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Review: FPGA

* Main components

— Functional block
* Logic element, LUT

— 1/0 blocks
— Routing network



Design Tools for FPGA
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Time Profile for Design Flow Steps

CAD Steps Time (second) Percentage (%)

Logic Optimization 1,859 43.14
Technology Mapping 156 3.62
Placement 854 19.82
Routing 1,341 31.12
Bitstream Generation 99 2.30

Logic Optimization and routing steps normally consume
the major part of the design flow time.



FPGA Technology Mapping
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Technology mapping step restructures the primitive logic gates, generated from
the logic optimization step, into sets of 4-input functional blocks (we assume
one functional block contains only one logic element in this example).



FPGA Placement and Routing
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The placement step finds physical locations for functional blocks, while the
routing step finds physical routes for logic connections.



HDL

e A designed circuit can be specified through a
schematic diagram, or an HDL program

 HDL: hardware description language
— For both ASIC and FPGA

* Two common HDLs
— VHDL
— Verilog

* From HDL to Bitstream

— Describe your design using HDL programs
— Use tools to synthesize, configure and test with FPGA



Agenda

* Warehouse Scale Computing

* Request-level Parallelism
e.g. Web search
* Data-level Parallelism

— MapReduce
— Hadoop, Spark



New-School Machine Structures

Parallel Requests

Assigned to computer
.g., Search “Avatar 2”

Parallel Threads Harness
Parallelism &

Achieve High
Performance
Parallel Instructions

>1 instruction @ one time
e.g., 5 pipelined instructions
Parallel Data

>1 data item @ one time

e.g., Deep Learning for
image classification

Hardware descriptions
All gates @ one time
Programming Languages

Assigned to core
e.g., Lookup, Ads
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Google’s WSCs
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Containers in WSCs
Inside WSC Inside Container
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A Giant Computer

* Sunway TaihulLight

RO GE KR 125.436PFlops
RSB H R 93.015PFlops
KBRS "B B 26010" AR AL B
ENREBZNHK 40960
SEENAEBELEK 106496001~
RERAF 1310720 GB
RERR Raise Linux
GRET C. C++. Fortran
HATIEE R MPI. OpenMP. OpenACC%
SSD#F it 230TB
EL T 10PB, 7 37.288GB/s
K& 10PB, #7357 32GB/s

http://www.nsccwx.cn/swsource/5d2fe23624364f0351459262
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Google Server Internals
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Open Compute Project

Share designs of data center products —

— Facebook, Intel, Nokia, Google, Apple, S
Microsoft, Seagate Technology, Dell, Cisco,
Goldman Sachs, Lenovo, ...

Design and enable the delivery of the

most efficient server, storage and data

center hardware designs for scalable

computing.

Openly sharing ideas, specifications and

other intellectual property is the key to

maximizing innovation and reducing

operational complexity

All Facebook Data Centers are 100% OCP
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Warehouse-Scale Computers

Datacenter

— Collection of 10,000 to 100,000 servers

— Networks connecting them together
Single gigantic machine
Very large applications (Internet service):
search, email, video sharing, social networking
Very high availability

“...WSCs are no less worthy of the expertise of computer
systems architects than any other class of machines”
Barroso and Hoelzle, 2009

17



Unique to WSCs

* Ample Parallelism

— Request-level Parallelism: e.g., web search
— Data-level Parallelism: e.g., image classifier training

* Scale and its Opportunities/Problems
— Scale of economy: low per-unit cost

— Cloud computing: rent computing power with low costs
(e.g., AWS)

— High # of failures 50000%4x4%

365%2a - 0913

e.g.: 4 disks/server, annual failure rate: 4%
—> WSC of 50,000 servers: 1 disk fail/hour

* Operation Cost Count

— Longer life time (>10 years)
— Cost of equipment purchases << cost of ownership



WSC Architecture

—

1U Server:
8 cores,
16 GB DRAM,
Ax1 TB disk Array (aka cluster):
16-32 racks
Rack: Expensive switch
40-80 severs, (10X bandwidth = 100x cost)

Local Ethernet (1-10Gbps) switch
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WSC Storage Hierarchy

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

1U Server:
DRAM: 16GB, 0.1us, 20GB/s

Rack(80 severs):

DRAM: 1TB, 100MB/s

Array(30 racks):
DRAM: 30TB, 500us, 10MB/s

= Disk: 4.80PB, 12ms, 10MB/s




Workload Variation
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* Online service: Peak usage 2X off-peak
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Impact on WSC software

Latency, bandwidth = Performance

— Independent data set within an array

— Locality of access within server or rack
High failure rate - Reliability, Availability

