
CS 110
Computer Architecture

OS 2

Instructor:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkeley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/22s

Review
• Booting a Computer
– BIOS, Bootloader, OS Boot, Init

• Supervisor Mode, Syscalls
• Memory-mapped I/O
• Polling vs. Interrupts
• Interrupt vs. exception, and pipeline

2

3

Trap Handling in 5-Stage Pipeline

• How to handle multiple simultaneous
exceptions in different pipeline stages?

• How and where to handle external
asynchronous interrupts?

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode Overflow Data address

Exceptions
PC address
Exception

Asynchronous Interrupts

4

Save Exceptions Until Commit

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
S
EP

C

Kill D
Stage

Kill F
Stage

Kill E
Stage

Select
Handler
PC

Kill
Writeback

Commit
Point

5

Handling Traps in In-Order Pipeline

• Hold exception flags in pipeline until commit point (M
stage)

• Exceptions in earlier instructions override exceptions
in later instructions

• Exceptions in earlier pipe stages override later
exceptions for a given instruction

• Inject external interrupts at commit point
• If exception/interrupt at commit: update Cause and

SEPC registers, kill all stages, inject handler PC into
fetch stage

6

Trap Pipeline Diagram
time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Trap Handler code IF5 ID5 EX5 MA5 WB5

Agenda

7

• OS Boot Sequence and Operation
• Devices and I/O, interrupt and trap
• Application, Multiprogramming/time-sharing

Launching Applications

8

• Applications are called “processes” in most OSs.
– Process: separate memory;
– Thread: shared memory

• Created by another process calling into an OS routine
(using a “syscall”, more details later).
– Depends on OS, but Linux uses fork to create a new

process, and execve to load application.
• Loads executable file from disk (using the file system

service) and puts instructions & data into memory
(.text, .data sections), prepare stack and heap.

• Set argc and argv, jump into the main function.

Supervisor Mode

9

• If something goes wrong in an application, it could
crash the entire machine.
– And what about malware, etc.?

• The OS may need to enforce resource constraints
to applications (e.g., access to devices).

• To help protect the OS from the application, CPUs
have a supervisor mode bit.
– When not in supervisor mode (user mode), a process

can only access a subset of instructions and (physical)
memory.

– Process can enter the supervisor mode by using an
interrupt, and change out of supervisor mode using a
special instruction.

Syscalls

10

• What if we want to call into an OS routine?
(e.g., to read a file, launch a new process,
send data, etc.)
– Need to perform a syscall: set up function

arguments in registers, and then raise software
interrupt

– OS will perform the operation and return to user
mode

• This way, the OS can mediate access to all
resources, including devices and the CPU
itself.

Multiprogramming

11

• The OS runs multiple applications at the same time.
• But not really (unless you have a core per process)
– Time-sharing processor

• When jumping into process, set timer interrupt.
– When it expires, store PC, registers, etc. (process state).
– Pick a different process to run and load its state.
– Set timer, change to user mode, jump to the new PC.

• Switches between processes very quickly. This is called
a “context switch”.

• Deciding what process to run is called scheduling.

Protection, Translation, Paging

12

• Supervisor mode does not fully isolate
applications from each other or from the OS.
– Application could overwrite another application’s

memory.
– Also, may want to address more memory than we

actually have (e.g., for sparse data structures).

• Solution: Virtual Memory. Gives each process
the illusion of a full memory address space
that it has completely for itself.

