
CS 110
Computer Architecture

Warehouse-Scale Computing, MapReduce,
and Spark

1
Slides based on UC Berkeley's CS61C

Instructors:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s

School of Information Science and Technology SIST

ShanghaiTech University

https://robotics.shanghaitech.edu.cn/courses/ca/22s

Review: FPGA

• Main components
– Functional block

• Logic element, LUT

– I/O blocks
– Routing network

2

Design Tools for FPGA

3

FPGA Design Flow
Register-transfer level (RTL)
models a synchronous digital
circuit in terms of the flow of
digital signals (data) between
hardware registers, and the
logical operations performed on
those signals.

A visual
representation
of design

4

Time Profile for Design Flow Steps

Logic Optimization and routing steps normally consume
the major part of the design flow time.

CAD Steps Time (second) Percentage (%)

Logic Optimization 1,859 43.14

Technology Mapping 156 3.62

Placement 854 19.82

Routing 1,341 31.12

Bitstream Generation 99 2.30

5

FPGA Technology Mapping

Technology mapping step restructures the primitive logic gates, generated from
the logic optimization step, into sets of 4-input functional blocks (we assume
one functional block contains only one logic element in this example).

FB3

FB1

FB2

6

FPGA Placement and Routing

The placement step finds physical locations for functional blocks, while the
routing step finds physical routes for logic connections.

FB3

FB1

FB2
FB3

FB2

FB1

7

HDL

• A designed circuit can be specified through a
schematic diagram, or an HDL program

• HDL: hardware description language
– For both ASIC and FPGA

• Two common HDLs
– VHDL
– Verilog

• From HDL to Bitstream
– Describe your design using HDL programs
– Use tools to synthesize, configure and test with FPGA

8

Agenda
• Warehouse Scale Computing

• Request-level Parallelism
e.g. Web search

• Data-level Parallelism
– MapReduce

– Hadoop, Spark

9

New-School Machine Structures

• Parallel Requests
Assigned to computer
e.g., Search “Avatar 2”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Deep Learning for

image classification

• Hardware descriptions
All gates @ one time

• Programming Languages 10

Smart
Phone

Warehouse
Scale

Computer

Logic Gates

Core Core…

Memory (Cache)

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Software Hardware

Harness
Parallelism &
Achieve High
Performance

Google’s WSCs

115/19/22

Ex: In Oregon

Containers in WSCs

12

Inside WSC Inside Container

Server, Rack, Array

13

A Giant Computer

• Sunway TaihuLight
!"#$%& 125.436PFlops

'()*+,%& 93.015PFlops

-./01 234260102567-./

89-./:; 4096<:

'89-./7; 10649600:

!"=>? 1310720 GB

@A!" Raise Linux

BCDE CFC++FFortran

GHDEIJK MPIFOpenMPFOpenACCL

MMN?O 230TB

PQ?O 10PBRST288GB/s

UQ?O 10PBRST32GB/s

http://www.nsccwx.cn/swsource/5d2fe23624364f0351459262

14

Google Server Internals

15

Google Server

Open Compute Project
• Share designs of data center products

– Facebook, Intel, Nokia, Google, Apple,
Microsoft, Seagate Technology, Dell, Cisco,
Goldman Sachs, Lenovo, …

• Design and enable the delivery of the
most efficient server, storage and data
center hardware designs for scalable
computing.

• Openly sharing ideas, specifications and
other intellectual property is the key to
maximizing innovation and reducing
operational complexity

• All Facebook Data Centers are 100% OCP

16

Warehouse-Scale Computers
• Datacenter
– Collection of 10,000 to 100,000 servers
– Networks connecting them together

• Single gigantic machine
• Very large applications (Internet service):

search, email, video sharing, social networking
• Very high availability
• “…WSCs are no less worthy of the expertise of computer

systems architects than any other class of machines”
Barroso and Hoelzle, 2009

17

Unique to WSCs
• Ample Parallelism
– Request-level Parallelism: e.g., web search
– Data-level Parallelism: e.g., image classifier training