— Preventing failures is expensive

— Cope with failures gracefully

Varying workloads = Scalability, Availability

— Scale up and down gracefully

More challenging than software for single computers!
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Power Usage Effectiveness

* Energy efficiency

— Primary concern in the design of WSC

— Important component of the total cost of ownership

Power Usage Effectiveness (PUE):

Total Building Power

IT Equipment Power

— A power efficiency measure for WSC

— Not considering efficiency of servers, networking
— Perfection=1.0

— Google WSC's PUE =1.2
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PUE in the Wild (2007)
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FIGURE 5.1: LBNL survey of the power usage efficiency of 24 datacenters, 2007 (Greenberg et al.)
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Where Data Center Power Goes

Electricity Lighting, etc.
Transformer/ 3%
wps |\ /
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Air Movement
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25%
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Fraction of Time

Load Profile of WSCs
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e Average CPU utilization of 5,000 Google servers, 6 month period

e Servers rarely idle or fully utilized, operating most of the time at
10% to 50% of their maximum utilization
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Energy-Proportional Computing:
Design Goal of WSC

Energy = Power x Time, Efficiency = Computation / Energy

Desire:
— Consume almost no power when idle (“Doing nothing well”)
— Gradually consume more power as the activity level increases

Relative Power and Efficiency

0 20 40 60 80 100

System Utilization
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Cause of Poor Energy Proportionality
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 CPU:50% at peek, 30% at idle
 DRAM, disks, networking: 70% at idle!

* Need to improve the energy efficiency of peripherals
28



Cloud Computing: Scale of Econom

Memory vCPUs Storage

Arch

Network

Performance

Linux On
Demand

M1 General Purpose Small 1.7GB 1 160 GB 32/64-bit Low $0.044 hourly
M1 General Purpose Medium  3.75GB 1 410 GB 32/64-bit  Moderate  $0.087 hourly
M1 General Purpose Extra

Large 150GB 4  1680GB  64-bit High $0.35 hourly
C1 High-CPU Medium 1.7GB 2 350 GB 32/64-bit  Moderate $0.13 hourly
C1 High-CPU Extra Large 70GB 8 1680GB  64-bit High $0.52 hourly
12 Extra Large 305GB 4 800 GB  64-bit Moderate  $0.853 hourly
12 Double Extra Large 61.0GB 8 1600GB  64-bit Moderate ~ $1.705 hourly
M4 Large 80GB 2 EBSonly 64-bit Moderate  $0.108 hourly
M4 Extra Large 16, 0GB 4 EBSonly 64-bit High $0.215 hourly
M4 16xlarge 256.0GB 64 EBSonly 64-bit 20 Gigabit ~ $3.447 hourly
General Purpose GPU Extra

Large 61.0GB 4 EBSonly 64-bit High $0.9 hourly
General Purpose GPU 16xlarge 732.0GB 64 EBSonly 64-bit 20 Gigabit $14.4 hourly
X1 Extra High-Memory 16xlarge 976.0GB 64 1920GB  64-bit 10 Gigabit  $6.669 hourly

* May 2017 AWS Instances & Prices
* Closest computer in WSC example is Standard Extra
* At these low rates, Amazon EC2 can make money!

— even if used only 50% of time

e Virtual Machine (VM) plays an important role



Agenda

* Request-level Parallelism

e.g. Web search
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Request-Level Parallelism (RLP)

 Hundreds of thousands of requests per sec.

— Popular Internet services like web search, social
networking, ...

— Such requests are largely independent
e Often involve read-mostly databases
* Rarely involve read-write sharing or synchronization

across requests

 Computation easily partitioned across different
requests and even within a request

31



Google Query-Serving Architecture
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Anatomy of a Web Search

GQ gle avatar 2 X

Q Al [ Videos @ News [ Images () Books : More

I About 3,190,000,000 results (0.48 seconds) I

Avatar: The Way of Water

2022 - Action/Adventure

- =3 K bl
Sam Zoe Saldafa Sigourney Stephen Kate Winslet

Worthington Neytiri Weaver Lang Ronal
Jake Sully Colonel Quar.

Trailers & clips >

AVATAR 2: THE WAY OF WATER Trailer (2022)

YouTube - JoBlo Movie Trailers
3 days ago

AVATAR 2 (2022) EXCLUSIVE TRAILER | 20th Century Fox ...