13

“Bare” 5-Stage Pipeline

• In a bare machine, the only kind of address
is a physical address

PC
Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical
Address

Physical Address

What do we need Virtual Memory for?
Reason 1: Adding Disks to Hierarchy

• Need to devise a mechanism to “connect”
memory and disk in the memory hierarchy

14

What do we need Virtual Memory for?
Reason 2: Simplifying Memory for Apps
• Applications should see

the straightforward
memory layout we saw
earlier ->

• User-space applications
should think they own
all of memory

• So we give them a
virtual view of memory

15

code

static data

heap

stack~ 7FFF FFFFhex

~ 0000 0000hex

What do we need Virtual Memory for?
Reason 3: Protection Between Processes
• With a bare system, addresses issued with

loads/stores are real physical addresses
• This means any program can issue any address,

therefore can access any part of memory, even
areas which it doesn’t own
– Ex: The OS data structures

• We should send all addresses through a
mechanism that the OS controls, before they
make it out to DRAM - a translation mechanism

16

Address Spaces
• The set of addresses labeling all of memory

that we can access
• Now, 2 kinds:
– Virtual Address Space - the set of addresses that

the user program knows about
– Physical Address Space - the set of addresses that

map to actual physical cells in memory
• Hidden from user applications

• So, we need a way to map between these two
address spaces

17

Virtual vs. Physical Addresses

• Processes use virtual addresses, e.g., 0 … 0xffff,ffff
– Many processes, all using same (conflicting) addresses

• Memory uses physical addresses (also, e.g., 0 ... 0xffff,ffff)
• Memory manager maps virtual to physical addresses

Processor (& Caches)

Control

Datapath
PC

Registers

(ALU)

Memory (DRAM)

Bytes?

Vi
rt

ua
l A

dd
re

ss

Ph
ys

ic
al

 A
dd

re
ss

Many of these (software & hardware cores) One main memory

18

Dynamic Address Translation

19

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
=> base register ß add offset to each address

Protection
Independent programs should not affect
each other inadvertently
=> bound register ß check range of access

(Note: Multiprogramming drives requirement for
resident supervisor (OS) software to manage context
switches between multiple programs)

prog1

prog2

Ph
ys

ic
al

 M
em

or
y

OS

Simple Base and Bound Translation

20

Load X

Program
Address Space

Bound
Register

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
AddressLogical

Address

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

Base Physical Address

Segment Length

≤

Base and Bound Machine

[Can fold addition of base register into (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers)] 21

PC
Inst.
Cache D Decode E M

Data
Cache W+

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

≤

+

Logical
Address

Bounds Violation?

Physical
Address

Prog. Bound
Register

Program Base
Register

≤

+

Logical
Address

Bounds Violation?

Memory Fragmentation

22

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

OS
Space

16K
24K

24K

32K

24K

user 1
user 2

user 3

OS
Space

16K
24K
16K

32K

24K

user 1
user 2

user 3

user 5

user 4
8K

Users 4 & 5
arrive

Users 2 & 5
leave OS

Space

16K
24K
16K

32K

24K

user 1

user 4
8K

user 3

free

Blocks vs. Pages

• In caches, we dealt with individual blocks
– Usually ~64B on modern systems
– We could “divide” memory into a set of blocks

• In VM, we deal with individual pages
– Usually ~4 KB on modern systems

• Larger sizes also available: 2MB, very modern 1GB!
– Now, we’ll “divide” memory into a set of pages

• Common point of confusion: Bytes, Words,
Blocks, Pages are all just different ways of looking
at memory!

23

Bytes, Words, Blocks, Pages
Ex: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B
blocks (for caches), 4 B words (for lw/sw)

24

Page 3

Page 2

Page 1

Page 0

16
KiB

Block 0

Block 31

Word 0

Word 31

1 Memory

1 Page 1 Block

Can think of
memory as:
- 4 Pages
OR
- 128 Blocks
OR
- 4096 Words

Can think of
a page as:
- 32 Blocks
OR
- 1024 Words

Address Translation

• So, what do we want to achieve at the
hardware level?
– Take a Virtual Address, that points to a spot in the

Virtual Address Space of a particular program, and
map it to a Physical Address, which points to a
physical spot in DRAM of the whole machine

25

Virtual Page Number OffsetVirtual Address

Physical Address Physical Page Number Offset

Address Translation

26

Virtual Page Number Offset

Physical Page Number Offset

Virtual Address

Physical Address

Address
Translation

Copy
Bits

The rest of the lecture is all about implementing

27

• Processor-generated address can be split into:
Paged Memory Systems

Page tables make it possible to store the
pages of a program non-contiguously.

