
CS 110
Computer Architecture 

VM, ES, & FPGA

Instructor:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s

School of Information Science and Technology SIST

ShanghaiTech University

1

https://robotics.shanghaitech.edu.cn/courses/ca/22s


2

Address Translation & Protection

• Every instruction and data access needs address 
translation and protection checks

• A good VM design needs to be fast (~ one cycle) 
and space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

Why?



3

Translation Lookaside Buffers (TLB)
Address translation is very expensive!

In a two-level page table, each reference 
becomes several memory accesses

Solution: Cache some translations in TLB
TLB hit => Single-Cycle Translation
TLB miss => Page-Table Walk to refill 

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)



4

TLB Designs
• Typically 32-128 entries, usually fully associative
– Each entry maps a large page, hence less spatial 

locality across pages => more likely that two entries 
conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way 
set-associative

– Larger systems sometimes have multi-level (L1 and L2) 
TLBs

• Random or FIFO replacement policy
• Upon context switch? New VM space! Flush TLB 

…
• “TLB Reach”: Size of largest virtual address space 

that can be simultaneously mapped by TLB



TLB Reach

• Given a TLB of 256 entries and the page offset 
in a page table entry (TLB) has 20 bits, what is 
the TLB reach?
A. 64MB
B. 128MB
C. 256MB
D. 512MB
E. 1GB
F. None of these

5

Quiz



VM-related events in pipeline

• Handling a TLB miss needs a hardware or 
software mechanism to refill TLB
– usually done in hardware now

• Handling a page fault (e.g., page is on disk) needs 
a precise trap so software handler can easily 
resume after retrieving page

• Handling protection violation may abort process
6

PC
Inst 
TLB

Inst. 
Cache D Decode E M

Data 
TLB

Data 
Cache W+

TLB miss? Page Fault?
Protection violation?

TLB miss? Page Fault?
Protection violation?



7

Page-Based Virtual-Memory Machine
(Hardware Page-Table Walk)

PC
Inst. 
TLB

Inst. 
Cache D Decode E M

Data 
Cache W+

Page Fault?
Protection violation?

Page Fault?
Protection violation?

• Assumes page tables held in untranslated physical memory

Data 
TLB

Main Memory (DRAM)

Memory Controller
Physical 
Address

Physical 
Address

Physical Address

Physical 
Address

Page-Table Base 
Register

Virtual 
Address Physical 

Address

Virtual 
Address

Hardware Page 
Table Walker

Miss? Miss?



8

Address Translation:
putting it all together
Virtual Address

TLB
Lookup

Page Table
Walk

Update TLBPage Fault
(OS loads page)

Protection
Check

Physical
Address
(to cache)

miss hit

the  page is 
not in memory in memory denied permitted

Protection
Fault

hardware
hardware or software
software

SEGFAULTWhere?



9

Modern Virtual Memory Systems
Illusion of a large, private, uniform store

Protection & Privacy
several users, each with their private 
address space and one or more 
shared address spaces

page table = name space

Demand Paging
Provides the ability to run programs 
larger than the primary memory

Hides differences in machine 
configurations

The price is address translation on 
each memory reference

OS

useri

Primary
Memory

Swapping Store
(Disk)

VA PAmapping
TLB



• Insufficient free memory: malloc() returns NULL

Remember: Out of Memory



Limited VM Space with x86-64 

• 64-bit Linux allows up to 128TB of virtual address 
space for individual processes, and can address 
approximately 64 TB of physical memory, subject 
to processor and system limitations.

• For Windows 64-bit versions, both 32- and 64-bit 
applications, if not linked with “large address 
aware”, are limited to 2GB of virtual address 
space; otherwise, 128TB for Windows 8.1 and 
Windows Server 2012 R2 or later. 

