



#### CS289: Mobile Manipulation Fall 2024

Sören Schwertfeger

ShanghaiTech University



### Final

- Dec 3<sup>rd</sup> next Tuesday!
  - 15:00 17:00 in 1D-106
- Content:
  - All lectures
    - Take a look at facts, algorithms, concepts
- You are allowed to bring <u>3</u> A4 sheets (so 6 pages) of info to the exams. You can write/ print anything on those sheets. On top of <u>every page</u> (so 6 times) there needs to be your <u>name</u> (pinyin), student ID and ShanghaiTech email address. We will check every cheat sheet before the exam and <u>confiscate</u> every sheet without name or with a name that is not yours.

No electronics/ calculator/ smartwatch allowed

## Motivation & Overview

- We covered Kinematics, Planning, Perception, etc.
- How to make the robot actually move?
- Control the robot motion
  - Dynamics (forces, mass, inertia etc.) =>
  - Kinematics of speeds: Jacobian
  - Control Introduction
  - PID
- Hardware
  - PWM
  - Motor Drivers
  - Motor
  - Gears



## HARDWARE



## **Control Hierarchy**

- Assume we have a goal trajectory
- Calculate needed joint speeds using Kinematics =>
- Desired joint speeds
  - Typically not just one joint =>
  - Many motor controllers, motors, encoders
- Motor control loop
- Pose control loop



## **Pulse Width Modulation**

- How can Controller control power?
  - Cannot just tell the motor "use more power"
  - Output of (PID) controller is a signal
  - Typical: Analogue signal
- Pulse Width Modulation (PWM)
  - Signal is either ON or OFF
  - Ratio of time ON vs. time OFF in a given interval: amount of power
  - Frequency in kHz (= period less than 1ms)
  - Very low power loss
- Signal (typica 5V or 3.3V) to Motor Driver
- Used in all kinds of applications:
  - electric stove; audio amplifiers, computer power supply (hundreds of kHz!)





## **Electrical Motor Types**

- DC Motor: Direct Current Motor
- AC Motor: Alternating Current Motor
- Stepper motor:
  - Switching power steps one tooth/ coils forward
  - Open loop control: no encoder needed
  - Low resolution; open loop; torque must be well known
- Brushed motor:
  - Use brushes to power rotating coils => low efficiency and high wear
- Brushless (BL) motor:
  - Electronically control which coil to power => high efficiency low wear
  - Need dedicated controller





www.LearnEngineering.org

https://www.youtube.com/watch?v=CWulQ1ZSE3c



www.LearnEngineering.org

https://www.youtube.com/watch?v=bCEiOnuODac

### **Brushless Motor Controller**

- Needs BLDC Controller
  - Does also the job of Motor Driver
- Sensorless BLDC motor:
  - Just apply power to coils in correct order
  - Motor might briefly turn backwards in the beginning
  - Works well for fast spinning motors (e.g. quadcopter)
  - May use the back-EMF (electromotive force) to estimate position

| 97 | 304 |
|----|-----|
|    |     |
|    |     |

### **Brushless Motor Controller**

- Hall sensor only 3 positions per rotation
  - Quadrature encoder: up to 4096
- For high torque; low speeds: 3 Halleffect sensors needed!
- External PID speed control may still be needed!
- Brushless: 20%-30% better efficiency



#### Servo Motor

- Combines Controller & Motor Driver in the motor
- Input may be analogue (e.g. PWM signal) or digital (e.g. Dynamixel)
- Input specifies a certain (angular) pose for the servo!
  - Servo moves and stays there.
- Continuous Rotation Servos: open loop, speed controlled motors





#### **DC Motor Characteristics**

- Torque: rotational equivalent to force (aka moment)
  - Measured in Nm (Newton meter)
  - Torque determines the rate of change of angular momentum
- Stall torque:
  - Maximum torque in a DC motor => maximum current => may melt coils
- Maximum energy efficiency:
  - At certain speed/ certain torque
- No-load-speed:
  - Maximum speed; little power consumption
- High-power motors (e.g. humanoid robots) get very hot/ need cooling!





