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Review
• Booting a Computer
– BIOS, Bootloader, OS Boot, Init

• Supervisor Mode, Syscalls
• Memory-mapped I/O 
• Polling vs. Interrupts
• Interrupt vs. exception, and pipeline
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Trap Handling in 5-Stage Pipeline

• How to handle multiple simultaneous 
exceptions in different pipeline stages?

• How and where to handle external 
asynchronous interrupts?
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Save Exceptions Until Commit
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Handling Traps in In-Order Pipeline

• Hold exception flags in pipeline until commit point (M 
stage)

• Exceptions in earlier instructions override exceptions 
in later instructions

• Exceptions in earlier pipe stages override later 
exceptions for a given instruction

• Inject external interrupts at commit point 
• If exception/interrupt at commit: update Cause and 

SEPC registers, kill all stages, inject handler PC into 
fetch stage
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Trap Pipeline Diagram
time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5 MA5 WB5



Agenda
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• OS Boot Sequence and Operation
• Devices and I/O, interrupt and trap
• Application, Multiprogramming/time-sharing



Launching Applications
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• Applications are called “processes” in most OSs.
– Process: separate memory;
– Thread: shared memory

• Created by another process calling into an OS routine 
(using a “syscall”, more details later).
– Depends on OS, but Linux uses fork to create a new 

process, and execve to load application.
• Loads executable file from disk (using the file system 

service) and puts instructions & data into memory 
(.text, .data sections), prepare stack and heap.

• Set argc and argv, jump into the main function.



Supervisor Mode
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• If something goes wrong in an application, it could 
crash the entire machine. 
– And what about malware, etc.?

• The OS may need to enforce resource constraints 
to applications (e.g., access to devices).

• To help protect the OS from the application, CPUs 
have a supervisor mode bit.
– When not in supervisor mode (user mode), a process 

can only access a subset of instructions and (physical) 
memory.

– Process can enter the supervisor mode by using an 
interrupt, and change out of supervisor mode using a 
special instruction.



Syscalls
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• What if we want to call into an OS routine? 
(e.g., to read a file, launch a new process, 
send data, etc.)
– Need to perform a syscall: set up function 

arguments in registers, and then raise software 
interrupt

– OS will perform the operation and return to user 
mode

• This way, the OS can mediate access to all 
resources, including devices and the CPU 
itself.



Multiprogramming

11

• The OS runs multiple applications at the same time.
• But not really (unless you have a core per process)
– Time-sharing processor

• When jumping into process, set timer interrupt.
– When it expires, store PC, registers, etc. (process state).
– Pick a different process to run and load its state.
– Set timer, change to user mode, jump to the new PC.

• Switches between processes very quickly. This is called 
a “context switch”.

• Deciding what process to run is called scheduling.



Protection, Translation, Paging
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• Supervisor mode does not fully isolate 
applications from each other or from the OS.
– Application could overwrite another application’s 

memory.
– Also, may want to address more memory than we 

actually have (e.g., for sparse data structures).

• Solution: Virtual Memory. Gives each process 
the illusion of a full memory address space 
that it has completely for itself.
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“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address 
is a physical address
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What do we need Virtual Memory for? 
Reason 1: Adding Disks to Hierarchy

• Need to devise a mechanism to “connect” 
memory and disk in the memory hierarchy
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What do we need Virtual Memory for? 
Reason 2: Simplifying Memory for Apps
• Applications should see 

the straightforward 
memory layout we saw 
earlier ->

• User-space applications 
should think they own 
all of memory

• So we give them a 
virtual view of memory
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What do we need Virtual Memory for? 
Reason 3: Protection Between Processes
• With a bare system, addresses issued with 

loads/stores are real physical addresses
• This means any program can issue any address, 

therefore can access any part of memory, even 
areas which it doesn’t own
– Ex: The OS data structures

• We should send all addresses through a 
mechanism that the OS controls, before they 
make it out to DRAM - a translation mechanism
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Address Spaces
• The set of addresses labeling all of memory 

that we can access
• Now, 2 kinds:
– Virtual Address Space - the set of addresses that 

the user program knows about
– Physical Address Space - the set of addresses that 

map to actual physical cells in memory
• Hidden from user applications

• So, we need a way to map between these two 
address spaces
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Virtual vs. Physical Addresses

• Processes use virtual addresses, e.g., 0 … 0xffff,ffff
– Many processes, all using same (conflicting) addresses

• Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)
• Memory manager maps virtual to physical addresses
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Dynamic Address Translation
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Motivation
Multiprogramming, multitasking:  Desire to 
execute more than one process at a time (more 
than one process can reside in main memory at 
the same time).

