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Review: FPGA

• Main components
– Functional block

• Logic element, LUT

– I/O blocks
– Routing network
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Design Tools for FPGA

3



FPGA Design Flow
Register-transfer level (RTL) 
models a synchronous digital 
circuit in terms of the flow of 
digital signals (data) between 
hardware registers, and the 
logical operations performed on 
those signals. 

A visual 
representation 
of design
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Time Profile for Design Flow Steps

Logic Optimization and routing steps normally consume 
the major part of the design flow time.

CAD Steps Time (second) Percentage (%)

Logic Optimization 1,859 43.14

Technology Mapping 156 3.62

Placement 854 19.82

Routing 1,341 31.12

Bitstream Generation 99 2.30
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FPGA Technology Mapping

Technology mapping step restructures the primitive logic gates, generated from 
the logic optimization step, into sets of 4-input functional blocks (we assume  
one functional block contains only one logic element in this example).
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FPGA Placement and Routing

The placement step finds physical locations for functional blocks, while the
routing step finds physical routes for logic connections.
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HDL

• A designed circuit can be specified through a 
schematic diagram, or an HDL program

• HDL: hardware description language
– For both ASIC and FPGA

• Two common HDLs
– VHDL
– Verilog

• From HDL to Bitstream
– Describe your design using HDL programs
– Use tools to synthesize, configure and test with FPGA
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Agenda
• Warehouse Scale Computing

• Request-level Parallelism
e.g. Web search

• Data-level Parallelism
– MapReduce

– Hadoop, Spark
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New-School Machine Structures

• Parallel Requests
Assigned to computer
e.g., Search “Avatar 2”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Deep Learning for 

image classification

• Hardware descriptions
All gates @ one time

• Programming Languages 10
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Google’s WSCs
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Containers in WSCs
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Inside WSC Inside Container



Server, Rack, Array
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A Giant Computer 
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Google Server Internals
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Open Compute Project
• Share designs of data center products

– Facebook, Intel, Nokia, Google, Apple, 
Microsoft, Seagate Technology, Dell, Cisco, 
Goldman Sachs, Lenovo, …

• Design and enable the delivery of the 
most efficient server, storage and data 
center hardware designs for scalable 
computing.

• Openly sharing ideas, specifications and 
other intellectual property is the key to 
maximizing innovation and reducing 
operational complexity

• All Facebook Data Centers are 100% OCP
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Warehouse-Scale Computers
• Datacenter
– Collection of 10,000 to 100,000 servers
– Networks connecting them together

• Single gigantic machine
• Very large applications (Internet service):

search, email, video sharing, social networking
• Very high availability
• “…WSCs are no less worthy of the expertise of computer 

systems architects than any other class of machines”  
Barroso and Hoelzle, 2009
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Unique to WSCs
• Ample Parallelism
– Request-level Parallelism: e.g., web search
– Data-level Parallelism: e.g., image classifier training

• Scale and its Opportunities/Problems
– Scale of economy: low per-unit cost
– Cloud computing: rent computing power with low costs 

(e.g., AWS)
– High # of failures

e.g.: 4 disks/server, annual failure rate: 4%
à WSC of 50,000 servers: 1 disk fail/hour

• Operation Cost Count
– Longer life time (>10 years)
– Cost of equipment purchases << cost of ownership
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50000×4×4%
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WSC Architecture

19

1U Server:
8 cores, 
16 GB DRAM, 
4x1 TB disk

Rack:
40-80 severs,
Local Ethernet (1-10Gbps) switch

Array (aka cluster):
16-32 racks
Expensive switch
(10X bandwidth à 100x cost)



WSC Storage Hierarchy
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1U Server:
DRAM: 16GB, 0.1us, 20GB/s
Disk:     2TB,    104us,  200MB/s

Rack(80 severs):
DRAM: 1TB,     300us,  100MB/s
Disk:     160TB, 11ms,   100MB/s

Array(30 racks):
DRAM: 30TB,   500us, 10MB/s
Disk:     4.80PB, 12ms, 10MB/s

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server



Workload Variation

• Online service: Peak usage 2X off-peak
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Impact on WSC software
• Latency, bandwidth à Performance
– Independent data set within an array

– Locality of access within server or rack

• High failure rate à Reliability, Availability
– Preventing failures is expensive

– Cope with failures gracefully

• Varying workloads à Scalability, Availability
– Scale up and down gracefully

• More challenging than software for single computers!
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Power Usage Effectiveness
• Energy efficiency
– Primary concern in the design of WSC
– Important component of the total cost of ownership

• Power Usage Effectiveness (PUE):

– A power efficiency measure for WSC
– Not considering efficiency of servers, networking
– Perfection = 1.0

– Google WSC’s PUE = 1.2
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PUE in the Wild (2007)
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LBNL Average 1.83
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Load Profile of WSCs

• Average CPU utilization of 5,000 Google servers, 6 month period
• Servers rarely idle or fully utilized, operating most of the time at 

10% to 50% of their maximum utilization
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Energy-Proportional Computing: 
Design Goal of WSC

• Energy = Power x Time, Efficiency = Computation / Energy
• Desire:

– Consume almost no power when idle (“Doing nothing well”)
– Gradually consume more power as the activity level increases
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Cause of Poor Energy Proportionality
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• CPU: 50% at peek, 30% at idle
• DRAM, disks, networking: 70% at idle!
• Need to improve the energy efficiency of peripherals



Cloud Computing: Scale of Economy 
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• May 2017 AWS Instances & Prices
• Closest computer in WSC example is Standard Extra 
• At these low rates, Amazon EC2 can make money!

