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Review

• WSC
– A giant computer

• Map/Reduce
– Map
– Reduce
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Review: Map/Reduce for 
Sparse Matrices

– Task: Compute product C = A·B
– Assume most matrix entries are 0

• Motivation
– Core problem in scientific computing
– Challenging for parallel execution
– Demonstrate expressiveness of Map/Reduce
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Computing Sparse Matrix Product

– Represent matrix as list of nonzero entries
árow, col, value, matrixIDñ

– Strategy
• Phase 1: Compute all products ai,k · bk,j
• Phase 2: Sum products for each entry i,j
• Each phase involves a Map/Reduce
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Phase 1 Map of Matrix Multiply

– Group values ai,k and bk,j according to key k
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Phase 1 “Reduce” of Matrix Multiply

– Generate all products ai,k · bk,j
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– Group products ai,k · bk,j with matching values of i and j
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Phase 2 Reduce of Matrix Multiply

– Sum products to get final entries
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Lessons from Sparse Matrix Example

• Associative matching is powerful communication 
primitive
– Intermediate step in Map/Reduce

• Similar Strategy Applies to Other Problems
– Shortest path in graph
– Database join

• Many Performance Considerations
– Pairwise Element Computation with MapReduce 

(HPDC ’10, by Kiefer, Volk, Lehner from TU Dresden)
– Should do systematic comparison to other sparse 

matrix implementations
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CACHE COHERENCE
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Simple Multi-core Processor
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Multiprocessor Caches
• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed 

recently
• Only cache misses have to access the shared common memory
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Shared Memory and Caches
• What if? 
– Processors 1 and 2 read Memory[1000] (value  20)
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Shared Memory and Caches
• Now:
– Processor 0 writes Memory[1000] with 40

14

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?



Keeping Multiple Caches Coherent
• Architect’s job: shared memory 

=> keep cache values coherent
• Idea: When any processor has cache miss or 

writes, notify other processors via interconnection 
network
– If only reading, many processors can have copies
– If a processor writes, invalidate any other copies

• Write transactions from one processor, other 
caches  “snoop” the common interconnect 
checking for tags they hold
– Invalidate any copies of same address modified in other 

cache

15



Shared Memory and Caches
• Example, now with cache coherence
– Processors 1 and 2 read Memory[1000]
– Processor 0 writes Memory[1000] with 40
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Snoopy Cache, Goodman 1983

• Idea: Have cache watch (or snoop upon) other memory 
transactions, and then “do the right thing”

• Snoopy cache tags are dual-ported
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Optimized Snoop with Level-2 Caches

• Processors often have two-level caches
– small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
– invalidation in L2 =>  invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth
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Cache Coherency Tracked by Block

• Suppose block size is 32 bytes
• Suppose Processor 0 reading and writing variable X, Processor 

1 reading and writing variable Y
• Suppose in X location 4000,  Y in 4012
• What will happen?
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Coherency Tracked by Cache Block

• Block ping-pongs between two caches even 
though processors are accessing disjoint 
variables

• Effect called false sharing 
• How can you prevent it?
– Keep variables far apart (at least block size (64 

byte))
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Shared Memory and Caches
• Use valid bit to “unload” cache lines (in 

Processors 1 and 2)
• Dirty bit tells me: “I am the only one using this 

cache line”! => no need to announce on 
Network!
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Review: Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block, impossible to avoid; small effect for long-running 

programs
– Solution: increase block size (increases miss penalty; very large blocks 

could increase miss rate)
• Capacity (not compulsory and…)

– Cache cannot contain all blocks accessed by the program even with 
perfect replacement policy in fully associative cache

– Solution: increase cache size (may increase access time)
• Conflict (not compulsory or capacity and…):

– Multiple memory locations map to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)
– Solution 3: improve replacement policy, e.g.. LRU
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Fourth “C” of Cache Misses:
Coherence Misses

• Misses caused by coherence traffic with other 
processor

• Also known as communication misses because 
represents data moving between processors 
working together on a parallel program

• For some parallel programs, coherence misses 
can dominate total misses
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Advanced Caches:
MRU is LRU
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Cache Inclusion

• Multilevel caches  
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If all blocks in the higher level cache are also present in the lower level cache, then the 
lower level cache is said to be inclusive of the higher level cache.



Inclusive
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Exclusive
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Non-inclusive
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Real-world CPUs
• Intel Processors

– Sandy bridge, inclusive
– Haswell, inclusive
– Skylake-S, inclusive
– Skylake-X, non-inclusive

• ARM Processors
– ARMv7, non-inclusive
– ARMv8, non-inclusive

• AMD
– K6, exclusive
– Zen, inclusive
– Shanghai, LLC non-inclusive
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Inclusive, or not?

• Inclusive cache eases coherence
– A cache block in a higher-level surely existing in lower-

level(s)
– A non-inclusive LLC, say L2 cache, which needs to evict 

a block, must ask L1 cache if it has the block, because 
such information is not present in LLC.

• Non-inclusive cache yields higher performance 
though, why?
– No back invalidation
– More data can be cached ß larger capacity
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‘Sneaky’ LRU for Inclusive Cache
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As a result, MRU block that should be retained might be evicted, which 
causes performance penalty.  

Should you be interested, you can click https://doi.org/10.1109/MICRO.2010.52 to read the 
related research paper for details.  

What if LLC is non-inclusive?

https://doi.org/10.1109/MICRO.2010.52


Advanced Caches:
Reduce the size of LLC
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Reduce LLC for high 
performance

• Problem
– A considerable portion of the shared LLC is dead

• Why?
– LLC accesses, caused by L1 and L2 misses
– Locality not accurate due to filtering by L1 and L2
– LLC uniformly handles any access request for line 

allocation/deallocation

• How to resolve?
– Leverage the reuse locality to selectively allocate LLC lines

Jorge Albericio, Pablo Ibáñez, Víctor Viñals, and José M. Llabería. 2013. The reuse cache: downsizing the shared last-level cache. In Proceedings of the 46th 
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46). Association for Computing Machinery, New York, NY, USA, 310–321.
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Selective allocation 
upon reuse locality

• Reuse locality

• Selective allocation
– Tag and cache line decoupled
• Conventionally, one tag for one cache line
• Now, more tags than cache lines

– Some place holders

– Only keeping reused cache line
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Allocation policy
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Advanced Caches:
LLC is not monolithic
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LLC is not monolithic
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Previously, it’s considered that, to CPU cores, LLC is monolithic. No matter 
where a cache block in the LLC, a core would load it into private L2 and L1 
cache with the same time cost. 

Intel® Xeon® Processor E5-2667 v3 



LLC is fine-grained
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Slice-aware memory management

• The idea seems simple
– Put your data closer to your program (core)

• But it not EASY to do so
– Cache management is undocumented, not to 

mention fine-grained slices
– Researchers did a lot of efforts

• Click https://doi.org/10.1145/3302424.3303977 for details
• They managed to improve the average performance by 12.2% for 

GET operations of a key-value store.
• 12.2% is a lot, if you consider the huge transactions every day for 

Google, Taobao, Tencent, JD, etc.
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Conclusion

• Map/Reduce can be useful for you
– e.g., matrix multiplication

• There are many interesting facts of CPU cache
• To make the best of cache can boost your 

program’s performance!
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