12
Source: https://en.wikipedia.org/wiki/X86-64

https://en.wikipedia.org/wiki/X86-64


48bit for address translation only

• Still provides plenty of space!
• Higher bits “sign extended”: 

“canonical form”
• Convention: “Higher half” for

the Operating System
• Intel has plans (“whitepaper”) for

56 bit translation – no hardware yet

• https://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details

13

https://en.wikipedia.org/wiki/X86-64


Using 128TB of Memory!?

• A lazy allocation of virtual memory
– Not used è not allocated
– Try reading and writing from those pointers: 

works!
– Even writing Gigabaytes of memory:

works!
• Memory Compression!
– Take not-recently used pages, compress them => 

free the physical page
• https://www.lifewire.com/understanding-compressed-memory-os-x-2260327

14

https://www.lifewire.com/understanding-compressed-memory-os-x-2260327


Virtual Machines

15



Virtual Machine
• Virtual Memory (VM) != Virtual Machine (VM)

– Emulation: Run a complete virtual CPU & Memory & … - a 
complete virtual machine in software (e.g. QEMU)

– Virtual Machine: Run as many instructions as possible directly 
on CPU, only simulate some parts of the machine) (e.g. 
VirtualBox)

• Last lecture: Supervisor Mode & Use Mode; 
now also: Virtual Machine Mode
– Host OS activates virtual execution mode for guest OS =>
– Guest OS thinks it runs in supervisor mode, but in fact it doesn’t 

have access to physical memory! (among other limitations)
• CPUs support it (AMD-V, Intel VT-x), e.g. new Intel 

instructions: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, 
VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, 
and VMXON

16



What about the memory in Virtual 
Machines?

• Need to translate Guest Virtual Address to Guest 
Physical address to Machine (Host) Physical address: 
Earlier the Guest part was done (transparently) in 
software by the Virtual Machine … now in hardware!

17



Embedded System Design

18



An example of embedded system

19



Embedded System
• An embedded system is nearly any computing system 

(other than a general-purpose computer) with the 
following characteristics
– Specifically-functioned

• Typically, is designed to perform predefined function
– Tightly constrained

• Tuned for low cost
• Single-to-fewer components based
• Performs functions fast enough
• Consumes minimum power

– Reactive and real-time
• Must continually monitor the desired environment and react to  

changes
– Hardware and software co-existence

20



Embedded Systems Examples

• Examples:
– Communication devices

• Wired and wireless routers and switches
– Automotive applications

• Braking systems, traction control, airbag release systems,
and cruise-control applications

– Aerospace applications
• Flight-control systems, engine controllers, auto-pilots and  

passenger in-flight entertainment systems
– Defence systems

• Radar systems, fighter aircraft flight-control systems, radio 
systems, and missile guidance systems

21



Major Design Metrics to be Considered

• Timing performance
• Power consumption
• Chip area (Cost)
• Technology
• Reliability
• Testability
• Availability of CAD tools, libraries, IP's
• Time-to-market
• … …

22



Timing Performance

Clock

• Clocks are used to synchronize the start of
computations in all combinational blocks.

• Clock period is determined by finding out the longest
path delay of all combinational blocks.

• All combinational blocks are supposed to finish the
computations of the current clock cycle before the 
start of the next clock cycle.

Combi
Block 1 Combi  

Block 2
Combi  
Block 3

23



Power Consumption

where 𝛼: switchingactivity, 𝐶!"#: physical capacitance,

𝑉$$: supply voltage, 𝑓%&': clock frequency 

𝑃$#()*+% = α ( 𝐶!"# ( 𝑉$$, ( 𝑓%&'

24

• Why low power?
• High performance and integrity of VLSI circuits
• Popularity of portable devices

• Power consumption in CMOS circuits
• Dynamic power dissipation (used to be dominant)

• Charging and discharging capacitors

• Short-circuit power dissipation
• Leakage power dissipation (increasingly larger)