Location-independent programs
Programming and storage management ease
=> base register ß add offset to each address

Protection
Independent programs should not affect
each other inadvertently
=> bound register ß check range of access

(Note: Multiprogramming drives requirement for 
resident supervisor (OS) software to manage context 
switches between multiple programs)
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Simple Base and Bound Translation
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Base and Bound Machine

[ Can fold addition of base register into (register+immediate) address 
calculation using a carry-save adder (sums three numbers with only a few 
gate delays more than adding two numbers) ] 21
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Memory Fragmentation
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As users come and go, the storage is “fragmented”. 
Therefore, at some stage programs have to be moved
around to compact the storage.
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Blocks vs. Pages

• In caches, we dealt with individual blocks
– Usually ~64B on modern systems
– We could “divide” memory into a set of blocks

• In VM, we deal with individual pages
– Usually ~4 KB on modern systems

• Larger sizes also available: 2MB, very modern 1GB!
– Now, we’ll “divide” memory into a set of pages

• Common point of confusion: Bytes, Words, 
Blocks, Pages are all just different ways of looking 
at memory!
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Bytes, Words, Blocks, Pages
Ex: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B
blocks (for caches), 4 B words (for lw/sw)
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Address Translation

• So, what do we want to achieve at the 
hardware level?
– Take a Virtual Address, that points to a spot in the 

Virtual Address Space of a particular program, and 
map it to a Physical Address, which points to a 
physical spot in DRAM of the whole machine
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Address Translation
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• Processor-generated address can be split into:
Paged Memory Systems

Page tables make it possible to store the 
pages of a program non-contiguously.
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Private Address Space per User

• Each user has a page table 
• Page table contains an entry for each user page
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Where Should Page Tables Reside?
• Space required by the page tables (PT) is proportional 

to the address space, number of users, ...
Þ Too large to keep in CPU registers

• Idea: Keep PTs in the main memory
– Needs one reference to retrieve the page base address and 

another to access the data word

=> doubles the number of memory references!
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Page Tables in Physical Memory
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Linear (simple) Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE) 
contains:
– 1 bit to indicate if page exists
– And either PPN or DPN:
– PPN (physical page number) 

for a memory-resident page
– DPN (disk page number) for a 

page on the disk
– Status bits for protection and 

usage (read, write, exec)
• OS sets the Page Table Base 

Register whenever active 
user process changes
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Suppose an instruction references a 
memory page that isn’t in DRAM?

• We get an exception of type “page fault”
• Page fault handler does the following:
– If virtual page doesn’t yet exist, assign an unused page in 

DRAM, or if page exists …
– Initiate transfer of the page we’re requesting from disk to 

DRAM, assigning to an unused page
– If no unused page is left, a page currently in DRAM is

selected to be replaced (based on usage)
– The replaced page is written (back) to disk, page table 

entry that maps that VPN->PPN is marked as invalid/DPN
– Page table entry of the page we’re requesting is updated 

with a (now) valid PPN
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Size of Linear Page Table
With 32-bit memory addresses, 4-KB pages:

=> 232 / 212 = 220 virtual pages per user, assuming 4-Byte PTEs, 
=> 220 PTEs, i.e, 4 MB page table per process!

Larger pages?
• Internal fragmentation (Not all memory in page gets used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244  8-Byte PTEs (35 TB!)

What is the “saving grace” ? Most processes only use a set of 
high address (stack), and a set of low address (instructions, 
heap)
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Hierarchical Page Table – exploits 
sparsity of virtual address space use
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Address Translation & Protection

• Every instruction and data access needs address 
translation and protection checks

• A good VM design needs to be fast (~ one cycle) 
and space efficient
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Conclusion: VM features track 
historical uses

• Bare machine, only physical addresses
– One program owned entire machine

• Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (not virtual 

memory)
– Problem with external fragmentation (holes in memory), needed occasional 

memory defragmentation as new jobs arrived
• Time sharing

– More interactive programs, waiting for user.  Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external 

fragmentation (but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited 

physical memory resources while holding working set in memory
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