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Final
• Dec 3rd  – next Tuesday!
• 15:00 – 17:00 in 1D-106

• Content:
• All lectures

• Take a look at facts, algorithms, concepts

• You are allowed to bring 3 A4 sheets (so 6 pages) of info to the exams. You can write/ print 
anything on those sheets. On top of every page (so 6 times) there needs to be your name 
(pinyin), student ID and ShanghaiTech email address. We will check every cheat sheet 
before the exam and confiscate every sheet without name or with a name that is not yours.

• No electronics/ calculator/ smartwatch allowed

Mobile Manipulation ShanghaiTech University - SIST - Nov 28 2024 2



Project meetings
• Another meeting next week Thursday or Friday (see wechat!)
• Another meeting Monday or Tuesday Dec 16, 17
• Another meeting Monday or Tuesday January 6, 7
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Project conclusion
• Due January 10 – could be extended till January 17 if needed – need to write 

me an email!
• Project Report:

• Similar to proposal 
• With nice results and proper quantitative evaluation
• Make look like a scientific paper
• Use bibtex!
• Put into git (folder: doc/final )

• Include everything that is needed to generate the report in the git! 
• So don’t forget images/ the bib file

• Project Demo:
• Make an appointment with Prof. Schwertfeger to show the final demo of your project
• Before: January 17 !
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Project Webpage
• Write a text (word document) about your project for the general public – not too technical – 

not too many details
• Some details can be written
• Do not just copy the abstract/ intro from your final report – write a nice text for the general public!

• Provide a few images with captions (as images also extra files)
• Put into your group git (folder: doc/webpage )
• Prof. Schwertfeger will upload the data to the website – e.g. look at : 

https://robotics.shanghaitech.edu.cn/teaching/robotics2020  (hopefully up soon…)
• Also make a NICE video about your project. 4-8 minutes. Leave the video at good quality – 

size maybe 100 – 300 MB (MP4) – Prof. Schwertfeger will compress it to make a web 
version
• Avoid showing other people; do not talk in the video; do not add music; 
• Add a title page: same info as on report 
• Add to your git folder
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WHOLE-BODY CONTROL
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Whole-Body Control
• Plan & control for combined motion of manipulator and mobile base
• Particular popular for legged, especially humanoid robots
• Tree-like kinematic structure – no loops!

• Also needed for aerial, underwater, 
surface vehicles and space robots:
• Manipulation forces move the mobile base!

• Ground vehicles: non-holonomic 
kinematics restricts possible motions ->
difficult and unpopular
• Alternative: holonomic ground robots!

• MPC popular
• Reinforcement Learning very popular
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Playful DoggyBot: Learning Agile and Precise Quadrupedal Locomotion
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ROBOTIC LEARNING
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Overview of Learning Approaches in Robotics
• Goal: To explore various learning 
paradigms that enable robots to 
perform tasks autonomously.

• Categories: 
• Model-Free vs. Model-Based 

Learning
• Supervised vs. Unsupervised 

Learning
• Passive vs. Active Learning
• Reinforcement Learning (RL)
• Imitation Learning
• End-to-End Deep Learning

• Actor-Critic Learning
• Evolutionary Algorithms
• Transfer Learning
• Self-Supervised Learning
• Few-Shot and Zero-Shot Learning
• Multi-Agent Learning
• Curriculum Learning
• LLM
• Foundation Models
• Other types of “learning”
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Model-Based vs Model-Free Learning

Model-Based Learning:

• Involves learning a model of the 
environment or dynamics (e.g., 
using physics or system dynamics).

• Robot can plan and predict actions 
based on this model.

• Example: Planning with a learned 
dynamics model in robotic control 
tasks.

Model-Free Learning:

• Directly learns a mapping from 
states to actions or rewards without 
modeling the environment.

