
CS 110
Computer Architecture

Advanced Caches

Instructor:
Sören Schwertfeger and Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s

School of Information Science and Technology SIST

ShanghaiTech University

1

Slides based on UC Berkeley's CS61C (2015)

https://robotics.shanghaitech.edu.cn/courses/ca/22s

Review

• WSC
– A giant computer

• Map/Reduce
– Map
– Reduce

2

Review: Map/Reduce for
Sparse Matrices

– Task: Compute product C = A·B
– Assume most matrix entries are 0

• Motivation
– Core problem in scientific computing
– Challenging for parallel execution
– Demonstrate expressiveness of Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
-10 -80

-60 -250

-170-460

C

X =

3

Computing Sparse Matrix Product

– Represent matrix as list of nonzero entries
árow, col, value, matrixIDñ

– Strategy
• Phase 1: Compute all products ai,k · bk,j
• Phase 2: Sum products for each entry i,j
• Each phase involves a Map/Reduce

10 20

30 40

50 60 70

A
-1

-2 -3

-4

B
1 110

A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

4

Phase 1 Map of Matrix Multiply

– Group values ai,k and bk,j according to key k

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = row

1 110
A

1 320
A

2 230
A

2 340
A

3 150
A

3 260
A

3 370
A

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

Key = col

5

Phase 1 “Reduce” of Matrix Multiply

– Generate all products ai,k · bk,j

1 1-10
C

3 1-50
C

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 2

Key = 3

Key = 1
1 110

A

3 150
A

2 230
A

3 260
A

1 320
A

2 340
A

3 370
A

1 1-1
B

2 1-2
B

2 2-3
B

3 2-4
B

X

X

X

6

– Group products ai,k · bk,j with matching values of i and j

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

Key = row,col

Phase 2 Map of Matrix Multiply

7

Phase 2 Reduce of Matrix Multiply

– Sum products to get final entries

1 1-10
C

2 1-60
C

2 2-250
C

3 1-170
C

1 2-80
C

3 2-460
C

Key = 1,2

Key = 1,1

Key = 2,1

Key = 2,2

Key = 3,1

Key = 3,2

1 1-10
C

3 1-50
A

2 1-60
C

2 2-90
C

3 1-120
C

3 2-180
C

1 2-80
C

2 2-160
C

3 2-280
C

-10 -80

-60 -250

-170-460

C

8

Lessons from Sparse Matrix Example

• Associative matching is powerful communication
primitive
– Intermediate step in Map/Reduce

• Similar Strategy Applies to Other Problems
– Shortest path in graph
– Database join

• Many Performance Considerations
– Pairwise Element Computation with MapReduce

(HPDC ’10, by Kiefer, Volk, Lehner from TU Dresden)
– Should do systematic comparison to other sparse

matrix implementations

9

CACHE COHERENCE

10

Simple Multi-core Processor

11

Processor 0

Control

Datapath
PC

Registers
(ALU)

Memory
Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers
(ALU)

Processor 1
Memory
Accesses

Multiprocessor Caches
• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed

recently
• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

12

Shared Memory and Caches
• What if?
– Processors 1 and 2 read Memory[1000] (value 20)

13

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000

1000 1000

20

0 1 2

Shared Memory and Caches
• Now:
– Processor 0 writes Memory[1000] with 40

14

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?

Keeping Multiple Caches Coherent
• Architect’s job: shared memory

=> keep cache values coherent
• Idea: When any processor has cache miss or

writes, notify other processors via interconnection
network
– If only reading, many processors can have copies
– If a processor writes, invalidate any other copies

• Write transactions from one processor, other
caches “snoop” the common interconnect
checking for tags they hold
– Invalidate any copies of same address modified in other

cache

15

Shared Memory and Caches
• Example, now with cache coherence
– Processors 1 and 2 read Memory[1000]
– Processor 0 writes Memory[1000] with 40

16

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0
Write
Invalidates
Other Copies

1000

1000 40

1000 40

Snoopy Cache, Goodman 1983

• Idea: Have cache watch (or snoop upon) other memory
transactions, and then “do the right thing”

• Snoopy cache tags are dual-ported

17

Proc.

Cache

Snoopy read port
attached to Memory
Bus

Data
(lines)

Tags and
State

A

D

R/W

Used to drive Memory Bus
when Cache is Bus Master

A

R/W

Optimized Snoop with Level-2 Caches

• Processors often have two-level caches
– small L1, large L2 (usually both on chip now)

• Inclusion property: entries in L1 must be in L2
– invalidation in L2 => invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth

18

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

Cache Coherency Tracked by Block

• Suppose block size is 32 bytes
• Suppose Processor 0 reading and writing variable X, Processor

1 reading and writing variable Y
• Suppose in X location 4000, Y in 4012
• What will happen?

19

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028
Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

Coherency Tracked by Cache Block

• Block ping-pongs between two caches even
though processors are accessing disjoint
variables

• Effect called false sharing
• How can you prevent it?
– Keep variables far apart (at least block size (64

byte))

20

Shared Memory and Caches
• Use valid bit to “unload” cache lines (in

Processors 1 and 2)
• Dirty bit tells me: “I am the only one using this

cache line”! => no need to announce on
Network!

