (rs1)
– AMOADD rd, rs2, (rs1)

• Take the value pointed to by rs1
– Load it into rd
– Apply the operation to that value with the contents in rs2

• If rs2==rd, use the old value in rd
– Store the result back to where rs1 is pointed to

• This allows atomic swap as a primitive
– It also allows “reduction operations” that are common to

be efficiently implemented

10

aq(acquire) and rl(release) to insure in order execution

rd = *rs1, *rs1 = rs2

RISC-V Critical Section

• Assume that the lock is in memory location stored in
register a0

• The lock is “set” if it is 1; it is “free” if it is 0 (it’s initial
value)

li t0, 1 # Get 1 to set lock
Try: amoswap.w.aq t1, t0, (a0) # t1 gets old lock value

while we set it to 1
bnez t1, Try # if it was already 1, another

thread has the lock,
so we need to try again

… critical section goes here …
amoswap.w.rl x0, x0, (a0) # store 0 in lock to release

11

Lock Synchronization

Broken Synchronization

while (lock != 0) ;

lock = 1;

// critical section

lock = 0;

Fix (lock is at location (a0))

li t0, 1
Try: amoswap.w.aq t1, t0, (a0)

bnez t1, Try
Locked:

critical section

Unlock:
amoswap.w.rl x0, x0, (a0)

12

How to use
• Don’t implement yourself!

• Use according library – e.g.:
– pthread
– C++:

• std::thread C++11
• std::jthread C++20
• std::mutex; std::lock_guard; std::scoped_lock; std::shared_lock
• std::condition_variable; std::counting_semaphore; std::latch;

std::barrier
• std::promise; std::future

– Qt QThread
– OpenMP

13

https://en.cppreference.com/w/cpp/thread

https://en.cppreference.com/w/cpp/thread

OpenMP Programming Model - Review

• Fork - Join Model:

• OpenMP programs begin as single process (master thread)
and executes sequentially until the first parallel region
construct is encountered
– FORK: Master thread then creates a team of parallel threads
– Statements in program that are enclosed by the parallel region

construct are executed in parallel among the various threads
– JOIN: When the team of threads complete the statements in

the parallel region construct, they synchronize and terminate,
leaving only the master thread

14

parallel Pragma and Scope -
Review

• Basic OpenMP construct for parallelization:
#pragma omp parallel
{

/* code goes here */
}
– Each thread runs a copy of code within the block
– Thread scheduling is non-deterministic

• OpenMP default is shared variables
– To make private, need to declare with pragma:
#pragma omp parallel private (x)

15

OpenMP Directives (Work-Sharing)

16

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

Parallel Statement Shorthand

#pragma omp parallel

{
#pragma omp for
for(i=0; i<len; i++) { … }

}

can be shortened to:
#pragma omp parallel for
for(i=0; i<len; i++) { … }

• Also works for sections
17

This is the only
directive in the
parallel section

Building Block: for loop

for (i=0; i<max; i++) zero[i] = 0;

• Breaks for loop into chunks, and allocate each to a
separate thread
– e.g. if max = 100 with 2 threads:

assign 0-49 to thread 0, and 50-99 to thread 1
• Must have relatively simple “shape” for an OpenMP-

aware compiler to be able to parallelize it
– Necessary for the run-time system to be able to determine

how many of the loop iterations to assign to each thread
• No premature exits from the loop allowed
– i.e. No break, return, exit, goto statements

18

In general,
don’t jump
outside of any
pragma block

Parallel for pragma
#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = 0;

• Master thread creates additional threads,
each with a separate execution context

• All variables declared outside for loop are
shared by default, except for loop index
which is private per thread (Why?)