• Example: Q-learning or policy 
gradient methods in Reinforcement 
Learning.
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Supervised vs. Unsupervised Learning

Supervised Learning:

• Learning from labeled data (input-
output pairs).

• Requires large datasets and human 
supervision.

• Example: Image classification for 
object detection in robotics, such as 
recognizing "graspable" objects in a 
scene.

Unsupervised Learning:

• Learning from unlabeled data to 
find hidden patterns (e.g., clustering 
or representation learning).

• Example: A robot exploring its 
environment autonomously to 
cluster sensory data (e.g., LIDAR or 
visual data) into distinct regions like 
walls, furniture, or open spaces. 
This clustering can later help the 
robot map its environment for 
navigation.
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Passive vs Active Learning

Passive Learning:

• The robot learns from a fixed 
dataset (either labeled or 
unlabeled).

• Example: Supervised learning with 
a fixed dataset.

Active Learning:

• The robot queries the environment 
for more informative data based on 
its current knowledge or uncertainty.

• Example: A robot selects which 
objects to interact with in order to 
maximize learning.
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End-to-End Deep Learning in Robotics
• Definition: Learning a direct mapping from raw input (e.g., images, sensory 

data) to the output (e.g., control commands).

• Example: A robot controlling a gripper using only camera images.

• Advantages: Simplifies the pipeline by learning a direct mapping.

• Challenges: Requires large amounts of labeled data.
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Reinforcement Learning (RL)
• Definition: An agent learns to take actions in an environment to maximize 

cumulative reward over time.

• Key Components: States, actions, rewards, policy.

• Example: Training a robot to navigate using trial-and-error.

• Types:
• Model-Free: Methods like Q-learning, policy gradients.
• Model-Based: Use of learned models to simulate and plan actions.
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Imitation Learning
• Definition: Robots learn by observing and imitating human demonstrations or 

expert behaviors.

• Approaches:
• Behavior Cloning: Supervised learning from demonstrations.
• Inverse Reinforcement Learning (IRL): Learning the underlying reward 

function from expert demonstrations.

• Example: Teaching a robot to grasp objects by mimicking human actions.
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Actor-Critic Learning
• Definition: A type of Reinforcement Learning where two models (actor and 

critic) are trained simultaneously.

• Actor: Decides which action to take based on the current state.

• Critic: Evaluates the chosen action based on the reward.

• Advantages: More stable training by using both policy and value functions.

• Example: Robotic manipulation tasks requiring fine-grained control.
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Evolutionary Algorithms in Robotics
• Definition: Optimization methods inspired by natural selection, such as 

genetic algorithms or neuroevolution.

• Example: Optimizing robot locomotion for uneven terrains or designing neural 
network architectures for control.

• Advantages: Effective for tasks where gradient-based optimization struggles 
or is infeasible.

• Challenges: Computationally expensive and may require many iterations.
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Transfer Learning in Robotics
• Definition: Leveraging knowledge from one domain/task to accelerate 

learning in another.

• Example: Transferring knowledge from simulation-trained robots to real-world 
environments.

• Advantages: Reduces training time and reliance on large datasets.

• Challenges: Ensuring the transfer is effective despite domain differences.
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Self-Supervised Learning in Robotics
• Definition: Robots generate their own training signals from raw, unlabeled 

data.

• Example: Learning to predict the next sensory input (e.g., next video frame) 
for tasks like navigation or manipulation.

• Advantages: Removes dependence on human-labeled data, making learning 
scalable.

• Challenges: Designing effective self-supervised objectives.
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Few-Shot and Zero-Shot Learning in Robotics
• Definition: Learning to generalize with few or no examples of the target task.

• Example: Teaching a robot to recognize and manipulate a novel object with 
only one image or no prior direct training.

• Advantages: Crucial for real-world scalability.

• Challenges: Relies heavily on robust pre-trained models.
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Multi-Agent Learning in Robotics
• Definition: Learning strategies for robots that interact and collaborate or 

compete in shared environments.