• Dynamic power dissipation



Power Consumption

• Supply voltage reduction
– Quadratic effect of voltage scaling on power

5V à 3.3V è 60% power reduction
– Supply voltage reduction è increased latency

energy delay

5 Vdd1 5 Vdd1

𝑃!"#$%&' = α $ 𝐶()" $ 𝑉!!* $ 𝑓'+,

25



Who Contributes to Embedded 
System Designs

• Application algorithm developer
– e.g., telecommunication, multi-media researcher

• Computer-Aided Design (CAD) tool developer
– e.g., Synopsys, Cadence companies
– Potential research field

• IC designers working at different levels
– e.g., IC design group in Infineon, Broadcom and HP
– Industry field

• Test engineer
– Both research and Industry field

26



Embedded Systems Implement  
Computations on Platforms
…...
...…

x[i]= fft(4py[k]);
...

Embedded System  
Design with CAD  

Tools

We will examine the design methodologies to implement  
computations (algorithms) on platforms. We temporarily  
forget analog design for a moment.

Computations
Top

Platforms
Down

27



Simplified and General Embedded System 
Design Methodology

SW/HW
Interface

Algorithm
Functional
Modeling

Problem Partitioning

Software Func.
Model

SW/HW
Interface

Hardware
Func. Model

Architectural synthesisSoftware Development

Logic/Physical  
synthesis

Application Source
Code

Processors
Application Specific

Hardware (FPGA orASIC)

Platforms

Algorithms

28



An Example to Start

4 4

5

e

4

*
5

clock cycles
a b c d +

1
0 0 +

1
*
2

tmp0 = a + b;
tmp1 = c * d;
tmp2 = tmp0 * tmp1;
tmp3= tmp0 + tmp1;
e = tmp2 * tmp3;

+
1

*
3

*

*

+

2

4

*
2

*
3

+

1 1

2 2

3 3

*
3

*

+
4

5

One ALU as either an  
adder or a multiplier  

is available
One adder and
one multiplier are
available

Algorithm Code Data Flow Graph schedule 1 schedule 2

5

29



Datapath and Controller
+
1

*
2

*
3

+
4

*
5

clock cycles

1 2

3
* +

4

*
5

0 0+ *

1 1

2 2

3 3

4 4

5

Datapath +
HW 2

Datapath +
HW 1

• Datapath implements operators, decides the area and speed that a design 
can achieve.

• Controller decides which operator of a datapath should work at 
specific cycle according to schedules.

• Embedded system design is actually to design the datapath and controller.

So-called  
PC

So-called
HW

30

Controller

Controller



ASIC

• Application-specific integrated circuits 

A custom ASIC (486 chipset) showing gate-based design on 
top and custom circuitry on bottom (Source: Wikipedia) 31



ASIC

• Application-specific integrated circuits 
• De Morgan’s theorem
– Theoretically we only need 2-input NAND or NOR gates to 

build anything

• ASIC is good, but
– High risky and expensive to design and manufacture

• Suitable for very high-volume mass production

– Permanent circuitry
• Once designed, not changeable

32



Three Kinds of Embedded System 
Implementation Choices

RfD$

I$Sw

ID

+|-|*|>|
+

- *

>

ConfigurationSw

Processor Reconfigurable FPGA ASIC

Programmable
Sequential
Instruction flow (cycle)  
Transfer bottleneck

Configurable
Parallel wired algorithm  
“Program” flow (occasionally)  
Distributed data

+
-

* >

No wiring
No configuration
overhead

+
- * >

Power: 100 10 1 33



Why Use Reconfigurable Hardware?

Why FPGAs?

• Combine flexibility with performance.
• Shorter time-to-market and longer time-in-market.

Processor FPGA

Performance Low Medium

Flexibility High High

Power High Medium

34

ASIC

High

Low

Low



Architecture of FPGA

35



Simplified FPGA Architecture
Functional

Block

I/O Block
Routing  
Network

All the three FPGA components can 
be re-programmed with  
configurations to implement  
application-specific digital circuits.