• Implicit “barrier” synchronization at end of
for loop

• Divide index regions sequentially per thread
– Thread 0 gets 0, 1, …, (max/n)-1;
– Thread 1 gets max/n, (max/n)+1, …, 2*(max/n)-1

19

OpenMP Example

$ gcc-5 -fopenmp for.c;./a.out
% clang -Xpreprocessor -fopenmp -
lomp -o for for.c; ./for
thread 0, i = 0
thread 1, i = 3
thread 2, i = 6
thread 3, i = 8
thread 0, i = 1
thread 1, i = 4
thread 2, i = 7
thread 3, i = 9
thread 0, i = 2
thread 1, i = 5
00 01 02 13 14 15 26 27 38 39

20

The call to find the maximum number of threads that are available to do work is omp_get_max_threads()
(from omp.h).

OpenMP Timing

• Elapsed wall clock time:
double omp_get_wtime(void);
– Returns elapsed wall clock time in seconds
– Time is measured per thread, no guarantee can be

made that two distinct threads measure the same
time

– Time is measured from “some time in the past,” so
subtract results of two calls to omp_get_wtime
to get elapsed time

21

Matrix Multiply in OpenMP
// C[M][N] = A[M][P] × B[P][N]
start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, j, k)
for (i=0; i<M; i++){
for (j=0; j<N; j++){
tmp = 0.0;
for(k=0; k<P; k++){
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += A[i][k] * B[k][j];

}
C[i][j] = tmp;

}
}

run_time = omp_get_wtime() - start_time;

Outer loop spread across N
threads;
inner loops inside a single
thread

22

Notes on Matrix Multiply Example

• More performance optimizations available:
– Higher compiler optimization (-O2, -O3) to reduce

number of instructions executed
– Cache blocking to improve memory performance
– Using SIMD SSE instructions to raise floating point

computation rate (DLP)

23

Example: Calculating π

24

Sequential p

pi = 3.142425985001

• Resembles p, but not very accurate
• Let’s increase num_steps and parallelize 25

Parallelize (1) …

• Problem: each thread
needs access to the
shared variable sum

• Code runs sequentially
…

26

#include <omp.h>

Parallelize (2) …

sum[0] sum[1]

1. Compute
sum[0]and sum[1]

in parallel

2. Compute
sum = sum[0] + sum[1]

sequentially

27

Parallel p--Trial Run

i = 1, id = 1
i = 0, id = 0
i = 2, id = 2
i = 3, id = 3
i = 5, id = 1
i = 4, id = 0
i = 6, id = 2
i = 7, id = 3
i = 9, id = 1
i = 8, id = 0
pi = 3.142425985001

28

Scale up: num_steps = 106

pi =
3.141592653590

You verify how many
digits are correct …

29

Can We Parallelize Computing sum?

Summation inside parallel section
• Insignificant speedup in this

example, but …
• pi = 3.138450662641
• Wrong! And value changes

between runs?!
• What’s going on?

Always looking for ways to
beat Amdahl’s Law …

30

Question
What are the possible
values of *(x11) after
executing this code by two
concurrent threads?

*(x11) = 2020
lw x12,0(x11)
addi x12,x12,1
sw x12,0(x11)

Values of *(x11) ?
A: 2020
B: 2021
C: 2022
D: 2020 or 2021
E: 2021 or 2022
F: 2020 or 2022
G: 2020 or 2021 or 2022
H: None of these

31

Thread 0 Thread 1

x12ß2020

x12ß2021

*(x11)ß2021

x12ß2021

x12ß2022

*(x11)ß2022

Case 0

Thread 0 Thread 1

x12ß2020

x12ß2021

*(x11)ß2021

x12ß2020

x12ß2021

*(x11)ß2021

Case 1

• Operation is really
pi = pi + sum[id]

• What if >1 threads reads current
(same) value of pi, computes the
sum, stores the result back to pi?

• Each processor reads same
intermediate value of pi!

• Result depends on who gets there
when
• A “race” à result is not

deterministic

What’s Going On?

32

Can you resolve such a
problem?

