
CS 110
Computer Architecture 

Summary

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/22s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/22s/


Final Exam

• Time (90 minutes + 10 minutes)
– 9:00am – 10:40am, 18th June
– Any submission past 10:40:00 would not be evaluated

• Twelve groups, not 9 for mid-term exam
– To be announced with 12 Tencent Meeting rooms
– Set your name in the Meeting Room as StudentID-Name

• Check the email on final exams received on 1st June
– Dual devices (双设备)
– Do not be late for the exam

• NO cheating, NO plagiarism

2

Admin



Final Exam
• Open-book 
• Testing for final exam

– Assitant inviligator would schedule, and pls attend Tencent Meetings
• QQ groups for online annonucement and clarification 

– Assitant inviligators create and pls join corresponding one
– Inviligators may broadcast messages during the exam
– If you got any question, do a private chat with the assitant inviligator 

• One file to be submitted in the final exam
– Three channels

• Gradescope (preferred), ShanghaiTech Pan, email
– Name your file in a format of Group𝑥-StudentID-NamePinyin.pdf or Group𝑥-

StudentID-NamePinyin.zip
• e.g., Group3-2020999999-ZhangSan3.pdf

• NO printing of exam papers
– Handwrite your answers on blank sheet

3

Admin



Meltdown & Spectre

• Meltdown
– Out of order execution

• Spectre
– Speculative execution

4



Spectre:
Speculative execution

• Speculative execution
– Example: branch prediction
– Covered in L13

5

// x is controlled by attacker.
1. if (x < array1_size)
2. y = array2[array1[x] * 4096]

Prerequisites:
i. array1[x], with an out-of-bound x
larger than array1_size, resolves to a 
secret byte 𝑘 that is cached;
ii. array1_size and array2 uncached.
iii. Previous x values have been valid.

ç cache miss, so run next line due to prediction history
ç array1[x] cache hit, as 𝑘 is cached, 

so load array2[𝑘 * 4096]

Regarding a misprediction with an illegal x, 
array2[𝑘 * 4096]will not be used, but has 
been loaded into CPU cache.
We can use Flush+Reload to guess 𝑘 with 
array2.

The aim of Spectre: 
to read out a victim’s sensitive 

information

array1

array1_size

Last x array2previous x

𝑘



The Impact of Spectre

• Processors can be tricked in speculative execution 
to modify cache state
– Leaving attackers an exploitable opportunity 

• Sensitive information of a victim program may be 
leaked

• Speculative Store Bypass
– A newer variant of Spectre (v4) could allow an 

attacker to retrieve older but stale values in a CPU’s 
stack or other memory locations.

– https://software.intel.com/security-software-
guidance/software-guidance/speculative-store-bypass

6Spectre https://spectreattack.com/spectre.pdf

https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://spectreattack.com/spectre.pdf


Meltdown and Spectre

• More complicated than examples here
• Multiple variants today
• Many processors, OSes, applications affected
– PC, mobile devices, cloud

• Many proposals to mitigate their impacts

7

No announced RISC-V silicon is susceptible, and the popular open-source RISC-V 
Rocket processor is unaffected as it does not perform memory accesses 
speculatively.  https://riscv.org/2018/01/more-secure-world-risc-v-isa/

However, there is a workshop paper “Replicating and Mitigating Spectre Attacks on 
a Open-Source RISC-V Microarchitecture” 
https://carrv.github.io/2019/papers/carrv2019_paper_5.pdf

https://riscv.org/2018/01/more-secure-world-risc-v-isa/
https://carrv.github.io/2019/papers/carrv2019_paper_5.pdf


Vulnerable Architecture

8

CPU with
Out of order, speculative execution

CPU Cache

DRAM

Disk

Network



Let us review CA now.

9



New School Computer Architecture (1/3)

10

Personal 
Mobile 
Devices



11

New School Computer Architecture (2/3)



12

New School Computer Architecture (3/3)



Old Machine Structures

13

CA

I/O systemProcessor

Compiler
Operating
System
(Mac OSX)

Application (ex: browser)

Digital Design
Circuit Design

Instruction Set
Architecture

Datapath & Control 

transistors

MemoryHardware

Software Assembler



New-School Machine Structures
(It’s a bit more complicated!)