• Example: Swarms of drones coordinating for mapping or delivery tasks.

• Advantages: Enables cooperative behaviors in teams of robots.

• Challenges: Complex interactions and scalability.
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Curriculum Learning in Robotics
• Definition: Gradually increasing the complexity of tasks during training.

• Example: Training a robot arm to first stack one block, then multiple blocks, 
before solving general stacking problems.

• Advantages: Stabilizes and accelerates learning.

• Challenges: Designing a proper curriculum and transitions between tasks.
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LLM for Robotics
• Definition: LLMs are AI systems trained on massive text corpora to process, 

understand, and generate human-like text.
• Key Capabilities in Robotics:
• Natural Language Understanding: Interpreting commands and queries.
• Knowledge Integration: Retrieving and applying knowledge to tasks (e.g., assembly 

instructions).
• Reasoning and Task Decomposition: Breaking down complex instructions into actionable 

steps.
• Advantages:
• Provides high-level reasoning and task planning.
• Reduces the need for detailed programming in language-based tasks.
• Can handle diverse instructions using pre-trained knowledge
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How LLMs Are Used in Robotics
• Applications:

• Human-Robot Interaction: Robots can interpret and execute natural 
language instructions (e.g., “Bring me a cup of water”).

• Task Planning: Combining linguistic reasoning with real-world task 
execution.

• Multi-Modal Integration: Enhancing decision-making by linking text, vision, 
and sensory inputs.

• Challenges:
• Ensuring grounding in physical environments (e.g., interpreting "left" in a 

spatial context).
• Real-time response constraints due to the size of models.
• Domain-specific fine-tuning for robotics applications.
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Robotics Foundation Models
• Definition: Large-scale AI models pre-trained on diverse, multi-modal 

datasets (e.g., text, images, videos).
• Core Characteristics:

• Versatile Pre-training: Serve as a base for fine-tuning on specific tasks.
• Multi-Modal Understanding: Integrate text, vision, and other sensory 

inputs for broader applicability.
• Key Advantages for Robotics:

• Generalize across multiple tasks with minimal retraining.
• Simplify the training pipeline by leveraging shared representations.
• Adaptable to new tasks without extensive data collection.
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How Foundation Models Empower Robotics
• Applications:

• Perception: Models like CLIP interpret visual data for scene understanding.
• Control: Leveraging shared representations for motion planning and 

actuation.
• Task Generalization: Performing varied tasks without task-specific training.
• Simulation-to-Real Transfer: Reducing the gap between simulated and 

real-world performance.
• Challenges:

• High computational costs for pre-training and fine-tuning.
• Limited grounding in physical dynamics without additional modeling.
• Potential biases from pre-training on non-robotic data.
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Other types of learning
• Term “learning” also used in different contexts in robotics, e.g.
• SLAM: the robot “learns” the map (by SLAM algorithm)
• Adaptive Control Learning
• Motion Planning
• Meta-learning: learn to learn
• Lifelong Learning (Continuous Learning)
• …
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REINFORCEMENT LEARNING
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End-to-End Deep Learning
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End-to-End Deep Reinforcement Learning

• From sensors to actuation: one layered or recurrent neural network! =>
• NOT classical general control scheme (Perception, SLAM, Cognition & Planning, Navigation)

• Needs reward signal: sparse, noisy, delayed!
• Take time into account: input frames are related!

