
CS 110
Computer Architecture

An Introduction to Operating Systems

Instructors:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/22s

Review: OpenMP and Multi-threading

• Architectural support for synchronization
– Load reserved/store conditional
– Atomic memory operation (AMO)

• OpenMP
– An approach for programming with multi-threads
– Shared memory
– Language extension

• Pragma, directives, reduction, etc. for multi-threading programs

2

Memory

CA so far…

3

CPU

Caches

RISC-V Assembly

C Programs

•  Four##words/block,#cache#size#=#1K#words#
#!

MulWwordKBlock#DirectKMapped#Cache#

8#

Index#

Data#
Index# Tag#Valid#

0#

1#

2#

.#

.#

.#

253#

254#

255#

31#30###.#.#.#################13#12##11####.#.#.####4##3##2##1##0#
Byte#

offset#

20#

20#Tag#

Hit# Data#

32#

Block#offset#

What!kind!of!locality!are!we!taking!advantage!of?!
31#

#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1

Project 2

So how is this any different?

4

Keyboard

Screen

Storage

Memory

Adding I/O

5

CPU

Caches

RISC-V Assembly

C Programs

•  Four##words/block,#cache#size#=#1K#words#
#!

MulWwordKBlock#DirectKMapped#Cache#

8#

Index#

Data#
Index# Tag#Valid#

0#

1#

2#

.#

.#

.#

253#

254#

255#

31#30###.#.#.#################13#12##11####.#.#.####4##3##2##1##0#
Byte#

offset#

20#

20#Tag#

Hit# Data#

32#

Block#offset#

What!kind!of!locality!are!we!taking!advantage!of?!
31#

#include <stdlib.h>

int fib(int n) {
return
fib(n-1) +
fib(n-2);

}

.foo
lw t0, 4(s1)
addi t1, t0, 3
beq t1, t2, foo
nop

Project 1

Project 2

I/O (Input/Output)

Screen Keyboard Storage

CPU+$s, etc.
Memory

Raspberry Pi

6

Storage I/O
(Micro SD Card)

Serial I/O
(USB)

Network I/O
(Ethernet)Screen I/O

(HDMI)

It’s a real computer!

7

But wait…

8

• That’s not the same! Our CS 110 experience isn’t like
the real world.

• When I switch on my computer, I get this:

Yes, but that’s just software! The Operating System (OS)

Well, “just software”

• The biggest piece of software on your machine?
• How many lines of code? These are guesstimates:

9

Year Kernel Version Size of zipped file

1994 linux-1.0.tar.gz 1MB

1996 linux-2.0.tar.gz 6MB

2001 linux-2.4.0.tar.gz 23MB

2003 linux-2.6.0.tar.gz 40MB

2011 linux-3.0.tar.gz 92MB

2015 linux-4.0.tar.gz 118MB

2019 linux-5.0.tar.gz 155MB

Apr 2020 linux-5.6.8.tar.gz 166MB

May 2021 linux-5.12.3.tar.gz 179MB

May 2022 linux-5.17.5.tar.gz 189MB

1185MB

All 7 fictions in txt format
zipped to be 2.5MB

Say No to Pirated Products
(拒绝盗版)

What does the OS do?

10

• One of the first things that runs when your computer
starts (right after firmware/ bootloader)

• Loads, runs and manages programs:
– Multiple programs at the same time (time-sharing)
– Isolate programs from each other (isolation)
– Multiplex resources between applications (e.g., devices)

• Services: File System, Network stack, printer, etc.
• Finds and controls all the devices in the machine in a

general way (using “device drivers”)

What does the core of OS need to do?

11

• Provide interaction with the outside world
– Interact with “devices”

• Disk, screen, keyboard, mouse, network, etc.

• Provide isolation between running programs
(processes)
– Each program runs in its own little world

• Virtual memory

Agenda

13

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing

What happens at boot?

14

• When the computer switches on, the CPU executes
instructions from some start address (stored in Flash
ROM)

• Bootstrapping:
https://en.wikipedia.org/wiki/Bootstrapping

CPU

PC = 0x2000 (some default value) Address Space

0x2000:
addi t0, zero, 0x1000
lw t0, 4(t0)
…

(Code to copy firmware into
regular memory and jump
into it)

Memory mapped

https://en.wikipedia.org/wiki/Bootstrapping

What happens at boot?

15

• When the computer switches on, the CPU executes
instructions from some start address (stored in Flash
ROM)

1. BIOS: Find a storage
device and load first
sector (block of data)

2. Bootloader (stored on, e.g.,
disk): Load the OS kernel from
disk into a location in memory
and jump into it.

3. OS Boot: Initialize
services, drivers, etc.

4. Init: Launch an application
that waits for input in loop
(e.g., Terminal/Desktop/...

UEFI
Unified Extensible Firmware Interface
• Successor of BIOS
• Much more powerful and complex
• E.g. graphics menu; networking;

browsers
• All modern Intel & AMD

based computer use UEFI

16

Agenda

17

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and traps
• Application, Multiprogramming/time-sharing

How to interact with devices?

18

• Assume a program running on a CPU. How does it
interact with the outside world?

• Need I/O interface for Keyboards,
Network, Mouse, Screen, etc.
– Connect to many types of devices
– Control these devices, respond

to them, and transfer data
– Present them to user

programs so
they are useful

cntrl reg.
data reg.