• Scale and its Opportunities/Problems
– Scale of economy: low per-unit cost
– Cloud computing: rent computing power with low costs

(e.g., AWS)
– High # of failures

e.g.: 4 disks/server, annual failure rate: 4%
à WSC of 50,000 servers: 1 disk fail/hour

• Operation Cost Count
– Longer life time (>10 years)
– Cost of equipment purchases << cost of ownership

18

50000×4×4%
365×24 ≈ 0.913

WSC Architecture

19

1U Server:
8 cores,
16 GB DRAM,
4x1 TB disk

Rack:
40-80 severs,
Local Ethernet (1-10Gbps) switch

Array (aka cluster):
16-32 racks
Expensive switch
(10X bandwidth à 100x cost)

WSC Storage Hierarchy

20

1U Server:
DRAM: 16GB, 0.1us, 20GB/s
Disk: 2TB, 104us, 200MB/s

Rack(80 severs):
DRAM: 1TB, 300us, 100MB/s
Disk: 160TB, 11ms, 100MB/s

Array(30 racks):
DRAM: 30TB, 500us, 10MB/s
Disk: 4.80PB, 12ms, 10MB/s

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

Workload Variation

• Online service: Peak usage 2X off-peak
21

Noon Midnight

W
or

kl
oa

d

2X

Impact on WSC software
• Latency, bandwidth à Performance
– Independent data set within an array

– Locality of access within server or rack

• High failure rate à Reliability, Availability
– Preventing failures is expensive

– Cope with failures gracefully

• Varying workloads à Scalability, Availability
– Scale up and down gracefully

• More challenging than software for single computers!

22

Power Usage Effectiveness
• Energy efficiency
– Primary concern in the design of WSC
– Important component of the total cost of ownership

• Power Usage Effectiveness (PUE):

– A power efficiency measure for WSC
– Not considering efficiency of servers, networking
– Perfection = 1.0

– Google WSC’s PUE = 1.2
23

Total Building Power
IT Equipment Power

PUE in the Wild (2007)

24

LBNL Average 1.83

25

Load Profile of WSCs

• Average CPU utilization of 5,000 Google servers, 6 month period
• Servers rarely idle or fully utilized, operating most of the time at

10% to 50% of their maximum utilization
26

Energy-Proportional Computing:
Design Goal of WSC

• Energy = Power x Time, Efficiency = Computation / Energy
• Desire:

– Consume almost no power when idle (“Doing nothing well”)
– Gradually consume more power as the activity level increases

27

Cause of Poor Energy Proportionality

28

• CPU: 50% at peek, 30% at idle
• DRAM, disks, networking: 70% at idle!
• Need to improve the energy efficiency of peripherals

Cloud Computing: Scale of Economy

29

• May 2017 AWS Instances & Prices
• Closest computer in WSC example is Standard Extra
• At these low rates, Amazon EC2 can make money!

– even if used only 50% of time
• Virtual Machine (VM) plays an important role

Name Memory vCPUs Storage Arch
Network

Performance
Linux On
Demand

M1 General Purpose Small 1.7 GB 1 160 GB 32/64-bit Low $0.044 hourly
M1 General Purpose Medium 3.75 GB 1 410 GB 32/64-bit Moderate $0.087 hourly
M1 General Purpose Extra
Large 15.0 GB 4 1680 GB 64-bit High $0.35 hourly
C1 High-CPU Medium 1.7 GB 2 350 GB 32/64-bit Moderate $0.13 hourly
C1 High-CPU Extra Large 7.0 GB 8 1680 GB 64-bit High $0.52 hourly
I2 Extra Large 30.5 GB 4 800 GB 64-bit Moderate $0.853 hourly
I2 Double Extra Large 61.0 GB 8 1600 GB 64-bit Moderate $1.705 hourly
M4 Large 8.0 GB 2 EBS only 64-bit Moderate $0.108 hourly
M4 Extra Large 16.0 GB 4 EBS only 64-bit High $0.215 hourly
M4 16xlarge 256.0 GB 64 EBS only 64-bit 20 Gigabit $3.447 hourly
General Purpose GPU Extra
Large 61.0 GB 4 EBS only 64-bit High $0.9 hourly
General Purpose GPU 16xlarge 732.0 GB 64 EBS only 64-bit 20 Gigabit $14.4 hourly
X1 Extra High-Memory 16xlarge 976.0 GB 64 1920 GB 64-bit 10 Gigabit $6.669 hourly