#### 18

#### Gears

- Trade speed for torque
- See previous characteristic of DC motor: efficiency highest at high speeds
- Robotics: needs HIGH torque:
  - Inertia of mobile robot (high mass!)
  - Driving uphill
  - Robot arm: lift mass (object and robot arm) at long distances (lever!) gravity!
- Most important property: Number of teeth => Gear Ratio =  $\frac{L}{2}$
- DrivenGearTeeth DriveGearTeeth

- Torque = Motor Torque \* Gear Ratio
- Speed = Motor Speed / Gear Ratio
- Teeth have same size =>

gear diameter proportional to Number of teeth...



#### Gears

- Must be well designed to provide constant force transmission
  - Low wear/ low noise
- Back drivable: Can the wheel move the motor?
- Spur Gear reverses rotation direction!
- Backlash: when reversing direction: short moment of no force transmission
   => error in position estimate of wheel!

https://www.youtube.com/watch?v=8s4zm\_ajxAA



## **Planetary Gear**

- Aka epicyclic gear train
- Quite common!
- Ratios: 3:1 ... 1526:1
- Typical setup:
  - Sun (green) to motor
  - Carrier (red) output
  - Planets (blue): support
  - Ring (black): constraints the planets
  - => Ratio = 1:(1 +  $N_{Ring}/N_{Sun}$ )





#### Harmonic Drive

- High reduction in small volume (30:1 to 320:1)
- No backlash
- Light weight
- Used in robotics,
   e.g. robotic arms
   (e.g. our Schunk arm!)





 $\label{eq:reduction} \mbox{reduction ratio} = \frac{\mbox{flex spline teeth} - \mbox{circular spline teeth}}{\mbox{flex spline teeth}}$ 

#### More Gears

- Rack and pinion
  - linear drive
- Worm drive
  - Very high torque
  - Ratio: N<sub>Wheel</sub> : 1
  - Locking (not back-drivable) gear)
- Bevel gear
  - Mainly to change direction







## ALTERNATIVES

## Hydraulics

- 28 Hydraulic actuated joints
- Why?
  - Compact actuators with high torque do not get hot!
  - Low mass
  - One central, highly efficient motor to pressurize the hydraulic fluid



Actuation controlled via controlling valves

#### Synthetic Muscles

• Electroactive polymer: Apply voltage => change shape by 30% OR: ...

#### Artificial muscles could make soft robots safer and stronger

5x

# MULTIPLE MANIPULATORS

. . .

#### Multi-Robot & Human-Robot Co\*\*\*\*\*

- Often in terms of task and mission planning
  - E.g.: tidy up the room together, cook together, build a house together, search together, …



- Sometimes: Perception and/ or Control problem:
  - Typically when manipulating the same object (at the same time)
  - E.g.: two agents carrying a heavy object together, shaking hands, throwing & catching ball,

Parker, L. E. (2007, November). Distributed Intelligence: Overview of the Field and its Application in Multi-Robot Systems. In *AAAI fall symposium: regarding the intelligence in distributed intelligent systems* (pp. 1-6).

safety

#### Types of collaboration with industrial robots

Responsive collaboration Cooperation Most collaborative applications are of this type today Sequential collaboration Requirement Coexistence for intrinsic 煛 Robot responds in real-time to features vs. movement of external worker Cell Robot and worker sensors work on the same part at the same time - both in Robot and worker motion both active in the No fence but no workspace but shared movements are workspace sequential Fenced robot

#### Level of collaboration

Green area: robot's workspace; yellow area: worker's workspace Source: IFR (classification), adapted and modified from Bauer et al. (2016).

#### Industrial vs. Collaborative Robot Arms

#### **Industrial Arms**

- Can be very precise (up to sub-mm)
- Can be very fast
- Can have very high payload
- May smack you over if you get in the way...

#### **Collaborative Robots**

- Often related to soft robotics (to a certain degree) because:
  - Inherent safety due to softness
- Often made compliant (you can move against them) – steer them
  - Also for teaching them easily
- Often less precise, slower, less payload



# MULTI-ROBOT KINEMATIC CONTROL

# Superior Motion Control by ABB Robotics

https://www.youtube.com/watch?v=SOESSCXGhFo

A PARTICIPATION CONTRACTOR OF A PARTICIPATION OF A

# DUAL-ARM FORCE CONTROL

# Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics.



