

CS283: Robotics Spring 2024: Kinematics

Sören Schwertfeger / 师泽仁

ShanghaiTech University

KINEMATICS

Motivation

- Autonomous mobile robots move around in the environment. Therefore ALL of them:
 - <u>They need to know where they are.</u>
 - They need to know where their goal is.
 - They need to know **how** to get there.

•Odometry!

- Robot:
 - I know how fast the wheels turned =>
 - I know how the robot moved =>
 - I know where I am ☺

Odometry

Robot:

- I know how fast the wheels turned =>
- I know how the robot moved =>
- I know where I am ☺
- Marine Navigation: Dead reckoning (using heading sensor)

• Sources of error (AMR pages 269 - 270):

- Wheel slip
 - Uneven floor contact (non-planar surface)
 - Robot kinematic: tracked vehicles, 4 wheel differential drive..
- Integration from speed to position: Limited resolution (time and measurement)
- Wheel misalignment
- Wheel diameter uncertainty
- Variation in contact point of wheel

Mobile Robots with Wheels

- Wheels are the most appropriate solution for most applications
- Three wheels are sufficient to guarantee stability
- With more than three wheels an appropriate suspension is required
- Selection of wheels depends on the application

The Four Basic Wheels Types I

- a) Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point
- b) Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle

The Four Basic Wheels Types II

 c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point

Robotics

 d) Ball or spherical wheel: Suspension technically not solved

Characteristics of Wheeled Robots and Vehicles

- Stability of a vehicle is be guaranteed with 3 wheels
 - center of gravity is within the triangle with is formed by the ground contact point of the wheels.
- Stability is improved by 4 and more wheel
 - however, this arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow to overcome higher obstacles
 - but they require higher torque or reductions in the gear box.
- Most arrangements are non-holonomic (see chapter 3)
 - require high control effort
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.

Different Arrangements of Wheels I

Two wheels

Center of gravity below axle

• Three wheels

Different Arrangements of Wheels II

• Four wheels

Six wheels

Uranus, CMU: Omnidirectional Drive with 4 Wheels

- Movement in the plane has 3 DOF
 - thus only three wheels can be independently controlled
 - It might be better to arrange three swedish wheels in a triangle

MARS Rescue Robot: Tracked Differential Drive

- Kinematic Simplification:
 - 2 Wheels, located at the center

Differential Drive Robots

Ackermann Robot

- No sideways slip than differential drive during turning ⁽ⁱ⁾
- Cannot turn on the spot 🛞

Introduction: Mobile Robot Kinematics

• Aim

- Description of mechanical behavior of the robot for design and control
- Similar to robot manipulator kinematics
- However, mobile robots can move unbound with respect to its environment
 - there is no direct way to measure the robot's position
 - Position must be integrated over time
 - Leads to inaccuracies of the position (motion) estimate
 - -> the number 1 challenge in mobile robotics

COORDINATE SYSTEM

 $\mathcal{O}_{S[k]}$

 $\hat{\mathbf{x}}_{R[k]}$

Right Hand Coordinate System

- Standard in Robotics
- Positive rotation around X is anti-clockwise
- Right-hand rule mnemonic:
 - Thumb: z-axis
 - Index finger: x-axis
 - Second finger: y-axis
 - Rotation: Thumb = rotation axis, positive rotation in finger direction
- Robot Coordinate System:
 - X front
 - Z up (Underwater: Z down)
 - Y ???

 $\mathcal{O}_{R[k]}$

Odometry

With respect to the robot start pose: Where is the robot now?

Two approaches – same result:

- Geometry (easy in 2D)
- Transforms (better for 3D)

 $\mathcal{F}_{R[X]}$: The *F*rame of reference (the local coordinate system) of the *R*obot at the time *X*

Use of robot frames $\mathcal{F}_{R[X]}$

 $\mathcal{O}_{R[X]}$: Origin of $\mathcal{F}_{R[X]}$ (coordinates (0, 0)

 $\overrightarrow{\mathcal{O}_{R[X]}P}$: position vector from $\mathcal{O}_{R[X]}$ to point P - $\begin{pmatrix} x \\ y \end{pmatrix}$

- Object P is observed at times 0 to 4
- Object P is static (does not move)
- The Robot moves

(e.g. $\mathcal{F}_{R[0]} \neq \mathcal{F}_{R[1]}$)

=> (x, y) coordinates of P are different in all frames, for example:

•
$$\overline{\mathcal{O}_{R[0]}}\vec{P} \neq \overline{\mathcal{O}_{R[1]}}\vec{P}$$

