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• Updated

Schedule
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HW 

• HW1 is published

• Gitlab accounts will be created soon (after project selection is done)

• HW2 will be published soon, too

• A little bit interleaved with HW1 (a little overlap time-wise)

• HW3: paper presentation

• HW4: mission planning
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Project Selection

• Topic selection: due this Thursday!

• One member writes an email for the whole group to TA Jiajie: 
zhangjj2023@shanghaitech.edu.cn 

• Put the other group members on CC

• Subject: [MoMa] Group Selection
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Paper Presentation Selection

• Paper selection: due Thursday, Oct 31!

• Write email to TA Jiajie: zhangjj2023@shanghaitech.edu.cn 

• Subject: [MoMa] Paper Selection

• If you don’t hear back, everything is OK

• Otherwise Jiajie will let you know that your paper was taken already – you would need to 

select a different paper…
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Outline: The “mobile” part of mobile manipulation

• General Control Scheme for mobile robotics

• Maps & Mapping 

• SLAM

• Path Planning
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General Control Scheme for Mobile Robot Systems
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With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich
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Mobile Robot Kinematics

• Aim

• Description of mechanical behavior of the robot for design and control

• Similar to robot manipulator kinematics 

• However, mobile robots can move unbound with respect to its environment

• there is no direct way to measure the robot’s position

• Position must be integrated over time

• Leads to inaccuracies of the position (motion) estimate 

-> the number 1 challenge in mobile robotics
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Differential Drive Robots
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Ackermann Robot

• No sideways slip than differential 

drive during turning ☺

• Cannot turn on the spot 
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Mobile Robot Kinematics: Non-Holonomic Systems

• Non-holonomic systems
• differential equations are not integrable to the final pose. 

• the measure of the traveled distance of each wheel is not sufficient to 
calculate the final position of the robot. One has also to know how this 
movement was executed as a function of time. 

s1L s1R

s2L

s2R

yI

xI

x1, y1

x2, y2

s1

s2

s1=s2 ; s1R=s2R ; s1L=s2L

but: x1 ≠ x2 ; y1 ≠ y2
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MAPS & MAPPING
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Map Representation: what is “saved” in the map

• Points (surface of objects, buildings): 2D or 3D 
• What: x,y or x,y,z coordinates; 

Optional: intensity; maybe RGB; maybe descriptor; 
temperature; …

• From range sensors (laser, ultrasound, stereo, RGB-
D): dense

• From cameras (structure from motion; feature points): 
sparse

• Variant: kd-tree

• Grid-map: 2D or 3D
• Option: probabilistic grid map

• Option: elevation map

• Option: cost map

• Option: Truncated Signed Distance Field

• Option: Normal Distributions Transform (NDT)

• Variant: Quad-tree; Oct-tree

• Higher-level Abstractions
• Lines; Planes; Mesh

• Curved: splines; Superquadrics

• Semantic Map
• Assign semantic meaning to entities of a map 

representation from above

• E.g. wall, ceiling, door, furniture, car, human, tree, 
…

• Topologic Map 
• High-level abstraction: places and connections 

between them 

• Hierarchical Map
• Combine Maps of different scales. E.g.:

• Campus, building, floor

• Pose-Graph Based Map
• Save (raw) sensor data in graph, annotated with 

the poses; generate maps on the fly

• Dynamic Map
• Capture changing environment

• Hybrid Map
• Combination of the above
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k-d tree
• k-dimensional binary search tree

• Robotics: typically 3D or 2D

• Every level of tree:

• For a different axis (e.g. x,y,z,x,y,z,x,y,z) (=> split space with 

planes)

• Put points in left or right side based on median point (w.r.t. its 

value of on the current axis) =>

• Balanced tree

• Fast neighbor search -> ICP!
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Probabilistic grid map

• 1: occupied; 0: free; 0.5: unknown

• Need error model of sensor (and of localization) to properly update cells with a scan

• Can remove dynamic (moving) objects (by observing the free space multiple times)
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Adaptive Cell Decomposition

• Quad-tree
• 2D map/ grid is recursively divided into 4 smaller cells

• Only cells with different values/ points get divided further =>

• Compact representation of big space (if many cells stay merged)

• Oct-tree
• 3D grid divided into 8 smaller cells

• Very compact! (There is lots of free space!)