Agenda
• Warehouse Scale Computing

• Request-level Parallelism
e.g. Web search

• Data-level Parallelism
– Hadoop, Spark

– MapReduce

30

Request-Level Parallelism (RLP)
• Hundreds of thousands of requests per sec.
– Popular Internet services like web search, social

networking, …

– Such requests are largely independent
• Often involve read-mostly databases
• Rarely involve read-write sharing or synchronization

across requests

• Computation easily partitioned across different
requests and even within a request

31

Google Query-Serving Architecture

32

Anatomy of a Web Search

33

Anatomy of a Web Search (1/3)
• Google “Avatar 2”
– Direct request to “closest” Google WSC
– Front-end load balancer directs request to one of many

arrays (cluster of servers) within WSC
– Within array, select one of many Google Web Servers (GWS)

to handle the request and compose the response pages

– GWS communicates with Index Servers to find documents
that contains the search word, “Avatar 2”

– Return document list with associated relevance score

34

Anatomy of a Web Search (2/3)
• In parallel,
– Ad system: run ad auction for bidders on search terms

• Use docids (Document IDs) to access indexed documents
• Compose the page
– Result document extracts (with keyword in context)

ordered by relevance score

– Sponsored links (along the top) and advertisements (along
the sides)

35

Anatomy of a Web Search (3/3)
• Implementation strategy
– Randomly distribute the entries

– Make many copies of data (a.k.a. “replicas”)

– Load balance requests across replicas

• Redundant copies of indices and documents

– Breaks up search hot spots, e.g., “Avatar 2”

– Increases opportunities for request-level parallelism

– Makes the system more tolerant of failures

36

Agenda
• Warehouse Scale Computing

• Request-level Parallelism
e.g. Web search

• Data-level Parallelism
– MapReduce

– Hadoop, Spark

37

Data-Level Parallelism (DLP)
• SIMD
– Supports data-level parallelism in a single machine

– Additional instructions & hardware

e.g., Matrix multiplication in memory

• DLP on WSC

– Supports data-level parallelism across multiple machines

– MapReduce & scalable file systems

38

Problem Statement

• How to process large amounts of raw data (crawled
documents, request logs, …) every day to compute
derived data (inverted indices, page popularity, …),
when computation is conceptually simple but input
data is large and distributed across 100s to 1000s of
servers, so as to finish in reasonable time?

• Challenge: Parallelize computation, distribute data,
tolerate faults without obscuring simple computation
with complex code to deal with issues

39

Solution: MapReduce

• Simple data-parallel programming model and
implementation for processing large datasets

• Users specify the computation in terms of
– a map function, and
– a reduce function

• Underlying runtime system
– Automatically parallelize the computation across large

scale clusters of machines
– Handles machine failure
– Schedule inter-machine communication to make efficient

use of the networks

40

What is MapReduce used for?
• At Google:

– Index construction for Google Search
– Article clustering for Google News
– Statistical machine translation
– For computing multi-layers street maps

• At Yahoo!:
– “Web map” powering Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook:
– Data mining
– Ad optimization
– Spam detection

41

Map/Reduce Programming Model

– Map computation across many objects
• E.g., 1010 Internet web pages

– Aggregate results in many different ways
– System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004

42

Inspiration: Map & Reduce Functions,
ex: Python

Calculate :

43

n2
n=1

4

∑

A = [1, 2, 3, 4]
def square(x):

return x * x
def sum(x, y):

return x + y

reduce(sum,
map(square, A))

1 2 3 4

1 4 9 16

5 25

30

• Map: (in_key, in_value) à list(interm_key, interm_val)
map(in_key, in_val):
// DO WORK HERE
emit(interm_key, interm_val)