Ren, Y., Chen, Z., Liu, Y., Gu, Y., Jin, M., & Liu, H. (2017). Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics. Journal of the Franklin Institute, 354(17), 7767-7793. https://doi.org/10.1016/j.jfranklin.2017.0 9.015



$$\begin{aligned} x_e &= [x_{e1}^T \quad x_{e2}^T]^T \in R^{2m \times 1} \end{aligned} \qquad \begin{array}{l} \text{Pose vector of two end-effectors} \\ \dot{x}_e &= J_D \dot{q}_D \end{aligned} \qquad \begin{array}{l} q_D &= [q_1^T, q_2^T]^T \in R^{(n_1 + n_2) \times 1} \end{aligned} \qquad \begin{array}{l} \text{Joint angles vector} \\ J_D &= \text{blockdiag}[J_1, J_2] \in R^{2m \times (n_1 + n_2)} \end{aligned}$$

 $\dot{x}_e = Y_k(q_D, \dot{q}_D)\theta_k$   $\theta_k = [\theta_{k1}, \theta_{k2}, ..., \theta_{kj}]^T \in R^j$ 

Kinematic parameters, e.g. joint offsets & link lengths

 $\dot{x}_e = J_o \dot{x}_o$   $x_o \in R^p$  Object's center of mass  $J_o$  Grasp matrix

 $\dot{x}_o = \mathcal{R}(x_t)\dot{x}_t$  Velocity of the tip of tool  $\mathcal{R}(x_t)$  Mapping matrix from the task space to object space



Fig. 2. Sketch of the forces acting on the unknown tool.

$$au \in R^{(n_1+n_2)}$$
 Applied joint torques  $F_e = [F_{e1}^T \quad F_{e1}^T]^T \in R^{2m imes 1}$  Interacting forces on

Interacting forces on object

$$M_D(q_D)\ddot{q}_D + C_D(q_D, \dot{q}_D)\dot{q}_D + g_D(q_D) = \tau - J_D^T F_e$$

 $M_D(q_D) = \text{blockdiag}[M_1(q_1), M_2(q_2)] \in R^{(n_1+n_2)\times(n_1+n_2)}, M_i(q_i) \in R^{n_i \times n_i}$ Inertial matrix

 $C_D \dot{q}_D = [(C_1 \dot{q}_1)^T, (C_2 \dot{q}_2)^T]^T \in R^{(n_1 + n_2) \times 1}$ 

Coriolis & Centrifugal forces

 $g_D = [g_1^T \quad g_2^T]^T \in R^{(n_1+n_2)\times 1}$ 

Gravitational forces

#### Hybrid position/ force control: velocities & accelerations

Reference joint velocities

$$\dot{q}_{r} = \hat{J}_{D}^{\dagger} \left( J_{o} \mathcal{R} \dot{x}_{tr} + \kappa N_{J_{o}^{\dagger}} \mathcal{F}^{T} \lambda_{FI} \right) + \left( I - \hat{J}_{D}^{\dagger} \hat{J}_{D} \right) \psi$$

$$= \hat{J}_{D}^{\dagger} J_{o} \mathcal{R} \left[ \underbrace{\dot{x}_{td} + \alpha \left( x_{td} - x_{t} \right)}_{\text{Tip position term}} - \underbrace{\beta R_{t} J_{t}^{T} \Delta \lambda_{Ft}}_{\text{Contact force term}} \right] + \underbrace{\kappa \hat{J}_{D}^{\dagger} N_{J_{o}^{\dagger}} \mathcal{F}^{T} \Delta \lambda_{FI}}_{\text{Internal force term}} + \left( I - \hat{J}_{D}^{\dagger} \hat{J}_{D} \right) \psi$$