• OctoMap: probabilistic oct-tree!
• http://octomap.github.io

• Good support in ROS (e.g. MoveIt!)
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Semantic Information

• Assign labels to data

• Segmentation: automatically group data (e.g. points) according to their 

semantic class

• Even save just very high level data; e.g. room at (x,y); Eiffel tower; …

• Applications:

• Human Robot Interaction (“go to kitchen”) 

• Scene understanding

• Navigation (detect road; detect door)

• Localization

• …
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Semantic Map

• Semantic Segmentation

• In room (e.g. detect furniture & objects)

• Outdoors
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Pose Graph

• Graph structure

• Nodes are:
• Robot

• Landmarks/ observations

• Used for Simultaneous Localization and Mapping (some more details later 
today)

• Typically saves (raw) sensor data in robot nodes =>

• For most applications: needs to be rendered before using it:
put all sensor data in common frame in a point cloud or grid map or plane map 
or ... 
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Mapping

• Process of building a map

• Basic principle:
1. Initialize the map with unknown or free

2. Take a sensor scan

3. Maybe pre-process it (e.g. plane detection)

4. Localize the robot w.r.t. the map frame (maybe difficult!)

5. Transform the (processed) sensor scan to the global frame

6. “Merge” the new data with the old map data, e.g.:
• Add scanned points to map point cloud

• Update cells in a probabilistic occupancy grid

7. Sometimes: Also do ray-casting to mark all cells from sensor to obstacle as free

8. Repeat for every new sensor scan

• Localization step may need the map (e.g. matching the scan against the map) => 
both should be done at the same time =>

• Simultaneous Localization and Mapping : SLAM
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SIMULTANEOUS LOCALIZATION 

AND MAPPING - SLAM
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Map Building: The Problems
1. Map Maintaining: Keeping track of 

changes in the environment

e.g. disappearing

cupboard

- e.g. measure of belief of each 

environment feature

2. Representation and 

Reduction of Uncertainty

position of robot -> position of wall

position of wall -> position of robot

▪ probability densities for feature positions

▪ Inconsistent map due to motion drift

?
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Cyclic Environments

• Small local error accumulate to arbitrary large global errors!

• This is usually irrelevant for navigation

• However, when closing loops, global error does matter
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Raw Odometry

Courtesy of S. Thrun
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http://robots.stanford.edu/videos.html 

• Famous Intel Research

Lab dataset (Seattle)

by Dirk Hähnel

http://robots.stanford.edu/videos.html


Scan Matching:

compare to 

sensor

data from 

previous scan

Courtesy of S. Thrun
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FastSLAM:

Particle-Filter

SLAM
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Scan Matching/ Registration

• Take one sensor scan

• Match against:

• Another sensor scan

• Against the map

• Output:

• The Transform (2D: 3DoF; 2D: 6DoF; each maybe with scale)

• Uncertainty about the result (e.g. covariance matrix)

• Used for Localization: 

• Typical algorithms for point clouds: ICP!
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Map based localization

?

• Odometry, Dead Reckoning

• Localization base on external sensors, 

beacons or landmarks

• Probabilistic Map Based Localization
Observation
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Localization

• Based on control commands
=> Open Loop!

• Wheel odometry
• Compass, Accelerometer, Gyro => IMU

• Scan Matching of Range Sensors == 
Registration (rigid => no scaling or shearing)

• ICP: scan to scan or scan to map
• Needs good initial guess

• NDT registration

• Feature-based registration

• Direct/ optimization based registration

• Grid-based Localization

• Kalman Filter Based Localization

• Monte-Carlo Localization (MCL) == 
Particle Filter
• Adaptative MCL => AMCL

• Visual Odometry (VO)
• With IMU: Visual Inertial Odometry (VIO)

• SLAM techniques

• 3D Reconstruction
• Structure from Motion/ Bundle Adjustment

• Localization is by-product

• Absolute Localization:
• GPS

• Markers (e.g. QR code)

• Landmarks (e.g. ShanghaiTech Tower)
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Monte Carlo Localization (MCL)

• Input: Global, known map and laser 
scan

• Particle filter: set of particles 
representing a 
robot state
• Here: robot pose (position & orientation)

• Particle filter SLAM (e.g. FastSLAM): also 
map!

• Particles are sampled based on probability 
distribution

• Assign weights (scores) to particles 
based on how well the scan matches to 
the map, given this pose

• Markov property: Current state only 
depends on previous state

• Algorithm:

1. For all particles:
1. Apply motion update (e.g. odometry)

2. Apply the sensor update (scan match) 
and calculate new weights

2. Re-Sample particles based on their 
weights

• Can solve the kidnapped robot problem 
(also wake-up robot problem)

• Problem: Particle of correct pose might 
not exist…
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Adaptive Monte Carlo Localization (AMCL)

• Sample particles adaptively
• Based on error estimate

• Kullback-Leibler divergence (KLD)

• => when particles have converged, 
have a fewer number of particles

• Sample size is re-calculated each 
iteration

• http://wiki.ros.org/amcl 

• Used by the ROS Navigation 
stack
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MCL & 