YouTube - Screen Culture
2 weeks ago

{=
0

Tools

0/ Overview \ News
& Y

>

Vin Diesel

Trailers & clips

Cast Reviews Behind the scenes
Watch movie EDIT SERVICES
v (]

Watched it? Watchlist
About

v @ Avatar: The Way of Water Teaser Trai...
- mad¥ o 148

Jake Sully and Ney'tiri have formed a family and are
doing everything to stay together. However, they must
leave their home and explore the regions of Pandora.
When an ancient threat resurfaces, Jake must fight a
difficult war against the humans.

Release date: December 16, 2022 (USA)

Director: James Cameron

Budget: 250 million USD

Distributed by: 20th Century Studios
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Anatomy of a Web Search (1/3)

 Google “Avatar 2”
— Direct request to “closest” Google WSC

— Front-end load balancer directs request to one of many
arrays (cluster of servers) within WSC

— Within array, select one of many Google Web Servers (GWS)
to handle the request and compose the response pages

— GWS communicates with Index Servers to find documents
that contains the search word, “Avatar 2”

— Return document list with associated relevance score
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Anatomy of a Web Search (2/3)

* In parallel,

— Ad system: run ad auction for bidders on search terms
e Use docids (Document IDs) to access indexed documents
e Compose the page

— Result document extracts (with keyword in context)
ordered by relevance score

— Sponsored links (along the top) and advertisements (along
the sides)
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Anatomy of a Web Search (3/3)

* Implementation strategy
— Randomly distribute the entries
— Make many copies of data (a.k.a. “replicas”)

— Load balance requests across replicas

* Redundant copies of indices and documents
— Breaks up search hot spots, e.g., “Avatar 2”
— Increases opportunities for request-level parallelism

— Makes the system more tolerant of failures

36



Agenda

Data-level Parallelism

— MapReduce
— Hadoop, Spark
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Data-Level Parallelism (DLP)

SIMD

— Supports data-level parallelism in a single machine
— Additional instructions & hardware

e.g., Matrix multiplication in memory

DLP on WSC

— Supports data-level parallelism across multiple machines

— MapReduce & scalable file systems

38



Problem Statement

 How to process large amounts of raw data (crawled
documents, request logs, ...) every day to compute
derived data (inverted indices, page popularity, ...),
when computation is conceptually simple but input
data is large and distributed across 100s to 1000s of
servers, so as to finish in reasonable time?

* Challenge: Parallelize computation, distribute data,
tolerate faults without obscuring simple computation
with complex code to deal with issues



Solution: MapReduce

Simple data-parallel programming model and

implementation for processing large datasets

Users specify the computation in terms of

— a map function, and

— a reduce function

Underlying runtime system

— Automatically parallelize the computation across large
scale clusters of machines

— Handles machine failure

— Schedule inter-machine communication to make efficient
use of the networks

40



What is MapReduce used for?

* At Google:
— Index construction for Google Search
— Article clustering for Google News
— Statistical machine translation
— For computing multi-layers street maps

e At Yahoo!:
— “Web map” powering Yahoo! Search
— Spam detection for Yahoo! Mail

* At Facebook:
— Data mining
— Ad optimization
— Spam detection

41



Map/Reduce Programming Model

Reduce

Key-Value
Pairs

— Map computation across many objects
* E.g., 1010 Internet web pages

— Aggregate results in many different ways
— System deals with issues of resource allocation & reliability

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004
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Inspiration: Map & Reduce Functions,
ex: Python

A
Calculate : Enz 1 2
n=1

3 4

A =1, 2, 3, 4]

def square(x): 1 4 - -
return x * X

def sum(x, y): @ ‘
return x + vy . s

reduce(sum, @
map(square, A))

30
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MapReduce Programming Model

* Map: (in_key, in_value) - list(interm_key, interm_val)

map(in_key, in val):
// DO WORK HERE
emit(interm_key, interm_val)

— Slice data into “shards” or “splits” and distribute to workers
— Compute set of intermediate key/value pairs

 Reduce: (interm _key, list(interm_value)) => list(out value)
reduce(interm_key, list(interm_val)):
// DO WORK HERE
emit(out_key, out val)

— Combines all intermediate values for a particular key
— Produces a set of merged output values (usually just one)

44



MapReduce Word Count Example

Distribute
that that is|is that thatlis not is notlis that it it is
Map 1 Map 2 Map 3 Map 4
that ihdbat dhag 1 Is1,that1,thatl | is1, ot has 1,met D |isd, that b it kit dhdg d
Shuffle
is1,1,1,1,1,1 that1,1,1,1,1
itl,1 not1,1
Reduce 1 Reduce 2
is 6; it 2 not 2; that 5
Collect

not 2; that 5

N

is 6; it 2;

Local Sort
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MapReduce Word Count Example

User-written Map function reads the document data and

parses out the words. For each word, it writes the (key, value)
pair of (word, 1). That is, the word is treated as the intermediate
key and the associated value of 1 means that we saw the word

once.