• Parallel Requests
Assigned to computer
e.g., Search “Avatar 2”

• Parallel Threads
Assigned to core
e.g., Lookup, Ads

• Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

• Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words

• Hardware descriptions
All gates functioning in 

parallel at same time
• Programming Languages 14

Smart
Phone

Warehouse 
Scale 

Computer

Software        Hardware

Leverage
Parallelism &
Achieve High
Performance

Logic Gates

Core Core…

Memory               

Input/Output

Computer

Cache Memory

Core

Instruction Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0



Great Ideas in Computer Architecture

1. Design for Moore’s Law
2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy
6. Performance via 

Parallelism/Pipelining/Prediction

15



Powers of Ten inspired CA Overview

Going Top-Down cover 3 Views
1. Architecture (when possible)
2. Physical Implementation of that architecture
3. Programming system for that architecture 

and implementation (when possible)

• See http://www.powersof10.com/film

16

http://www.powersof10.com/film


Earth

17

107 meters



18

107 meters



19

106 meters



20

105 meters



The Dalles, Oregon

21

104 meters



The Dalles, Oregon

22

104 meters



Google’s Oregon WSC

23

103 meters



Google’s Oregon WSC

24

104 meters

103 meters102 meters10
 k

ilo
m

et
er

s



Google Warehouse

• 90 meters by 75 meters, 10 Megawatts
• Contains 40,000 servers, 190,000 disks
• Power Utilization Effectiveness: 1.23
– 85% of 0.23 overhead goes to cooling losses
– 15% of 0.23 overhead goes to power losses

• Contains 45, 40-foot long containers
– 8 feet × 9.5 feet × 40 feet

• 30 stacked as double layer, 15 as single layer

25



Containers in WSCs

26

102 meters
10

0 
m

et
er

s



Google Container

27

101 meters



Google Container

• 2 long rows, each  with 29 
racks

• Cooling below raised floor
• Hot air returned behind 

racks

28

100 meters
10

 m
et

er
s



Equipment Inside a Container

29

Server (in rack 
format):

7 foot Rack:  servers + Ethernet local 
area network switch in middle (“rack 
switch”)

Array (aka cluster):  
server racks + larger local 
area network switch 
(“array switch”) 10X 
faster => cost 100X: cost 
f(N2)



Great Ideas in Computer Architecture

1. Design for Moore’s Law
-- WSC, Container, Rack

2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy

-- Multiple WSCs, Multiple Racks, Multiple Switches
5. Memory Hierarchy
6. Performance via 

Parallelism/Pipelining/Prediction
-- Task level Parallelism, Data Level Parallelism

30



Google Server Internals

31

Google Server

10-1 meters
10

 c
en

tim
et

er
s



Facebook Datacenter

32



Software: Often uses MapReduce

• Simple data-parallel programming model and 
implementation for processing large datasets

• Users specify the computation in terms of 
– a map function, and 
– a reduce function

• Underlying runtime system
– Automatically parallelize the computation across 

large scale clusters of machines
– Handles machine failure
– Schedule inter-machine communication to make 

efficient use of the networks
33



Programming Multicore 
Microprocessor: OpenMP

#include <omp.h>
#include <stdio.h>
static long num_steps = 100000; 
int value[num_steps]; 
int reduce() 
{

int i; 
int sum = 0; 

#pragma omp parallel for private(x) reduction(+:sum)
for (i=1; i<= num_steps; i++){ 

sum = sum + value[i]; 
} 

}

34



Great Ideas in Computer Architecture

1. Design for Moore’s Law
-- More transistors = Multicore + SIMD

2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy

-- More transistors = Cache Memories
6. Performance via Parallelism/Pipelining/

Prediction
-- Thread-level Parallelism

35



AMD Opteron Microprocessor

36

10-2 meters
ce

nt
im

et
er

s



AMD Opteron Microarchitecture

72 physical 
registers

37



AMD Opteron Pipeline Flow
• For integer operations

− 12 stages (Floating Point is 17 stages)
−Up to 106 RISC-ops in progress

38



AMD Opteron Block Diagram

39

AGUAGU

Int Decode & Rename

FADD FMISCFMUL
44-entry
Load/Store
Queue

36-entry FP scheduler

FP Decode & Rename

ALU

AGU

ALU

MULT

ALU

Res Res Res

L1
Icache
64B

L1
Dcache
64KB

Fetch Branch
Prediction

Instruction Control Unit (72 entries)

Fastpath Microcode Engine
Scan/Align/Decode

µops



AMD Opteron Microprocessor

40

10-2 meters
ce

nt
im

et
er

s



AMD Opteron Core

41

10-3 meters
m

ill
im

et
er

s



Zoom into a Microchip

42



AMD Opteron Core

43

10-3 meters
m

ill
im

et
er

s



Programming One Core: 
C with Intrinsics 

void mmult(int n, float *A, float *B, float *C)
{

for ( int i = 0; i < n; i+=4 )
for ( int j = 0; j < n; j++ ) 
{

__m128 c0 = _mm_load_ps(C+i+j*n);
for( int k = 0; k < n; k++ )

c0 = _mm_add_ps(c0,
_mm_mul_ps(_mm_load_ps(A+i+k*n),  

_mm_load1_ps(B+k+j*n)));
_mm_store_ps(C+i+j*n, c0);

}
}

What are p
and s for?