For example,
• each functional block can be

programmed to implement a small 
amount of digital logic of a design;

• the routing network can be
programmed to implement the  
design specific interconnection  
pattern;

• I/O blocks can be programmed to 
implement the input and output 
ports according to design 
requirements.

36



FPGA Reconfiguration

• All the programming information for the three FPGA components is 
stored in a configuration file. The configuration file for a FPGA is often 
called a bitstream compared to a binary executable for a processor. 

• Once a bitstream for a digital logic design is downloaded to a FPGA, 
the FPGA is programmed to implement the design. 

• By providing different bitstreams, a single FPGA can be re-programmed 
to implement different designs at different times.

Bitstream  
File 1

Bitstream  
File 2

Time 1

Time 2

37



FPGA Functional Block

LE

LE

LE

…
..

FunctionalBlock
Inputs

FunctionalBlock
O

utputs

Functional Block Internals

• FPGAs use the Look-Up Table (LUT) type of functional block.
• A functional block is normally made of one or several logic elements (LE).
• Functional blocks differentiate from each other mainly in terms of the input

size of an LE and the number of LEs in a functional block.
• State-of-the-art FPGAs normally use 4-input LEs.

Lo
ca

l I
nt

er
co

nn
ec

t

38



FPGA Logic Element

LE Internals

• One LE consists of a 16 SRAM cell Look-Up Table (LUT), and a flip
flop (FF).

• The 16 SRAM cells LUT stores the truth table of any 4-input logic
function. Thus it can implement any 4-input logic function.

• The FF implements the storage element in a sequential circuit.

39



LUT Content

𝐹 = 𝐴 & 𝐵 | (𝐶 & 𝐷)

A B C D F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

A
B
C
D

F

• The 16 SRAM cell LUT stores the output 
column of the truth table of the F function. 

• The 4 inputs A, B, C and D will determine 
which bit the F value is for the current values 
of A, B, C and D.

40



FF

• D Flip Flop
– A data storage element
– When FF sees a rising edge of the clock, it 

registers the data from the Input D to the Output 
Q.

41

How long can a D Flip Flop 
hold current data?



Additional Computational Resources

Memory blocks

Microprocessor blocks

• Besides the LEs, some functional 
blocks in different FPGAs have 
architecture specific features to 
improve the performance when  
implementing arithmetic  
functions.

• These architecture specific  
features include carry logic,  
embedded memory blocks,  
multiplier and other hard cores.

• Hard cores generally implement 
functions efficiently compared 
to FPGA functional blocks.

42



Routing

• Routing means interconnecting
– Through programmable wires and switches
– Between functional blocks, and between I/O blocks 

and functional blocks
• Routing is a challenging problem
– Routing technique used in an FPGA largely decides the 

amount of area used by wire segments and 
programmable switches, as compared to area 
consumed by functional blocks.

– Inferior routing may lead to congestion or failure of 
signals.

43



FPGA Routing Architecture

• A functional block input or output pin can connect to some or all of the wiring segments 
in the channel adjacent to it via a connection block of programmable switches.

• At every intersection of a horizontal channel and a vertical channel, there is a switch 
block. It is a set of programmable switches that allow some of the wire segments incident 
to the switch block to be connected to others. 

• By turning on the appropriate switches, short wire segments can be connected together 
to form longer connections.

Functional  
Block

44



FPGA Routing Wires
• Some FPGAs contain 

routing architectures that 
include different lengths of 
wires.

• The length of a wire is 
the number of functional 
blocks it spans.

• Left figures show wires of  
length 1, 2 and 4.

• Long wires introduce  
shorter delays for long  
interconnections since 
fewer switch blocks will be 
passed.

Functional  
Block

45



Conclusion

• TLB
– Accelerate address translation

• Embedded system
• ASIC, processor
• FPGA
– Functional block, routing, etc. 

46



54