• Gained interest 2013 again with:
• Deep Mind (google) playing ATARI 2600 games
• Video: Breakout
• Learned 7 games
• Surpasses human expert in 3
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What is Reinforcement Learning?
• Learning from interaction with an environment to achieve some long-term goal 

that is related to the state of the environment

• The goal is defined by reward signal, which must be maximized

• Agent must be able to partially/fully sense the environment state and take 
actions to influence the environment state

• The state is typically described with a feature-vector

Material adapted from
Karan Kathpalia
https://www.cs.princeton.edu/courses/archive
/spring17/cos598F/lectures/RL.pptx 
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Exploration versus Exploitation
• We want a reinforcement learning agent to earn lots of reward

• The agent must prefer past actions that have been found to be effective at 

producing reward

• The agent must exploit what it already knows to obtain reward

• The agent must select untested actions to discover reward-producing actions

• The agent must explore actions to make better action selections in the future

• Trade-off between exploration and exploitation
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Reinforcement Learning Systems
• Reinforcement learning systems have 4 main elements:

• Policy

• Reward signal

• Value function

• Optional model of the environment
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Policy
• A policy is a mapping from the perceived states of the environment to actions 

to be taken when in those states

• A reinforcement learning agent uses a policy to select actions given the 
current environment state
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Reward Signal
• The reward signal defines the goal

• On each time step, the environment sends a single number called the reward 
to the reinforcement learning agent

• The agent’s objective is to maximize the total reward that it receives over the 
long run

• The reward signal is used to alter the policy
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Value Function (1)
• The reward signal indicates what is good in the short run while the value 

function indicates what is good in the long run

• The value of a state is the total amount of reward an agent can expect to 
accumulate over the future, starting in that state

• Compute the value using the states that are likely to follow the current state 
and the rewards available in those states

• Future rewards may be time-discounted with a factor in the interval [0, 1]
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Value Function (2)
• Use the values to make and evaluate decisions

• Action choices are made based on value judgements

• Prefer actions that bring about states of highest value instead of highest 
reward

• Rewards are given directly by the environment

• Values must continually be re-estimated from the sequence of observations 
that an agent makes over its lifetime
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Model-free versus Model-based
• A model of the environment allows inferences to be made about how the 

environment will behave
• Example: Given a state and an action to be taken while in that state, the 

model could predict the next state and the next reward
• Models are used for planning, which means deciding on a course of action by 

considering possible future situations before they are experienced
• Model-based methods use models and planning. Think of this as modelling 

the dynamics 
• Model-free methods learn exclusively from trial-and-error (i.e. no modelling of 

the environment)
• Followoing: model-free methods
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On-policy versus Off-policy

• An on-policy agent learns only about the policy that it is executing

• An off-policy agent learns about a policy or policies different from the one that 
it is executing

Mobile Manipulation ShanghaiTech University - SIST - Nov 28 2024 45



Credit Assignment Problem
• Given a sequence of states and actions, and the final sum of time-discounted 

future rewards, how do we infer which actions were effective at producing lots 
of reward and which actions were not effective?

• How do we assign credit for the observed rewards given a sequence of 
actions over time?

• Every reinforcement learning algorithm must address this problem
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Reward Design
• We need rewards to guide the agent to achieve its goal
• Option 1: Hand-designed reward functions
• This is a black art
• Option 2: Learn rewards from demonstrations
• Instead of having a human expert tune a system to achieve the desired 

behavior, the expert can demonstrate desired behavior and the robot can tune 
itself to match the demonstration
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What is Deep Reinforcement Learning?
• Deep reinforcement learning is standard reinforcement learning where a deep 

neural network is used to approximate either a policy or a value function

• Deep neural networks require lots of real/simulated interaction with the 
environment to learn

• Lots of trials/interactions is possible in simulated environments

• We can easily parallelize the trials/interaction in simulated environments

• We cannot do this with robotics (no simulations) because action execution 
takes time, accidents/failures are expensive and there are safety concerns
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Google Door Opening Project
• Learn to open doors using Reinforcement learning
• Learning reward: opening the door
• Much harder than purely digital learning: very slow iterations!
• Simulation only helps a bit:

real world much more complex

• Google and
UC Berkeley Sergey Levine

• Google very secretive …
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RL Algorithms
• Finite Markov Decision Processes  MDP
• Temporal-Difference Learning   TD Learning
• State-Action-Reward-State-Action SARSA TD Learning
• Q-learning: Off-policy TD Control
• Deep Q-Networks    DQN