Position, Orientation & Pose

- Position:
 - $\binom{x}{y}$ coordinates of any object or point (or another frame)
 - with respect to (wrt.) a specified frame
- Orientation:
 - (Θ) angle of any oriented object (or another frame)
 - with respect to (wrt.) a specified frame
- Pose:
 - $\begin{pmatrix} y \\ \Theta \end{pmatrix}$ position and orientation of any oriented object
 - with respect to (wrt.) a specified frame

Translation, Rotation & Transform

- Translation:
 - $\binom{x}{y}$ difference, change, motion from one reference frame to another reference frame
- Rotation:
 - (Θ) difference in angle, rotation between one reference frame and another reference frame
- Transform:
 - $\begin{pmatrix} y \\ \Theta \end{pmatrix}$ difference, motion between one reference frame and another reference frame

Position & Translation, Orientation & Rotation

У 5 $\mathcal{F}_{R[1]}$ ${}^{R[0]}_{R[1]}t \approx \begin{pmatrix} 4.5 \\ 3.2 \end{pmatrix}$ $\mathcal{O}_{R[1]}$ ${}^{R[0]}_{R[1]}R \ (\Theta \approx -30^{\circ})$ $\mathcal{F}_{R[0]}$ 5 $\mathcal{O}_{R[0]}$ Χ

- $\mathcal{F}_{R[X]}$: Frame of reference of the robot at time X
- Where is that frame $\mathcal{F}_{R[X]}$?
 - Can only be expressed with respect to (wrt.) another frame (e.g. global Frame \mathcal{F}_G) =>
 - Pose of $\mathcal{F}_{R[X]}$ wrt. \mathcal{F}_{G}
- $\mathcal{O}_{R[X]}$: Origin of $\mathcal{F}_{R[X]}$
 - $\overrightarrow{\mathcal{O}_{R[X]}\mathcal{O}_{R[X+1]}}$: **Position** of $\mathcal{F}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$

so $\mathcal{O}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$

 $\triangleq R[X] \\ R[X+1] t : \mathbf{Translation}$

- The angle Θ between the x-Axes:
 - **Orientation** of $\mathcal{F}_{R[X+1]}$ wrt. $\mathcal{F}_{R[X]}$

 $\triangleq \frac{R[X]}{R[X+1]}R : \text{Rotation of } \mathcal{F}_{R[X+1]} \text{ wrt. } \mathcal{F}_{R[X]}$

Transform

- $\frac{R[X]}{R[X+1]}t$: Translation
 - Position vector (x, y) of R[X + 1] wrt. R[X]
 - - Angle (Θ) of R[X + 1] wrt. R[X] \bullet

 ${R[X] \atop R[X+1]} T \equiv \begin{cases} R[X+1]^{T} \\ R[X+1]^{T} \end{cases}$ Transform: •

Geometry approach to Odometry

We want to know:

- Position of the robot (x, y)
- Orientation of the robot (Θ)
- => together: Pose $\begin{pmatrix} x \\ y \\ \Theta \end{pmatrix}$

With respect to (wrt.) \mathcal{F}_{G} : The global frame; global coordinate system

$$\mathcal{F}_{R[0]} = \mathcal{F}_{G} \Rightarrow {}^{G}\mathcal{F}_{R[0]} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
$${}^{G}\mathcal{F}_{R[1]} = {}^{R[0]}_{R[1]}T \approx \begin{pmatrix} 4.5\\3.2\\30^{\circ} \end{pmatrix}$$

Where is the Robot now?

Mathematical approach: Transforms

The pose of $\mathcal{F}_{R[X]}$ with respect to \mathcal{F}_{G} (usually = $\mathcal{F}_{R[0]}$) is the pose of the robot У ${R[2] \atop R[3]} \mathbf{T}$ at time X. This is equivalent to ${}_{R[X]}^{G}\mathbf{T}$ $\mathcal{F}_{R[2]}$ $\mathcal{F}_{R[3]}$ ${R[1] \atop R[2]} \mathbf{T}$ $R[3]_{\mathbf{T}}$ **Chaining of Transforms** *R*[4] ${}_{R[X+1]}^{G}\mathbf{T} = {}_{R[X]}^{G}\mathbf{T} \; {}_{R[X+1]}^{R[X]}\mathbf{T}$ $\mathcal{F}_{R[4]}$ $R[0]_{\mathbf{T}}$ $\mathcal{F}_{R[1]}$ R[1]often: $\mathcal{F}_G \equiv \mathcal{F}_{R[0]} \Rightarrow {}_{R[0]}^G \mathbf{T} = id$ \mathcal{F}_{G} Х Х $\mathcal{F}_{R[0]}$