OpenMP Reduction
double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX; // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that, 1 or more variables that are private

to each thread, are subject of reduction operation at end of
parallel region:
reduction(operation:var) where
– Operation: operator to perform on the variables (var) at the end of the parallel

region : +, *, -, &, ^, |, &&, or ||.
– Var: One or more variables on which to perform scalar reduction.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX;

33

parallel for, reduction
#include <omp.h>
#include <stdio.h>
static long num_steps = 100000;
double step;
void main (){

int i; double x, pi, sum = 0.0;
step = 1.0 / (double)num_steps;

#pragma omp parallel for private(x) reduction(+:sum)
for (i=1; i<= num_steps; i++){

x = (i - 0.5) * step;
sum = sum + 4.0 / (1.0+x*x);

}
pi = sum * step;
printf ("pi = %6.12f\n", pi);

}
34

More on OpenMP

35

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

More on OpenMP

36

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int i = 0;
omp_set_num_threads(4); // Maximum 4 threads
#pragma omp parallel private(i)
{

printf("thread %d start\n", omp_get_thread_num());

#pragma omp single
{

for (i = 0; i < 6; i++)
{

printf("Single, thread %d execute i = %d\n",
omp_get_thread_num(), i);

}
}

}
}

single: code block executed by
one thread only;
Other threads will wait;
Useful for thread-unsafe code;
Useful for I/O operations.

More on OpenMP

37

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int i = 0;
omp_set_num_threads(4); // Maximum 4 threads
#pragma omp parallel private(i)
{

printf("thread %d start\n", omp_get_thread_num());

#pragma omp single
{

for (i = 0; i < 6; i++)
{

printf("Single, thread %d execute i = %d\n",
omp_get_thread_num(), i);

}
}

}
}

single: code block executed by
one thread only;
Other threads will wait;
Useful for thread-unsafe code;
Useful for I/O operations.

More on OpenMP

38

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int i = 0;
omp_set_num_threads(4); // Maximum 4 threads
#pragma omp parallel private(i)
{

printf("thread %d start\n", omp_get_thread_num());

#pragma omp master
{

for (i = 0; i < 6; i++)
{

printf(“Master, thread %d execute i = %d\n",
omp_get_thread_num(), i);

}
}
printf(“Outside master, thread %d execute i = %d\n",

omp_get_thread_num(), i);

}
}

master Directive ensures that only
the master threads executes
instructions in the block. There is
no implicit barrier, so other threads
will not wait for master to finish

More on OpenMP

39

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int i = 0;
omp_set_num_threads(4); // Maximum 4 threads
#pragma omp parallel private(i)
{

printf("thread %d start\n", omp_get_thread_num());

#pragma omp master
{

for (i = 0; i < 6; i++)
{

printf(“Master, thread %d execute i = %d\n",
omp_get_thread_num(), i);

}
}
printf(“Outside master, thread %d execute i = %d\n",

omp_get_thread_num(), i);

}
}

master Directive ensures that only
the master threads executes
instructions in the block. There is
no implicit barrier, so other threads
will not wait for master to finish

More on OpenMP

40

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

There are more, like critical, barrier, atomic, master, … Try them by yourself.

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int i = 0;
omp_set_num_threads(4); // Maximum 4 threads
#pragma omp parallel private(i)
{

printf("thread %d start\n", omp_get_thread_num());

#pragma omp master
{

for (i = 0; i < 6; i++)
{

printf(“Master, thread %d execute i = %d\n",
omp_get_thread_num(), i);

}
}
printf(“Outside master, thread %d execute i = %d\n",

omp_get_thread_num(), i);

}
}

master Directive ensures that only
the master threads executes
instructions in the block. There is
no implicit barrier, so other threads
will not wait for master to finish

And in Conclusion, …
• Multiprocessor/Multicore uses Shared Memory
– Cache coherency implements shared memory even

with multiple copies in multiple caches
– False sharing a concern; watch block size!

• To be covered with “Advanced caches” :-)

• OpenMP as simple parallel extension to C
– Threads, Parallel for, private, reductions …
– ≈ C: small so easy to learn, but not very high level and

it’s easy to get into trouble
– Much we didn’t cover – including other

synchronization mechanisms (locks, etc.)
41