• Policy Gradient Methods
• Actor-Critic Methods

• Asynchronous Reinforcement Learning
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Robot Learning

Cognitive Intelligence Athletic Intelligence

Manipulation Locomotion/Cont
rol

Slides by
Ziwen Zhuang

54



Cognitive Intelligence

• Multi-modal transfer learning for grasping transparent and specular 
objects

• Learning Frine-Grained Bimanual Manipulation with Low-Cost 
Hardware (ACT / ALOHA)

• MimicPlay: Long-Horizon Imitation Learning by Watching Human 
Play

• RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with 
Diverse Tools

• VoxPoser: Composable 3D Value Maps for Robotic Manipulation 
with Language Models

• ViNT: A Large-Scale, Multi-Task Visual Navigation Backbone with 
Cross-Robot Generalization



Command by text

https://say-can.github.io
https://nlmap-saycan.github.io

56

https://say-can.github.io
https://nlmap-saycan.github.io


Do As I Can, Not As I Say:
Grounding Language in Robotic Affordances

Customers want a 
robot that handles

all household tasks

and is 
commanded by 
natural language
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Learning Household Manipulation from Human 
Videos with Simulated Twin Environments

1. Not all researchers 
have the robot to 
evaluate

2. Dataset should avoid 
missing scenarios 
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Learning Household Manipulation from 
Human Videos with Simulated Twin 

Environments

1. Pair real-world 
video with 
simulation video

2. Large dataset to 
5000+ videos and 
50 different objects
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Multi-modal transfer learning for grasping 
transparent and specular objects

Depth sensors suffer from transparent objects 
and specular objects
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Multi-modal transfer learning for grasping 
transparent and specular objects

Previous works cost a lot. :P
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Multi-modal transfer learning for grasping 
transparent and specular objects

The general framework
At test time
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Learning Fine-Grained Bimanual Manipulation 
with Low-Cost Hardware (ACT / ALOHA)
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Learning Fine-Grained Bimanual Manipulation 
with Low-Cost Hardware (ACT / ALOHA)
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Learning Fine-Grained Bimanual Manipulation 
with Low-Cost Hardware (ACT / ALOHA)

z

z

Action Chunking with Transformers (ACT)
train a conditional VAE (C-VAE)
left: the encoder part, where z is the style variable
right: the decoder part, where z is connected during training but set to 
the mean of the prior (i.e. 0) during testing.
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Learning Fine-Grained Bimanual Manipulation 
with Low-Cost Hardware (ACT / ALOHA)

Action Chunking
Inspired by action chunking, a neuroscience 
concept where individual actions are 
grouped together and executed as one unit, 
making them more efficient to store and 
execute.

Temporal Ensemble
weighted sum of action from different 
action sequence predictions

𝑤! = exp(−𝑚×𝑖) where 𝑤" is for the 
oldest action and 𝑚 is the hyperparameter.
The smaller m is, the faster incorporation.
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Learning Fine-Grained Bimanual Manipulation 
with Low-Cost Hardware (ACT / ALOHA)

Data collection
• 8 tasks (6 real-world, 2 simulated)
• 50 demonstrations for each task
• 50Hz, 8~14s on each task

Training setting
• 80M parameters model
• 5 hours on one 11G RTX 2080 Ti GPU
• 0.01 inference time on the machine
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MimicPlay: Long-Horizon Imitation Learning by 
Watching Human Play
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MimicPlay: Long-Horizon Imitation Learning by 
Watching Human Play
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MimicPlay: Long-Horizon Imitation Learning by 
Watching Human Play

How to bridge the gap 
between
human appearance
and robot appearance?

human video 𝑜! ∈ 𝒱!