– Slice data into “shards” or “splits” and distribute to workers
– Compute set of intermediate key/value pairs

• Reduce: (interm_key, list(interm_value)) à list(out_value)
reduce(interm_key, list(interm_val)):
// DO WORK HERE
emit(out_key, out_val)

– Combines all intermediate values for a particular key
– Produces a set of merged output values (usually just one)

MapReduce Programming Model

44

MapReduce Word Count Example

45

that that is is that that is not is not is that it it is

is 1, that 1, that 1 Is 1, that 1, that 1 is 1, is 1, not 1,not 1 is 1, is 1, it 1, it 1, that 1

Map 1 Map 2 Map 3 Map 4

Reduce 1 Reduce 2
is 1 that 1,1is 1,1 that 1,1,1,1is 1,1,1,1,1,1
it 1,1

that 1,1,1,1,1
not 1,1

is 6; it 2 not 2; that 5

Shuffle

Collect

is 6; it 2; not 2; that 5

Distribute

that 1, that 1, is 1 Is 1, that 1, that 1 is 1, not 1, is 1, not 1 is 1, that 1, it 1, it 1, is 1 Local Sort

User-written Map function reads the document data and
parses out the words. For each word, it writes the (key, value)
pair of (word, 1). That is, the word is treated as the intermediate
key and the associated value of 1 means that we saw the word
once.

Map phase: (doc name, doc contents) à list(word, count)
// “I do I learn” à [(“I”,1),(“do”,1),(“I”,1),(“learn”,1)]
map(key, value):
for each word w in value:

emit(w, 1)

MapReduce Word Count Example

46

The intermediate data is then sorted by MapReduce by keys and
the user’s Reduce function is called for each unique key. In this
case, Reduce is called with a list of a "1" for each occurrence of
the word that was parsed from the document. The function adds
them up to generate a total word count for that word.

Reduce phase: (word, list(counts)) à (word, count_sum)
// (“I”, [1,1]) à (“I”,2)
reduce(key, values):
result = 0
for each v in values:

result += v
emit(key, result)

MapReduce Word Count Example

47

MapReduce Processing Example:
Count Word Occurrences

• Pseudo Code: for each word in input, generate <key=word, value=1>
• Reduce sums all counts emitted for a particular word across all mappers

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_value:
EmitIntermediate(w, "1"); // Produce count of words

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// intermediate_values: a list of counts
int result = 0;
for each v in intermediate_values:
result += ParseInt(v); // get integer from key-value

Emit(output_key, result);

48

MapReduce Implementation

49

MapReduce Execution

50

(1) Split inputs,
start up programs
on a cluster of
machines

MapReduce Execution

51

(2) Assign map &
reduce tasks to
idle workers

MapReduce Execution

52

(3) Perform a map task,
generate intermediate
key/value pairs
(4) Write to the buffers

MapReduce Execution

53

(5) Read intermediate
key/value pairs,
sort them by its key.

MapReduce Execution

54

(6) Perform a reduce task
for each intermediate key,
write the result to the
output files

Big Data Framework: Hadoop & Spark
• Apache Hadoop
– Open-source MapReduce Framework
– Hadoop Distributed File System (HDFS)
– Hadoop YARN Resource Management
– MapReduce Java APIs
– more than half of the Fortune 50 used Hadoop (2013)

• Apache Spark
– Fast and general engine for large-scale

data processing.
– Running on HDFS
– Provides Java, Scala, Python APIs for

• Database
• Machine learning
• Graph algorithm 55

And, in Conclusion ...

• Warehouse-Scale Computers (WSCs)
– New class of computers
– Scalability, energy efficiency, high failure rate

• Cloud Computing
– Benefits of WSC computing for third parties
– “Elastic” pay as you go resource allocation

• Request-Level Parallelism
– High request volume, each largely independent of other
– Use replication for better request throughput, availability

• MapReduce Data Parallelism
– Map: Divide large data set into pieces for independent parallel processing
– Reduce: Combine and process intermediate results to obtain final result
– Hadoop, Spark

57

58