– even if used only 50% of time
• Virtual Machine (VM) plays an important role

Name Memory vCPUs Storage Arch
Network 

Performance
Linux On 
Demand 

M1 General Purpose Small 1.7 GB 1 160 GB 32/64-bit Low $0.044 hourly
M1 General Purpose Medium 3.75 GB 1 410 GB 32/64-bit Moderate $0.087 hourly
M1 General Purpose Extra 
Large 15.0 GB 4 1680 GB 64-bit High $0.35 hourly
C1 High-CPU Medium 1.7 GB 2 350 GB 32/64-bit Moderate $0.13 hourly
C1 High-CPU Extra Large 7.0 GB 8 1680 GB 64-bit High $0.52 hourly
I2 Extra Large 30.5 GB 4 800 GB 64-bit Moderate $0.853 hourly
I2 Double Extra Large 61.0 GB 8 1600 GB 64-bit Moderate $1.705 hourly
M4 Large 8.0 GB 2 EBS only 64-bit Moderate $0.108 hourly
M4 Extra Large 16.0 GB 4 EBS only 64-bit High $0.215 hourly
M4 16xlarge 256.0 GB 64 EBS only 64-bit 20 Gigabit $3.447 hourly
General Purpose GPU Extra 
Large 61.0 GB 4 EBS only 64-bit High $0.9 hourly
General Purpose GPU 16xlarge 732.0 GB 64 EBS only 64-bit 20 Gigabit $14.4 hourly
X1 Extra High-Memory 16xlarge 976.0 GB 64 1920 GB 64-bit 10 Gigabit $6.669 hourly



Agenda
• Warehouse Scale Computing

• Request-level Parallelism
e.g. Web search

• Data-level Parallelism
– Hadoop, Spark

– MapReduce
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Request-Level Parallelism (RLP)
• Hundreds of thousands of requests per sec.
– Popular Internet services like web search, social 

networking, …

– Such requests are largely independent
• Often involve read-mostly databases
• Rarely involve read-write sharing or synchronization 

across requests

• Computation easily partitioned across different 
requests and even within a request 
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Google Query-Serving Architecture
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Anatomy of a Web Search
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Anatomy of a Web Search (1/3)
• Google “Avatar 2”
– Direct request to “closest” Google WSC
– Front-end load balancer directs request to one of many 

arrays (cluster of servers) within WSC
– Within array, select one of many Google Web Servers (GWS) 

to handle the request and compose the response pages

– GWS communicates with Index Servers to find documents 
that contains the search word, “Avatar 2”

– Return document list with associated relevance score
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Anatomy of a Web Search (2/3)
• In parallel,
– Ad system: run ad auction for bidders on search terms

• Use docids (Document IDs) to access indexed documents
• Compose the page
– Result document extracts (with keyword in context) 

ordered by relevance score

– Sponsored links (along the top) and advertisements (along 
the sides)
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Anatomy of a Web Search (3/3)
• Implementation strategy
– Randomly distribute the entries

– Make many copies of data (a.k.a. “replicas”)

– Load balance requests across replicas

• Redundant copies of indices and documents

– Breaks up search hot spots, e.g., “Avatar 2”

– Increases opportunities for request-level parallelism

– Makes the system more tolerant of failures
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Agenda
• Warehouse Scale Computing

• Request-level Parallelism
e.g. Web search

• Data-level Parallelism
– MapReduce

– Hadoop, Spark
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Data-Level Parallelism (DLP)
• SIMD
– Supports data-level parallelism in a single machine

– Additional instructions & hardware

e.g., Matrix multiplication in memory

• DLP on WSC

– Supports data-level parallelism across multiple machines

– MapReduce & scalable file systems
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Problem Statement

• How to process large amounts of raw data (crawled 
documents, request logs, …) every day to compute 
derived data (inverted indices, page popularity, …), 
when computation is conceptually simple but input
data is large and distributed across 100s to 1000s of 
servers, so as to finish in reasonable time?