Operating System

Processor Mem

PCI Bus

SCSI Bus

Instruction Set Architecture for I/O

• What must the processor do for I/O?
– Input: reads a sequence of bytes
– Output: writes a sequence of bytes

• Interface options
– Some processors have special input/output instructions
– Memory Mapped Input/Output (used by RISC-V):

• Use normal load/store instructions, e.g., lw/sw, for input/output
– In small pieces

• A portion of the address space dedicated to IO
• I/O device registers there (no memory there)

19

Memory Mapped I/O

• Certain addresses are not regular memory
• Instead, they correspond to registers in I/O devices

cntrl reg.
data reg.

0

0xFFFFFFFF

0xFFFF0000

address

20

Processor-I/O Speed Mismatch

• 1GHz microprocessor can execute 1 billion load or
store instructions per second, or 4,000,000 KB/s data
rate
• I/O data rates range from 0.01 KB/s to 1,250,000 KB/s

• Input: device may not be ready to send data as fast as
the processor loads it
• Also, might be waiting for human to act

• Output: device not be ready to accept data as fast as
processor stores it

• What to do?

21

Processor Checks Status before Acting

• Path to a device generally has 2 registers:
• Control Register, says it’s OK to read/write (I/O ready) [think

of a flagman on a road]
• Data Register, contains data

• Processor reads from Control Register in loop, waiting
for device to set Ready bit in Control reg
(0 => 1) to say it’s OK

• Processor then loads from (input), or writes to (output)
data register
• Load from or Store into Data Register resets Ready bit

(1 => 0) of Control Register
• This is called “Polling”

22

• Input: Read from keyboard into a0
li t0, 0xffff0000 #ffff0000

Waitloop: lw t1, 0(t0) #control
andi t1, t1,0x1
beq t1, zero, Waitloop
lw a0, 4(t0) #data

• Output: Write to display from a0
li t0, 0xffff0000 #ffff0000

Waitloop: lw t1, 8(t0) #control
andi t1, t1,0x1
beq t1, zero, Waitloop
sw a0, 12(t0) #data

“Ready” bit is from processor’s point of view!

I/O Example (polling)

23

Cost of Polling?

• Assume for a processor with a 1GHz clock it takes
400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning).
Determine % of processor time for polling
– Mouse: polled 30 times/sec so as not to miss user

movement

24

% Processor time to poll
• Mouse Polling [clocks/sec]

= 30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

• % Processor for polling:
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
=> Polling mouse little impact on processor

25

What is the alternative to polling?

• Wasteful to have processor spend most of its time
“spin-waiting” for I/O to be ready

• Would like an unplanned procedure call that would
be invoked only when I/O device is ready

• Solution: use exception mechanism to help I/O.
– Interrupt program when I/O ready, return when done with

data transfer

• Allow to register (post) interrupt handlers: functions
that are called when an interrupt is triggered

26

Interrupt-driven I/O

Label: sll t1,s3,2
addu t1,t1,s5

lw t1,0(t1)
add s1,s1,t1
addu s3,s3,s4
bne s3,s2,abel

Stack Frame

Stack Frame

Stack Frame

handler: li t0, 0xffff0000
lw t1, 0(t0)
andi t1, t1,0x1
lw a0, 4(t0)
sw t1, 8(t0)
ret

Interrupt(SPI0)

CPU Interrupt Table

SPI0 handler

… …

Handler Execution
1. Incoming interrupt suspends instruction stream
2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU
3. Perform a jal to the handler (needs to store any state)
4. Handler run on current stack and returns on finish

(thread doesn’t notice that a handler was run)

27

Terminology
In CA (you’ll see other definitions in use elsewhere):
• Interrupt – caused by an event external to current

running program (e.g. key press, mouse activity)
– Asynchronous to current program, can handle interrupt on

any convenient instruction

• Exception – caused by some event during execution
of one instruction of current running program (e.g.,
page fault, bus error, illegal instruction)
– Synchronous, must handle exception on instruction that

causes exception

• Trap – action of servicing interrupt or exception by
hardware jump to “trap handler” code

28

29

Traps/Interrupts/Exceptions:

altering the normal flow of control

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
trap
handler

An external or internal event that needs to be processed - by
another program – the OS. The event is often unexpected from
original program’s point of view.

Precise Traps
• Trap handler’s view of machine state is that every

instruction prior to the trapped one has completed, and no
instruction after the trap has executed.

• Implies that handler can return from an interrupt by
restoring user registers and jumping back to interrupted
instruction (SEPC register will hold the instruction address)
– Interrupt handler software doesn’t need to understand the

pipeline of the machine, or what program was doing!
– More complex to handle trap caused by an exception than

interrupt
• Providing precise traps is tricky in a pipelined superscalar

out-of-order processor!
– But handling imprecise interrupts in software is even worse.

30

Supervisor
exception

program counter

31

Trap Handling in 5-Stage Pipeline

• How to handle multiple simultaneous
exceptions in different pipeline stages?

• How and where to handle external
asynchronous interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

In Conclusion

32

• Once we have a basic machine, it’s mostly up to the
OS to use it and define application interfaces.

• I/O
– Polling
– Interrupt

• Exception, interrupt, trap
– Precise trap