Reference joint accelerations

$$\ddot{q}_{r} = \left(I - \hat{J}_{D}^{\dagger}\hat{J}_{D}\right)\dot{\psi} - rac{d\left(\hat{J}_{D}^{\dagger}\hat{J}_{D}
ight)}{dt}\psi + rac{d\left(\hat{J}_{D}^{\dagger}J_{o}\mathcal{R}
ight)}{dt}[\dot{x}_{td} + lpha(x_{td} - x_{t}) - eta R_{t}J_{t}^{T}\Delta\lambda_{Ft}] 
onumber \ + \hat{J}_{D}^{\dagger}J_{o}\mathcal{R}\left[\ddot{x}_{td} + lpha(\dot{x}_{td} - \dot{x}_{t}) - eta\left(R_{t}J_{t}^{T}\Delta\lambda_{t} + rac{d(R_{t}J_{t}^{T})}{dt}\Delta\lambda_{Ft}
ight)
ight] 
onumber \ + \kappa rac{d\left(\hat{J}_{D}^{\dagger}N_{J_{o}^{\dagger}}\mathcal{F}^{T}
ight)}{dt}\Delta\lambda_{FI} + \kappa \hat{J}_{D}^{\dagger}N_{J_{o}^{\dagger}}\mathcal{F}^{T}\Delta\lambda_{I}$$

#### Hybrid position/ force control: Adaptive torque controller

$$\tau = K_{p}s + \underbrace{Y_{mdr}\hat{\theta}_{mdr} + Y_{Jod}\hat{\theta}_{Jod} - Y_{ft}\hat{\theta}_{ft}\lambda_{t} + Y_{fI}\hat{\theta}_{fI}\lambda_{I}}_{\text{Dynamic compensation}} + \underbrace{\hat{J}_{D}^{T}\mathcal{F}^{T}(\Delta\lambda_{I} + \gamma\Delta\lambda_{FI})}_{\text{Internal force control}} + \left(\mathcal{R}^{-}J_{o}^{\dagger}\hat{J}_{D}\right)^{T}\left\{\underbrace{K\left(\Delta\hat{x}_{t} + \alpha\tilde{x}_{t}\right)}_{\text{Tip position control}} - \underbrace{R_{t}J_{t}^{T}(\Delta\lambda_{t} + \gamma\Delta\lambda_{Ft})}_{\text{Contact force control}}\right\}$$

#### Hybrid position/ force control: Block Diagram





Fig. 8. Snapshot of the curved contact simulation.

# **CoCRAON** Cognitive Interaction in Motion

#### Decoupled Motion and Force Control for Underactuated Robots: Accounting for Object Dynamics during Multi-Arm Manipulation

Niels Dehio, Joshua Smith, Dennis Wigand, Hsiu-Chin Lin, Michael Mistry, Jochen Steil







visit https://cogimon.eu/

# DISTRIBUTED COOPERATION

Distributed Multi-Robot Cooperative Manipulation with Obstacle Avoidance and Internal Performance Optimisation

(Part 1 - Coordination OFF vs. ON)

Yanhao He Institute of Control Systems University of Kaiserslautern

https://www.youtube.com/watch?v=8PN7bQok8\_w

# COLLABORATIVE CONTROL

# Admittance control for collaborative dual-arm manipulation

S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, D. Sallé









https://www.youtube.com/watch?v=r5FeUCIPwfw

# COLLABORATION: TASK PLANNING

#### Human-in-the-loop Robotic Manipulation Planning for Collaborative Assembly

Mohamed Raessa<sup>1</sup>, Jimmy Chi Yin Chen<sup>2</sup>, Weiwei Wan<sup>\*13</sup>, and Kensuke Harada<sup>13</sup> <sup>1</sup> Graduate School of Engineering Science, Osaka University <sup>2</sup> University of California, Santa Cruz <sup>3</sup> National Inst. of AIST

https://ieeexplore.ieee.org/document/9044335

https://www.youtube.com/watch?v=t\_-89-N\_RgM

#### Coordinating Shared Tasks in Human-Robot Collaboration by Commands

- Knowledge-based system architecture: supports reasoning, planning and knowledge integration
- Shared task coordination by human commands, either by a graphical interface or by speech
- Hierarchical Task Networks

   (HTN): another symbolic AI
   planning approach can
   often be translated to
   PDDL Integrating new knowledge =>

Angleraud, A., Mehman Sefat, A., Netzev, M., & Pieters, R. (2021). Coordinating shared tasks in human-robot collaboration by commands. Frontiers in Robotics and AI, 8, 734548.