TRANSFORMS & STUFF ③

Affine Transformation

- Function between affine spaces. Preserves:
 - points,

Robotics

- straight lines
- planes
- sets of parallel lines remain parallel
- Allows:
 - Interesting for Robotics: translation, rotation, (scaling), and chaining of those
 - Not so interesting for Robotics: reflection, shearing, homothetic transforms
- Rotation and Translation:

$$\begin{bmatrix} \cos\theta & \sin\theta & X \\ -\sin\theta & \cos\theta & Y \\ 0 & 0 & 1 \end{bmatrix}$$

Math: Rigid Transformation

- Geometric transformation that preserves Euclidean distance between pairs of points.
- Includes reflections (i.e. change from right-hand to left-hand coorinate system and back)
- Just rotation & translation: rigid motions or proper rigid transformations:
 - Decomposed to rotation and translation
 - => subset of Affine Transofrmations

 In Robotics: Just use term Transform or Transformation for rigid motions (without reflections)

Lie groups for transformations

- Smoothly differentiable Group
- No singularities
- Good interpolation

- SO: Special Orthorgonal group
- SE: Special Euclidian group
- Sim_ilarity transform group

Group	Description	Dim.	Matrix Representation
SO(3)	3D Rotations	3	3D rotation matrix
SE(3)	3D Rigid transformations	6	Linear transformation on
			homogeneous 4-vectors
SO(2)	2D Rotations	1	2D rotation matrix
SE(2)	2D Rigid transformations	3	Linear transformation on
			homogeneous 3-vectors
Sim(3)	3D Similarity transformations	7	Linear transformation on
	$({ m rigid motion} + { m scale})$		homogeneous 4-vectors

http://ethaneade.com/lie.pdf

	Notation	Meaning	
Transform	$\mathcal{F}_{\mathrm{R}[k]}$	Coordinate frame attached to object 'R' (usually the robot) at sample time-instant k .	
Inditoronni			
	$\mathcal{O}_{\mathrm{R}[k]}$	Origin of $\mathcal{F}_{\mathbf{R}[k]}$.	
\mathcal{F}_A \mathcal{F}_A \mathcal{F}_A	${}^{\mathrm{R}[k]}\mathbf{p}$	For any general point P, the position vector $\overrightarrow{\mathcal{O}_{\mathbf{R}[k]}P}$ resolved	
\mathcal{F}_{G}	p \mathcal{F}_G	in $\mathcal{F}_{\mathbf{R}[k]}$.	
$\int \mathcal{O}_A \qquad \int \mathcal{B}_P$	${}^{ m H}\hat{ m x}_{ m R}$	The x-axis direction of \mathcal{F}_{R} resolved in \mathcal{F}_{H} . Similarly, ${}^{H}\hat{y}_{R}$,	
O_G		${}^{\rm H}\hat{\mathbf{z}}_{\rm R}$ can be defined. Obviously, ${}^{\rm R}\hat{\mathbf{x}}_{\rm R} = \hat{\mathbf{e}}_1$. Time indices can	
\mathcal{F}_B		be added to the frames, if necessary.	
\mathcal{O}_B	${}^{\mathrm{R}[k]}_{\mathrm{S}[k']}\mathbf{R}$	The rotation-matrix of $\mathcal{F}_{\mathcal{S}[k']}$ with respect to $\mathcal{F}_{\mathcal{R}[k]}$.	
$^{ m R}_{ m S}{ m t}$		The translation vector $\overrightarrow{\mathcal{O}_R\mathcal{O}_S}$ resolved in \mathcal{F}_R .	
Transform $\overset{G}{A}t \triangleq \overrightarrow{\mathcal{O}_{G}\mathcal{O}_{A}}$ resolution	olved in \mathcal{F}_{G}	$\begin{pmatrix} {}^{\mathrm{G}}\mathbf{p} \\ 1 \end{pmatrix} \equiv \begin{pmatrix} {}^{\mathrm{G}}\mathbf{R} & {}^{\mathrm{G}}\mathbf{t} \\ 0_{1\times [2,3]} & 1 \end{pmatrix} \begin{pmatrix} {}^{\mathrm{A}}\mathbf{p} \\ 1 \end{pmatrix} {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{T} \equiv \begin{cases} {}^{\mathrm{G}}\mathbf{t} \\ {}^{\mathrm{G}}_{\mathrm{A}}\mathbf{R} \end{cases}$	
coordinate frames ${}^{G}\mathbf{p} = {}^{G}\mathbf{R} {}^{A}\mathbf{p}$			
CODIMINATE INTERS P Are P	I A C	$\begin{bmatrix} \cos \theta & -\sin \theta & \mathbf{G}_{\mathbf{A}} \mathbf{t}_{\mathbf{x}} \end{bmatrix}$	
$\triangleq {}_{A}^{G}\mathbf{T}({}^{A}\mathbf{p})$	·).	G_{f}	
		SIII O COS O ALY	