robot video 𝑜" ∈ 𝒱"
calculate feature embedding across 
entire dataset
𝑄! = 𝐸(𝒱!), 𝑄" = 𝐸(𝒱")
minimize the KL divergence across 
entire dataset
ℒ = 𝐷KL(𝑄"||𝑄!)
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MimicPlay: Long-Horizon Imitation Learning by 
Watching Human Play

A simple KL regularization seems to mitigate the domain gap

KL Regularization refers to using the Kullback-Leibler (KL) divergence as a 
regularization term in an optimization problem, typically in the context of machine learning. It 
encourages one probability distribution (often a learned model) to stay close to another 
reference distribution, serving as a constraint or guidance during training.71



MimicPlay: Long-Horizon Imitation Learning by 
Watching Human Play
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MimicPlay: Long-Horizon Imitation Learning by 
Watching Human Play
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RoboCook: Long-Horizon Elasto-Plastic Object 
Manipulation with Diverse Tools
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RoboCook: Long-Horizon Elasto-Plastic Object 
Manipulation with Diverse Tools

Why difficult?
1. deformable 

representation
2. fine grand 

manipulation
3. predict 

dynamics
4. supervision
5. perception 

(pointcloud?)
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RoboCook: Long-Horizon Elasto-Plastic Object 
Manipulation with Diverse Tools

Perception
• pointcloud merged from 

4 RGBD cameras
• for dough, sample 300 

points uniformly on the 
surface
• (Poisson disk 

sampling)
• for tools, uniformly 

sample the contact 
surface
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RoboCook: Long-Horizon Elasto-Plastic Object 
Manipulation with Diverse Tools

Dynamics model
• a set of parameterized actions
• given 𝑆!, 𝑎! and tool class, predict 
𝑆!"#

• given 𝑆!, 𝑆!"# predict 𝑎!
• PointNet++, MLP, SoftMax

Tool Selection Model
• Supervised Learning
• Labeled by human 

demonstrated process
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RoboCook: Long-Horizon Elasto-Plastic Object 
Manipulation with Diverse Tools

Close-loop Control policy
• given 𝑆!, 𝑆Target predict 𝑎!
• select top 3 tool selection, predict 3 possible outcome,
• execute the action with the closest result to the target.
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RoboCook: Long-Horizon Elasto-Plastic Object 
Manipulation with Diverse Tools
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VoxPoser: Composable 3D Value Maps for Robotic 
Manipulation with Language Models
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VoxPoser: Composable 3D Value Maps for Robotic 
Manipulation with Language Models
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VoxPoser: Composable 3D Value Maps for Robotic 
Manipulation with Language Models

Prompt 
Engineering
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VoxPoser: Composable 3D Value Maps for Robotic 
Manipulation with Language Models

LLM and Prompting
• GPT-4
• Include 5-20 example 

queries and 
corresponding 
responses as part of 
the prompt.

VLMs and Perception
• OWL-ViT to obtain a 

bounding box
• Segment Anything to 

obtain a mask
• XMEM to track the 

mask
• RGB-D camera to 

obtain object/part 
point cloud
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ViNT: A Large-Scale, Multi-Task Visual Navigation 
Backbone with Cross-Robot Generalization
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ViNT: A Large-Scale, Multi-Task Visual Navigation 
Backbone with Cross-Robot Generalization

Uses action abstraction across embodiments: short-term waypoints in a sequence.
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ViNT: A Large-Scale, Multi-Task Visual Navigation 
Backbone with Cross-Robot Generalization

Train the Model

• Use a wide variety of navigation demonstrations. (Across Stanford, Berkeley, Seattle…)
• Sample a trajectory from the dataset, select 𝑃 frames as observation, a frame 𝑑

timestep away from now.
• Train model based on imitation objective:

ℒViNT(𝜙, 𝜓, 𝑓) = 𝔼!𝔼"𝔼# log𝑝(𝑎
̂
|𝑓(𝜓(𝑜)":"&', 𝜙(𝑜", 𝑜()) + 𝜆log𝑝(𝑑|𝑓(𝜓(𝑜)":"&', 𝜙(𝑜", 𝑜())
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ViNT: A Large-Scale, Multi-Task Visual Navigation 
Backbone with Cross-Robot Generalization

Run the Model

• Build a topological graph ℳ using subgoal image as node, ViNT distance 
prediction as edge.