0
1
2
3

0
1
2
3

Address Space
of User-1

Page Table
of User-1

1
0

2

3

page number offset

Physical
Memory

• A page table contains the physical address of the base of each page

28

Private Address Space per User

• Each user has a page table
• Page table contains an entry for each user page

VA1User 1

Page Table

VA1User 2

Page Table

VA1User 3

Page Table

Ph
ys

ic
al

 M
em

or
y

free

OS
pages

29

Where Should Page Tables Reside?
• Space required by the page tables (PT) is proportional

to the address space, number of users, ...
Þ Too large to keep in CPU registers

• Idea: Keep PTs in the main memory
– Needs one reference to retrieve the page base address and

another to access the data word

=> doubles the number of memory references!

30

Page Tables in Physical Memory

VA1

User 1 Virtual
Address Space

User 2 Virtual
Address Space

PT
User
1

PT
User
2

VA1

Ph
ys

ic
al

 M
em

or
y

31

Linear (simple) Page Table

VPN Offset
Virtual address

PT Base Register

VPN

Data word

Data Pages

Offset

PPN
PPN

DPN
PPN

PPN
PPN
Page Table

DPN

PPN

DPN
DPN

DPN
PPN

• Page Table Entry (PTE)
contains:
– 1 bit to indicate if page exists
– And either PPN or DPN:
– PPN (physical page number)

for a memory-resident page
– DPN (disk page number) for a

page on the disk
– Status bits for protection and

usage (read, write, exec)
• OS sets the Page Table Base

Register whenever active
user process changes

32

Suppose an instruction references a
memory page that isn’t in DRAM?

• We get an exception of type “page fault”
• Page fault handler does the following:
– If virtual page doesn’t yet exist, assign an unused page in

DRAM, or if page exists …
– Initiate transfer of the page we’re requesting from disk to

DRAM, assigning to an unused page
– If no unused page is left, a page currently in DRAM is

selected to be replaced (based on usage)
– The replaced page is written (back) to disk, page table

entry that maps that VPN->PPN is marked as invalid/DPN
– Page table entry of the page we’re requesting is updated

with a (now) valid PPN

33

Size of Linear Page Table
With 32-bit memory addresses, 4-KB pages:

=> 232 / 212 = 220 virtual pages per user, assuming 4-Byte PTEs,
=> 220 PTEs, i.e, 4 MB page table per process!

Larger pages?
• Internal fragmentation (Not all memory in page gets used)
• Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
• Even 1MB pages would require 244 8-Byte PTEs (35 TB!)

What is the “saving grace” ? Most processes only use a set of
high address (stack), and a set of low address (instructions,
heap)

34

Hierarchical Page Table – exploits
sparsity of virtual address space use

Level 1
Page Table

Level 2
Page Tables

Data Pages

page in primary memory
page in secondary memory

Root of the Current
Page Table

p1

p2

Virtual Address

(Processor
Register)

PTE of a non-existent page

p1 p2 offset
01112212231

10-bit
L1 index

10-bit
L2 index

Ph
ys

ic
al

 M
em

or
y

35

Address Translation & Protection

• Every instruction and data access needs address
translation and protection checks

• A good VM design needs to be fast (~ one cycle)
and space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

Why?

36

Conclusion: VM features track
historical uses

• Bare machine, only physical addresses
– One program owned entire machine

• Batch-style multiprogramming
– Several programs sharing CPU while waiting for I/O
– Base & bound: translation and protection between programs (not virtual

memory)
– Problem with external fragmentation (holes in memory), needed occasional

memory defragmentation as new jobs arrived
• Time sharing

– More interactive programs, waiting for user. Also, more jobs/second.
– Motivated move to fixed-size page translation and protection, no external

fragmentation (but now internal fragmentation, wasted bytes in page)
– Motivated adoption of virtual memory to allow more jobs to share limited

physical memory resources while holding working set in memory

37