Transform: Operations

Transform between two coordinate frames (chaining, compounding): ${}^{G}_{B}\mathbf{T} = {}^{G}_{A}\mathbf{T} {}^{A}_{B}\mathbf{T} \equiv \begin{cases} {}^{G}_{A}\mathbf{R} {}^{A}_{B}\mathbf{t} + {}^{G}_{A}\mathbf{t} \\ {}^{G}_{A}\mathbf{R} {}^{A}_{B}\mathbf{R} \end{cases}$

Inverse of a Transform :

$${}_{A}^{B}\mathbf{T} = {}_{B}^{A}\mathbf{T}^{-1} \equiv \left\{ {}_{B}^{-}{}_{B}^{A}\mathbf{R}^{\mathsf{T}}{}_{B}^{A}\mathbf{t} \\ {}_{B}^{A}\mathbf{R}^{\mathsf{T}} \right\}$$

Relative (Difference) Transform :
$$~~^{
m B}_{
m A}{f T}=~^{
m G}_{
m B}{f T}^{-1}~^{
m G}_{
m A}{f T}$$

See: Quick Reference to Geometric Transforms in Robotics by Kaustubh Pathak on the webpage!

Chaining:
$${}_{R[X+1]}^{G}\mathbf{T} = {}_{R[X]}^{G}\mathbf{T} {}_{R[X+1]}^{R[X]}\mathbf{T} \equiv \begin{cases} {}_{R[X]}^{G}\mathbf{R} {}_{R[X+1]}^{R[X]}t + {}_{R[X]}^{G}t \\ {}_{R[X]}^{G}\mathbf{R} {}_{R[X+1]}^{R[X]}\mathbf{R} \end{cases} = \begin{cases} {}_{R[X+1]}^{R[X+1]}t \\ {}_{R[X+1]}^{G}\mathbf{R} \end{pmatrix}$$

In 2D Translation:

In 2D Rotation:

$$\begin{bmatrix} {}_{R[X+1]} t_{x} \\ {}_{G} t_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \cos {}_{R[X]} \theta & -\sin {}_{R[X]} \theta & {}_{R[X]} t_{x} \\ \sin {}_{R[X]} \theta & \cos {}_{R[X]} \theta & {}_{R[X]} t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}_{R[X]} t_{x} \\ {}_{R[X+1]} t_{x} \\ {}_{R[X+1]} t_{y} \\ {}_{R[X+1]} t_{y} \\ 1 \end{bmatrix}$$

$${}_{R[X+1]}^{G}R = \begin{bmatrix} \cos R[X+1]]\theta & -\sin R[X+1]\theta \\ \sin R[X+1]\theta & \cos R[X+1]\theta \end{bmatrix} = \begin{bmatrix} \cos R[X]\theta & -\sin R[X]\theta \\ \sin R[X]\theta & \cos R[X]\theta \end{bmatrix} \begin{bmatrix} \cos R[X]\theta \\ \cos R[X+1]\theta \\ \sin R[X]\theta \end{bmatrix} \begin{bmatrix} \cos R[X]\theta \\ \sin R[X]\theta \\ \sin R[X+1]\theta \end{bmatrix}$$
In 2D Rotation (simple):
$$R[X+1]^{G}\theta = R[X]^{G}\theta + R[X]^{G}\theta$$

In ROS: nav_2d_msgs/Pose2DStamped

3D Rotation

Many 3D rotation representations:

https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

- Euler angles:
 - Roll: rotation around x-axis
 - Pitch: rotation around y-axis
 - Yaw: rotation around z-axis
 - Apply rotations one after the other...
 - => Order important! E.g.:
 - X-Z-X; X-Y-Z; Z-Y-X; ...
 - Singularities
 - Gimbal lock in Engineering
 - "a condition caused by the collinear alignment of two or more robot axes resulting in unpredictable robot motion and velocities"