Inner loop from gcc –O -S
Assembly snippet from innermost loop:

movaps (%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm8
movaps 16(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm7
movaps 32(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm6
movaps 48(%rax), %xmm9
mulps %xmm0, %xmm9
addps %xmm9, %xmm5



Great Ideas in Computer Architecture

1. Design for Moore’s Law
2. Abstraction to Simplify Design

-- Instruction Set Architecture, Micro-operations
3. Make the Common Case Fast
4. Dependability via Redundancy
5. Memory Hierarchy
6. Performance via 

Parallelism/Pipelining/Prediction
-- Instruction-level Parallelism (superscalar, pipelining)
-- Data-level Parallelism

46



SIMD Adder

• Four 32-bit adders that 
operate in parallel
– Data Level Parallelism

47



One 32-bit Adder

48



1 bit of 32-bit Adder

49



Complementary MOS Transistors 
(NMOS and PMOS) of NAND Gate

3v

X Y

0v

Z

50

x y z

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts
3 volts

3 volts

3 volts

3 volts

3 volts

0 volts

NAND gate



Physical Layout of NAND Gate

51

10-7 meters
10

0 
na

no
m

et
er

s



Scanning Electron Microscope

52

10-7 meters

Cross Section
Top View

10
0 

na
no

m
et

er
s



How to make a CMOS chip?

53



Block Diagram of Static RAM

54

10-6 meters



1 Bit SRAM in 6 Transistors

55



Physical Layout of SRAM Bit

56

10-7 meters
10

0 
na

no
m

et
er

s



SRAM Cross Section

57

10-7 meters
10

0 
na

no
m

et
er

s



DIMM Module

• DDR = Double Data Rate
– Transfers bits on Falling AND Rising Clock Edge

• Has Single Error Correcting, Double Error 
Detecting Redundancy (SEC/DED)
– 72 bits to store 64 bits of data
– Uses “Chip kill” organization so that if single 

DRAM chip fails can still detect failure
• Average server has 22,000 correctable errors 

and 1 uncorrectable error per year 

58



DRAM Bits

59

10-6 meters
1 

m
ic

ro
n



DRAM Cell in Transistors

60



Physical Layout of DRAM Bit

61



Cross Section of DRAM Bits

62

10-7 meters

10
0 

na
no

m
et

er
s



AMD Opteron Dependability

• L1 cache data is SEC/DED protected
• L2 cache and tags are SEC/DED protected
• DRAM is SEC/DED protected with chipkill
• On-chip and off-chip ECC protected arrays include 

autonomous, background hardware scrubbers
• Remaining arrays are parity protected 

– Instruction cache, tags and TLBs
– Data tags and TLBs
– Generally read only data that can be recovered 
from lower levels

63



• The blocked version of the i-j-k algorithm is written 
simply as (A,B,C are submatricies of a, b, c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)
for (k=0;k<N/r;k++)
C[i][j] += A[i][k]*B[k][j]

– r = block (sub-matrix) size (Assume r divides N)
– X[i][j] =  a sub-matrix of X, defined by block row i and 

block column j

Programming Memory Hierarchy: 
Cache Blocked Algorithm



Great Ideas in Computer Architecture

1. Design for Moore’s Law
-- Higher capacities caches and DRAM

2. Abstraction to Simplify Design
3. Make the Common Case Fast
4. Dependability via Redundancy

-- Parity, SEC/DEC
5. Memory Hierarchy

-- Caches, TLBs
6. Performance via Parallelism/Pipelining/Prediction

-- Data-level Parallelism

65



Course Summary

• As the field changes, Computer Architecture 
courses change, too!

• It is still about the software-hardware 
interface
– Programming for performance!
– Parallelism: Task-, Thread-, Instruction-, and Data-

MapReduce, OpenMP, C, SSE Intrinsics
– Understanding the memory hierarchy and its 

impact on application performance

66



67

All�the�best!