| Action      | Pre-conditions                     | Signature          | Semantics              | Format                       | Explanation             |
|-------------|------------------------------------|--------------------|------------------------|------------------------------|-------------------------|
| moveTo      | isWithinReach isReady              | Object             | Come Go                | move action                  | Move robot end-effector |
| graspObject | gripperEmpty isReady holdsObject   | Object Robot       | Pick Take              | motion action gripper action | Grasps object           |
| placeObject | isWithinReach isReady              | Object Robot       | Place Deposit          | motion action gripper action | Places object           |
| handOver    | isWithinReach isReady humanPresent | Object Robot Human | Give Hand              | motion action gripper action | Hand-over object        |
| kitParts    | isWithinReach isReady              | Object Robot       | Kit Stock              | motion action gripper action | Pick and place objects  |
| Target      |                                    |                    |                        |                              |                         |
| Parts       | isWithinReach canBeGrasped         | Object Robot Human | Bolt Bolts Tool        | 3D Pose                      | Location of parts       |
| Box         | isWithinReach isReady isEmpty      | Object Robot       | Box Kit Container      | 3D Pose                      | Location of box         |
| Table       | isWithinReach isReady isEmpty      | Object Robot       | Storage Kit_store Back | 3D Pose                      | Pose on table           |
| Human       | isWithinReach isReady humanPresent | Object Human       | Here Me                | 3D Pose                      | Human hand-over pose    |

| Action         | Format                | Modality                                 | Explanation                                                                                                       |
|----------------|-----------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Primitive      | Robot action          | Software integration Python and ontology | Primitive robot actions can be included by function call from ontology to action library                          |
| Task           | List of robot actions | Software integration Python and ontology | Higher level tasks can be included by defining a list of robot actions                                            |
| Target         |                       |                                          |                                                                                                                   |
| Pose/object    | 3D pose               | Robot hand-guiding                       | New targets are defined by hand-guiding the robot to a desired pose. This target is then recorded in the ontology |
| Other          |                       |                                          |                                                                                                                   |
| Reasoning rule | SWRL                  | Software integration Python and ontology | New reasoning rules are defined in the SWRL language and integrated to update the ontology                        |
| Synonym        | Words                 | Ontology population                      | Synonyms to all actions and targets can be included by creating new ontology instances                            |

### Summary Multi Manipulator Manipulation

- Force Control (e.g. carry a heavy load together)
  - Centralized
  - De-centralized -> multi-agent control -> collaboration
  - Distributed Cooperation: share some information
- Position Control
  - Precisely follow pre-programmed trajectories
  - Motion planning: on-the-fly plan new trajectories for cooperation
- Sequential manipulation
- Task level coordination, collaboration & cooperation
- Whole-body control (e.g. dual-arms & mobile base)



# WHOLE-BODY CONTROL

#### Whole-Body Control

- Plan & control for combined motion of manipulator and mobile base
- Particular popular for legged, especially humanoid robots
  - Tree-like kinematic structure no loops!
- Also needed for aerial, underwater, surface vehicles and space robots:
  - Manipulation forces move the mobile base!
- Ground vehicles: non-holonomic kinematics restricts possible motions -> difficult and unpopular
  - Alternative: holonomic ground robots!
- MPC popular
- Reinforcement Learning very popular

| Name       | License        | Robot Model (Parser) |
|------------|----------------|----------------------|
| TSID       | BSD 2          | Pinnochio (URDF)     |
| ORCA       | CeCILL-C       | KDL/iDynTree (URDF)  |
| iTaSC      | LGPLv2.1 / BSD | KDL (URDF)           |
| IHMC WBC   | Apache / GPLv3 | internal (URDF/SDF)  |
| Drake      | BSD 3          | internal (URDF/SDF)  |
| ControlIt! | LGPL           | RBDL (URDF)          |

Mronga, D., Kumar, S., & Kirchner, F. (2022, May). Whole-body control of series-parallel hybrid robots. In *2022 International Conference on Robotics and Automation (ICRA)* (pp. 228-234). IEEE.

OVERVIEW ON WBC SOFTWARE FRAMEWORKS



Fig. 3: (left) HRP-4 holding a large box with a human while walking (Agravante et al. (2019)) (right) HRP-2 pivoting a furniture (Murooka et al. (2017)).

Stasse, O., & Righetti, L. (2020). Whole-body manipulation. *Encyclopedia of Robotics*, 1-9.