• Challenge: Parallelize computation, distribute data, 
tolerate faults without obscuring simple computation 
with complex code to deal with issues
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Solution: MapReduce

• Simple data-parallel programming model and 
implementation for processing large datasets

• Users specify the computation in terms of 
– a map function, and 
– a reduce function

• Underlying runtime system
– Automatically parallelize the computation across large 

scale clusters of machines
– Handles machine failure
– Schedule inter-machine communication to make efficient 

use of the networks
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What is MapReduce used for?
• At Google:

– Index construction for Google Search
– Article clustering for Google News
– Statistical machine translation
– For computing multi-layers street maps

• At Yahoo!:
– “Web map” powering Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook:
– Data mining
– Ad optimization
– Spam detection
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Map/Reduce Programming Model

– Map computation across many objects
• E.g., 1010 Internet web pages

– Aggregate results in many different ways
– System deals with issues of resource allocation & reliability
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Dean & Ghemawat: “MapReduce: Simplified Data 
Processing on Large Clusters”, OSDI 2004
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Inspiration: Map & Reduce Functions, 
ex: Python 

Calculate : 

43

n2
n=1

4

∑

A = [1, 2, 3, 4]
def square(x): 

return x * x
def sum(x, y): 

return x + y

reduce(sum, 
map(square, A))

1 2 3 4

1 4 9 16

5 25
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• Map: (in_key, in_value) à list(interm_key, interm_val)
map(in_key, in_val):
// DO WORK HERE
emit(interm_key, interm_val)

– Slice data into “shards” or “splits” and distribute to workers
– Compute set of intermediate key/value pairs

• Reduce: (interm_key, list(interm_value)) à list(out_value)
reduce(interm_key, list(interm_val)): 
// DO WORK HERE
emit(out_key, out_val)

– Combines all intermediate values for a particular key
– Produces a set of merged output values (usually just one)

MapReduce Programming Model
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MapReduce Word Count Example
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that that is is that that is not is not is that it it is

is 1, that 1, that 1  Is 1, that 1, that 1 is 1, is 1, not 1,not 1 is 1, is 1, it 1, it 1, that 1

Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 1 that 1,1is 1,1 that 1,1,1,1is 1,1,1,1,1,1
it 1,1 

that 1,1,1,1,1 
not 1,1

is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5 

Distribute

that 1, that 1, is 1  Is 1, that 1, that 1 is 1, not 1, is 1, not 1 is 1, that 1, it 1, it 1, is 1 Local Sort



User-written Map function reads the document data and
parses out the words. For each word, it writes the (key, value) 
pair of (word, 1). That is, the word is treated as the intermediate 
key and the associated value of 1 means that we saw the word 
once.

Map phase: (doc name, doc contents) à list(word, count)
// “I do I learn” à [(“I”,1),(“do”,1),(“I”,1),(“learn”,1)]
map(key, value):
for each word w in value:

emit(w, 1)

MapReduce Word Count Example
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The intermediate data is then sorted by MapReduce by keys and 
the user’s Reduce function is called for each unique key. In this 
case, Reduce is called with a list of a "1" for each occurrence of 
the word that was parsed from the document. The function adds 
them up to generate a total word count for that word.

Reduce phase: (word, list(counts)) à (word, count_sum)
// (“I”, [1,1]) à (“I”,2)
reduce(key, values): 
result = 0
for each v in values:

result += v
emit(key, result)

MapReduce Word Count Example
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MapReduce Processing Example: 
Count Word Occurrences

• Pseudo Code: for each word in input, generate <key=word, value=1>
• Reduce sums all counts emitted for a particular word across all mappers

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_value:
EmitIntermediate(w, "1"); // Produce count of words

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// intermediate_values: a list of counts
int result = 0;
for each v in intermediate_values:
result += ParseInt(v); // get integer from key-value

Emit(output_key, result);
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MapReduce Implementation
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MapReduce Execution
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(1) Split inputs, 
start up programs 
on a cluster of 
machines



MapReduce Execution
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(2) Assign map & 
reduce tasks to 
idle workers



MapReduce Execution
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(3) Perform a map task, 
generate intermediate 
key/value pairs
(4) Write to the buffers



MapReduce Execution
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(5) Read intermediate 
key/value pairs,
sort them by its key.



MapReduce Execution
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(6) Perform a reduce task 
for each intermediate key,
write the result to the 
output files



Big Data Framework: Hadoop & Spark
• Apache Hadoop
– Open-source MapReduce Framework
– Hadoop Distributed File System (HDFS)
– Hadoop YARN Resource Management
– MapReduce Java APIs
– more than half of the Fortune 50 used Hadoop (2013)

• Apache Spark
– Fast and general engine for large-scale 

data processing.
– Running on HDFS
– Provides Java, Scala, Python APIs for

• Database
• Machine learning
• Graph algorithm 55



And, in Conclusion ...

• Warehouse-Scale Computers (WSCs)
– New class of computers
– Scalability, energy efficiency, high failure rate

• Cloud Computing
– Benefits of WSC computing for third parties
– “Elastic” pay as you go resource allocation

• Request-Level Parallelism
– High request volume, each largely independent of other 
– Use replication for better request throughput, availability

• MapReduce Data Parallelism
– Map: Divide large data set into pieces for independent parallel processing
– Reduce: Combine and process intermediate results to obtain final result 
– Hadoop, Spark
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