Robot

Kidnapping
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AMCL in ROS
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Overview of SLAM Methods

• Camera
• Feature-Based Methods

• MonoSLAM

• PTAM

• ORB-SLAM

• Direct Methods
• DTAM

• LSD-SLAM

• DSO

• Semi-Direct Methods
• SVO

• Others
• PoseNet

• CNN-SLAM

• …

• Laser
• Pose Graph

• Cartographer

• Karto-SLAM

• Hector-SLAM

• BLAM

• LIO

• Particle Filter
• FastSLAM

• Gmapping

• Extended Kalman Filter
• EKF-SLAM

• LINS

• Others
• LOAM

• IMLS-SLAM

• …
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SLAM Front-end & Back-end

• Front-end

 - calculate relative poses between several frames/ to map

  - scan matching

  - image registration

  - …

 - estimate absolute poses

 - construct the local map

• Back-end

 - optimize the absolute poses

 and mapping

 - only if a loop was closed
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THREE SLAM PARADIGMS
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The Three SLAM Paradigms

• Most of the SLAM algorithms are based on the following three different 

approaches:

• Extended Kalman Filter SLAM: (called EKF SLAM)

• Particle Filter SLAM: (called FAST SLAM)

• Graph-Based SLAM
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EKF SLAM: overview

• Extended state vector yt : robot pose xt + position of all the features mi in the 

map:

• Example: 2D line-landmarks, size of yt = 3+2n : three variables to represent 

the robot pose + 2n variables for the n line-landmarks having vector 

components 

• As the robot moves and takes measurements, the state vector and covariance 

matrix are updated using the standard equations of the extended Kalman filter

• Drawback: EKF SLAM is computationally very expensive.
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• FastSLAM approach
• Using particle filters. 

• Particle filters: mathematical models that represent 
probability distribution as a set of discrete 
particles that occupy the state space.

• Particle filter update
• Generate new particle distribution using motion 

model and controls 

a) For each particle:
1. Compare particle’s prediction of measurements with actual measurements

2. Particles whose predictions match the measurements are given a high weight

b) Filter resample:
• Resample particles based on weight

• Filter resample
• Assign each particle a weight depending on how well its estimate of the state agrees with the measurements and 

randomly draw particles from previous distribution based on weights creating a new distribution.

Particle Filter SLAM: FastSLAM
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Graph-Based SLAM (1/3)

• SLAM problem can be interpreted as a sparse graph of nodes and constraints between nodes.

• The nodes of the graph are the robot locations and the features in the map.

• Constraints: relative position between consecutive robot poses , (given by the odometry input u) and the relative 

position between the robot locations and the features observed from those locations.
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Graph-Based SLAM (2/3)

• Constraints are not rigid but soft constraints!

• Relaxation: compute the solution to the full SLAM problem =>

• Compute best estimate of the robot path and the environment map. 

• Graph-based SLAM represents robot locations and features as the nodes of an elastic net. The SLAM solution can 

then be found by computing the state of minimal energy of this net
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Graph-Based SLAM (3/3)

• Significant advantage of graph-based SLAM techniques over EKF SLAM: 

• EKF SLAM: computation and memory for to update and store the covariance matrix is 

quadratic with the number of features.

• Graph-based SLAM: update time of the graph is constant and the required memory is linear 

in the number of features.

• However, the final graph optimization can become computationally costly if the 

robot path is long.

• Libraries for graph-based slam: g2o, ceres
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PLANNING
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General Control Scheme for Mobile Robot Systems
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The Planning Problem

• The problem: find a path in the work space (physical space) from the initial 

position to the goal position avoiding all collisions with the obstacles

• Assumption: there exists a good enough map of the environment for 

navigation. 

Coffee room

Corridor

Bill’
s o

ffi
ce

Topological Map

Coarse Grid Map

(for reference only)

Coffee room

Corridor

Bill’
s o

ffi
ce

Topological Map

Coarse Grid Map

(for reference only)

ShanghaiTech University - SIST - 22 Oct 2024Robotics 49



The Planning Problem

• We can generally distinguish between 

• (global) path planning and 

• (local) obstacle avoidance. 