• Use physical search with a topological graph-based planner.
• Use an image-to-image diffusion model to propose exploration targets (subgoal).
• Use ViNT to (ground) determine which are possible subgoals.
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ViNT: A Large-Scale, Multi-Task Visual Navigation 
Backbone with Cross-Robot Generalization

For Downstream Tasks

• Add a new branch of tokenizer to the network
• But incredibly small amount of data (1 hour 

compared to 80 hours )
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Athletic Intelligence

• FlingBot: The Unreasonable Effectiveness of Dynamic 
Manipulations for Cloth Unfolding

• TossingBot: Learning to Throw Arbitrary Objects with 
Residual Physics

• Dynamic Handover: Throw and Catch with Bimanual Hands
• Legged Locomotion in Challenging Terrains using 

Egocentric Vision
• Robot Parkour Learning
• Learn Humanoid Locomotion with Transformers



FlingBot: The Unreasonable Effectiveness of
Dynamic Manipulations for Cloth Unfolding
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FlingBot: The Unreasonable Effectiveness of
Dynamic Manipulations for Cloth Unfolding

Defines a grid of discrete action space; predict the position of the 
highest value.

Train with a predefined fling action.
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TossingBot: Learning to Throw Arbitrary Objects 
with Residual Physics
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TossingBot: Learning to Throw Arbitrary Objects 
with Residual Physics

Tossing arbitrary objects is non-trivial even for human
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TossingBot: Learning to Throw Arbitrary Objects 
with Residual Physics

System Overview

• RGB-D camera + target location -> throwing release velocity 𝑣
̂
and throw release point
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TossingBot: Learning to Throw Arbitrary Objects 
with Residual Physics

The work outputs throwing command 𝜙" = (𝑟, 𝑣), 𝑟 = (𝑟), 𝑟*, 𝑟+), 𝑣 = (𝑣), 𝑣*, 𝑣+)
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TossingBot: Learning to Throw Arbitrary Objects 
with Residual Physics

• binary cross-entropy loss for success grasping prediction
• Huber loss for velocity residual prediction

Using actual landing location 𝑝 and 
executed release velocity 𝑣 to 
supervise residual prediction 
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TossingBot: Learning to Throw Arbitrary Objects 
with Residual Physics
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Dynamic Handover: Throw and Catch with 
Bimanual Hands
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Dynamic Handover: Throw and Catch with 
Bimanual Hands

Multi-agent system!
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Dynamic Handover: Throw and Catch with 
Bimanual Hands

Uses past 20 frames

A set of pre-defined 
goal positions
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Dynamic Handover: Throw and Catch with 
Bimanual Hands

Stage 1: Multi-Agent Reinforcement 
Learning
Multi-Agent RL:
• no parameter / info sharing between 

agents
• same input / output definition

Stage 2: Goal Estimator Learning
Due to sim-to-real issue, thrower in real 
world does not always throw the object 
in the given goal.
• Using past 𝑘 frames as input
• Predict the goal position

Stage 3: Jointly training two agent and goal 
estimator
“This joint training helps reduce 
compounding errors when integrating the 
goal estimator with the policy.”
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Dynamic Handover: Throw and Catch with 
Bimanual Hands
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Athletic Intelligence (quadruped robot)

2020: RL is able to work on quadruped locomotion
2021: RL is simple enough to train quadruped robot

2022: quadruped robot can utilize vision to guide the gait
2023: quadruped robot outperforms all other mobile robots



Athletic Intelligence (bipedal robot)