21

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

Review: Understanding Cache Misses:
The 3Cs

• Compulsory (cold start or process migration, 1st reference):
– First access to block, impossible to avoid; small effect for long-running

programs
– Solution: increase block size (increases miss penalty; very large blocks

could increase miss rate)
• Capacity (not compulsory and…)

– Cache cannot contain all blocks accessed by the program even with
perfect replacement policy in fully associative cache

– Solution: increase cache size (may increase access time)
• Conflict (not compulsory or capacity and…):

– Multiple memory locations map to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity (may increase access time)
– Solution 3: improve replacement policy, e.g.. LRU

22

Fourth “C” of Cache Misses:
Coherence Misses

• Misses caused by coherence traffic with other
processor

• Also known as communication misses because
represents data moving between processors
working together on a parallel program

• For some parallel programs, coherence misses
can dominate total misses

23

Advanced Caches:
MRU is LRU

24

Cache Inclusion

• Multilevel caches

25

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 6MB

Intel Ivy Bridge Cache Architecture (Core i5-3470)

If all blocks in the higher level cache are also present in the lower level cache, then the
lower level cache is said to be inclusive of the higher level cache.

Inclusive

26

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due
to cache replacement

A

B

B

Evict B from L2 due
to cache replacement

A

B

B

A

Back
invalidation

𝐿! ⫋ 𝐿!"# (𝑛 ≥ 1)

Exclusive

27

L2

L1

Initial state Read A miss; load A
into L1

A

Read B miss; load B
into L1

A B

Evict A from L1 due
to cache replacement
and place in L2

BA

A

𝐿!⋂𝐿!"# = ∅ (𝑛 ≥ 1)

Non-inclusive

28

L2

L1

Initial state Read A miss; load A
into L1 and L2

A

A

Read B miss; load B
into L1 and L2

A

A B

B

Evict A from L1 due
to cache replacement

A

B

B

Evict B from L2 due
to cache replacement

A

B

B

A

Real-world CPUs
• Intel Processors

– Sandy bridge, inclusive
– Haswell, inclusive
– Skylake-S, inclusive
– Skylake-X, non-inclusive

• ARM Processors
– ARMv7, non-inclusive
– ARMv8, non-inclusive

• AMD
– K6, exclusive
– Zen, inclusive
– Shanghai, LLC non-inclusive

29

Inclusive, or not?

• Inclusive cache eases coherence
– A cache block in a higher-level surely existing in lower-

level(s)
– A non-inclusive LLC, say L2 cache, which needs to evict

a block, must ask L1 cache if it has the block, because
such information is not present in LLC.

• Non-inclusive cache yields higher performance
though, why?
– No back invalidation
– More data can be cached ß larger capacity

30

‘Sneaky’ LRU for Inclusive Cache

31

Inclusive
LLC

L1

A

A B

B

CPU
Core

A is frequently used A is frequently hit in L1
cache. It is MRU in L1 cache.

In LLC, A is not
frequently hit

In LLC, A is LRU
A is evicted for
replacement, in
both L1 and L2

As a result, MRU block that should be retained might be evicted, which
causes performance penalty.

Should you be interested, you can click https://doi.org/10.1109/MICRO.2010.52 to read the
related research paper for details.

What if LLC is non-inclusive?

https://doi.org/10.1109/MICRO.2010.52

Advanced Caches:
Reduce the size of LLC

32

Reduce LLC for high
performance

• Problem
– A considerable portion of the shared LLC is dead

• Why?
– LLC accesses, caused by L1 and L2 misses
– Locality not accurate due to filtering by L1 and L2
– LLC uniformly handles any access request for line

allocation/deallocation

• How to resolve?
– Leverage the reuse locality to selectively allocate LLC lines

Jorge Albericio, Pablo Ibáñez, Víctor Viñals, and José M. Llabería. 2013. The reuse cache: downsizing the shared last-level cache. In Proceedings of the 46th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-46). Association for Computing Machinery, New York, NY, USA, 310–321.

33

More than 83.8% LLC lines
not productive

Selective allocation
upon reuse locality

• Reuse locality

• Selective allocation
– Tag and cache line decoupled
• Conventionally, one tag for one cache line
• Now, more tags than cache lines

– Some place holders

– Only keeping reused cache line

34

1. 10/200 hit
2. Most hits absorbed by few sets

Allocation policy

35

Tag
array hit?

Put in tag, no
allocation of LLC line

No

Allocate LLC line, load data

Yes

Linked
to LLC
line?

No

Yes

Return LLC
cache

On replacement, the tag of evicted LLC line is
kept. Once hit again, i.e., reused, data

reloaded again.

Advanced Caches:
LLC is not monolithic

36

LLC is not monolithic

37

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 20MB

Previously, it’s considered that, to CPU cores, LLC is monolithic. No matter
where a cache block in the LLC, a core would load it into private L2 and L1
cache with the same time cost.

Intel® Xeon® Processor E5-2667 v3

LLC is fine-grained

38

Core 0

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 1

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 2

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

Core 3

L1 Inst.
32KB

L1 Data
32KB

L2 256KB

LLC (L3) Unified 20MBLLC (L3) in Eight Slices

A A

From the paper https://doi.org/10.1145/3302424.3303977

Intel® Xeon® Processor E5-2667 v3

https://doi.org/10.1145/3302424.3303977

Slice-aware memory management

• The idea seems simple
– Put your data closer to your program (core)

• But it not EASY to do so
– Cache management is undocumented, not to

mention fine-grained slices
– Researchers did a lot of efforts

• Click https://doi.org/10.1145/3302424.3303977 for details
• They managed to improve the average performance by 12.2% for

GET operations of a key-value store.
• 12.2% is a lot, if you consider the huge transactions every day for

Google, Taobao, Tencent, JD, etc.

39

https://doi.org/10.1145/3302424.3303977

Conclusion

• Map/Reduce can be useful for you
– e.g., matrix multiplication

• There are many interesting facts of CPU cache
• To make the best of cache can boost your

program’s performance!

47