• First step:
• Transformation of the map into a representation useful for planning

• This step is planner-dependent

• Second step:
• Plan a path on the transformed map

• Third step:

• Send motion commands to controller

• This step is planner-dependent (e.g. Model based feed forward, path following)
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• Mobile robots operating on a flat ground (2D) have 3 DoF: (x, y, θ)

• Differential Drive: only two motors => only 2 degrees of freedom directly controlled (forward/ backward + 

turn) => non-holonomic 

• Simplification: assume robot is holonomic and it is a point => configuration space is reduced to 2D (x,y)

• => inflate obstacle by size of the robot radius to avoid crashes => obstacle growing

Configuration Space for a Mobile Robot
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Typical Configuration Space: Occupancy grid
• Fixed cell decomposition: occupancy grid example: STAR Center
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Path Planning: Overview of Algorithms
3. Graph Search

• Identify a set edges between nodes within the 

free space

 

• Where to put the nodes?

1. Optimal Control
• Solves truly optimal solution

• Becomes intractable for even moderately 
complex as well as nonconvex problems

2. Potential Field
• Imposes a mathematical function over the 

state/configuration space

• Many physical metaphors exist

• Often employed due to its simplicity and 
similarity to optimal control solutions

Source: 

http://mitocw.udsm.ac.tz
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Graph Search

• Overview
• Solves a least cost problem between two states on a (directed) graph

• Graph structure is a discrete representation

• Limitations
• State space is discretized → completeness is at stake

• Feasibility of paths is often not inherently encoded

• Algorithms
• (Preprocessing steps)

• Breath first

• Depth first

• Dijkstra

• A* and variants

• D* and variants

ShanghaiTech University - SIST - 22 Oct 2024Robotics 54



ShanghaiTech University - SIST - 22 Oct 2024Robotics 55

Graph Construction: Cell Decomposition: Grid Map



Graph Construction: State Lattice Design (1/2)

Online: 

Incremental Graph 
Constr.

Offline: 

Lattice Gen.

Offline: 

Motion Model

▪ Enforces edge feasibility

▪ Popular for Ackerman robots (e.g. cars)
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Graph Construction: State Lattice Design (2/2)

• State lattice encodes only kinematically feasible edges
Martin Rufli
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Deterministic Graph Search

• Methods

• Breath First

• Depth First

• Dijkstra

• A* and variants

• D* and variants

• ...
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DIJKSTRA‘S ALGORITHM
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1930 - 2002

"Computer Science is no more about computers than 
astronomy is about telescopes."

http://www.cs.utexas.edu/~EWD/ 

EDSGER WYBE DIJKSTRA
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• Single-Source Shortest Path Problem - The problem of finding shortest 

paths from a source vertex v to all other vertices in the graph.

• Graph
• Set of vertices and edges

• Vertex: 

• Place in the graph; connected by:

• Edge: connecting two vertices 

• Directed or undirected (undirected in Dijkstra’s Algorithm)

• Edges can have weight/ distance assigned

SINGLE-SOURCE SHORTEST PATH PROBLEM 
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Dijkstra's Algorithm

• Assign all vertices infinite distance to goal

• Assign 0 to distance from start

• Add all vertices to the queue

• While the queue is not empty:

• Select vertex with smallest distance and remove it from the queue

• Visit all neighbor vertices of that vertex,

• calculate their distance and

• update their (the neighbors) distance if the new distance is smaller
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dist[s] ← 0          (distance to source vertex is zero)
for  all v ∈ V–{s}

 do  dist[v] ← ∞   (set all other distances to infinity) 
S ← ∅     (S, the set of visited vertices is initially empty) 
Q← V      (Q, the queue initially contains all vertices)  
while Q ≠∅    (while the queue is not empty) 
do  u ← mindistance(Q, dist) (select the element of Q with the min. distance) 

 S←S∪{u}    (add u to list of visited vertices) 
 for all v ∈ neighbors[u]   

 do  if  dist[v] > dist[u] + w(u, v)  (if new shortest path found)
      then  d[v] ←d[u] + w(u, v) (set new value of shortest path)
  (if desired, add traceback code)
return dist

Dijkstra's Algorithm - Pseudocode
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Dijkstra’s Algorithm for Path Planning: Grid Maps

• Graph:

• Neighboring free cells are connected:

• 4-neighborhood: up/ down/ left right

• 8-neighborhood: also diagonals

• All edges have weight 1

• Stop once goal vertex is reached

• Per vertex: save edge over which 

the shortest distance from start was 

reached => Path
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Graph Search Strategies: A* Search

• Similar to Dijkstra‘s algorithm, except that it uses a heuristic function h(n)

• f(n) = g(n) + h(n)
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A*

• Developed 1986 as part of the Shakey project!

• Complexity:

      b: branching factor

      d: depth

• Good heuristic => small branching factor
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Planning: 5.5 s

Distance: 221.7
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Distance: 234.2

Generation: 26 s

Planning: 0.01 s



ROS Navigation
• http://wiki.ros.org/navigation 
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Path Planning in ROS: move_base
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