Map phase: (doc name, doc contents) =2 list(word, count)
// “I do I learn” - [(“I”,1),(“d0”,1),(“I”,1),(“learn”,1)]
map (key, value):
for each word w in value:
emit(w, 1)
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MapReduce Word Count Example

The intermediate data is then sorted by MapReduce by keys and
the user’s Reduce function is called for each unique key. In this
case, Reduce is called with a list of a "1" for each occurrence of
the word that was parsed from the document. The function adds
them up to generate a total word count for that word.

Reduce phase: (word, list(counts)) =2 (word, count_sum)

// (“I”, [1,1]) = (“1I”,2)

reduce(key, values):
result = ©

for each v in values:
result += v
emit(key, result)
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MapReduce Processing Example:
Count Word Occurrences

* Pseudo Code: for each word in input, generate <key=word, value=1>
* Reduce sums all counts emitted for a particular word across all mappers

map(String input key, String input value):
// input key: document name
// input value: document contents

for each word w in input value:
EmitIntermediate(w, "1"); // Produce count of words

reduce(String output key, Iterator intermediate values):

// output key: a word
// intermediate values: a list of counts
int result = 0;
for each v in intermediate values:
result += ParselInt(v); // get integer from key-value

Emit (output key, result);

48



MapReduce Implementation

User
Program
(1) fork .. : ... (1) fork
(l)gfork
@2 .~ . 2
assign assign
y .-~Mmap reduce g
split 0 /4/ i :
split 1 R’ (4) local write
- G
split 3
split 4

!

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files
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MapReduce Execution

. 4 a
(1) Split inputs, ,User
am
start up programs 0 ok . () fork
on a cluster of o~ teee T,
machines '
; @ .- .. @
assign assign

~map reduce

|
é,

split 0 //4
z file 0
Pl 1 Eei (4) local write
s
split3 |
split4 | file 1
— G
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files
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MapReduce Execution

(2) Assign map & licadls
reduce tasks to ot

idle workers :
2. .

assign assign

split 1 x
4) local write

split2 (3) read @

split 3

split 4

!

Input Map Intermediate files Reduce
files phasr (on local disks) phase

file 1

Output
files

51



MapReduce Execution

(3) Perform a map task,

User
generate intermediate |\ i i
key/value pairs T erk
(4) Write to the buffers
(2). _"- (2) . '
e e
. ..‘,- p ....
¥ ey
split 0 /4 |
. (4) local write \ -
split 2 |(3) read @
split3 |
i file 1
\_ [
Input Map Intermediate files Reduce Output

files phasr (on local disks) phase files



MapReduce Execution

(5) Read intermediate

User

—_— el i key/value pairs,
7 Wik . sort them by its key.
@2 .~ . 2
a_spugn/ a:;ﬁzc'; \
y .~map TRy &
split 0 ’/( \e\ b) write _ | output
z e
Spe | %) read (4) local write -
split2 [212 @ >
split 3
split 4 file 1
@ Wl
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files
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MapReduce Execution

(6) Perform a reduce task

User
i for each intermediate key,
(1) fork ..~ , ., (1) fork .
o ek . write the result to the
5 ~, output files
i e~~~ o -
assign assign
i .~ map reduce 4 ™\
split 0 . 6) writ output
split 1 ~——/4 : : >—>( e file 0
3) read (4) local write
-
split3 |
split 4 file 1
-= o _/
Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files
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Big Data Framework: Hadoop & Spark

 Apache Hadoop A
— Open-source MapReduce Framework D]DZIQ]
— Hadoop Distributed File System (HDFS)
— Hadoop YARN Resource Management

— MapReduce Java APIs
— more than half of the Fortune 50 used Hadoop (2013) _J *7

* Apache Spark

— Fast and general engine for large-scale
data processing.
— Running on HDFS

— Provides Java, Scala, Python APIs for
e Database
* Machine learning
* Graph algorithm >




And, in Conclusion ...

Warehouse-Scale Computers (WSCs)

— New class of computers

— Scalability, energy efficiency, high failure rate
Cloud Computing

— Benefits of WSC computing for third parties

— “Elastic” pay as you go resource allocation
Request-Level Parallelism

— High request volume, each largely independent of other
— Use replication for better request throughput, availability

MapReduce Data Parallelism

— Map: Divide large data set into pieces for independent parallel processing
— Reduce: Combine and process intermediate results to obtain final result
— Hadoop, Spark
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