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Final

- Dec 3 — next Tuesday!
- 15:00 - 17:00 in 1D-106

- Content:

- All lectures
- Take a look at facts, algorithms, concepts

- You are allowed to bring 3 A4 sheets (so 6 pages) of info to the exams. You can write/ print
anything on those sheets. On top of every page (so 6 times) there needs to be your name
(pinyin), student ID and ShanghaiTech email address. We will check every cheat sheet
before the exam and confiscate every sheet without name or with a name that is not yours.

- No electronics/ calculator/ smartwatch allowed
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Project meetings

- Another meeting next week Thursday or Friday (see wechat!)
- Another meeting Monday or Tuesday Dec 16, 17
- Another meeting Monday or Tuesday January 6, 7
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Project conclusion

- Due January 10 — could be extended till January 17 if needed — need to write
me an email!
- Project Report:
- Similar to proposal
- With nice results and proper quantitative evaluation

- Make look like a scientific paper
- Use bibtex!

- Put into git (folder: doc/final )

* Include everything that is needed to generate the report in the git!
» So don’t forget images/ the bib file

- Project Demo:

- Make an appointment with Prof. Schwertfeger to show the final demo of your project
- Before: January 17!
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Project Webpage

- Write a text (word document) about your project for the general public — not too technical —
not too many details

- Some details can be written
- Do not just copy the abstract/ intro from your final report — write a nice text for the general public!
- Provide a few images with captions (as images also extra files)
- Put into your group git (folder: doc/webpage )
- Prof. Schwertfeger will upload the data to the website — e.g. look at :
https://robotics.shanghaitech.edu.cn/teaching/robotics2020 (hopefully up soon...)

- Also make a NICE video about your project. 4-8 minutes. Leave the video at good quality —
size maybe 100 — 300 MB (MP4) — Prof. Schwertfeger will compress it to make a web
version

- Avoid showing other people; do not talk in the video; do not add music;
- Add a title page: same info as on report
- Add to your git folder



https://robotics.shanghaitech.edu.cn/teaching/robotics2020

Mobile Manipulation

WHOLE-BODY CONTROL
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Whole-Body Control

- Plan & control for combined motion of manipulator and mobile base
- Particular popular for legged, especially humanoid robots
- Tree-like kinematic structure — no loops!

- Also needed for aerial, underwater, OVERVIEW ON WBC SOFTWARE FRAMEWORKS
surface vehicles and space robots:

Name License Robot Model (Parser)
- Manipulation forces move the mobile base!
. . TSID BSD 2 Pinnochio (URDF)

- Ground vehicles: non-holonomic ORCA CeCILL.C KDL/iDynTree (URDE)
Kinematics restricts possible motions ->  ..sc LGPLv2.1/BSD KDL (URDF)
difficult and unpopular IHMC WBC  Apache / GPLv3  internal (URDF/SDF)

- Alternative: holonomic ground robots! Drake BSD 3 internal (URDF/SDF)

- MPC popular Controllt! LGPL RBDL (URDF)

- Reinforcement Learning very popular Mronga, D., Kumar, S., & Kirchner, F. (2022, May). Whole-body

control of series-parallel hybrid robots. In 2022 International
Conference on Robotics and Automation (ICRA) (pp. 228-234). IEEE.
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Fig. 3: (left) HRP-4 holding a large box with a human while walking (Agravante
et al. (2019)) (right) HRP-2 pivoting a furniture (Murooka et al. (2017)).

Stasse, O., & Righetti, L. (2020). Whole-body
manipulation. Encyclopedia of Robotics, 1-9.
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https://www.youtube.com/watch?v=uT4ypNDzUvI
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Playful DoggyBot: Learning Agile and Precise Quadrupedal Locomotion

https://playful-doggybot.github.io/



https://playful-doggybot.github.io/
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Overview of Learning Approaches in Robotics

- Goal: To explore various learning » Actor-Critic Learning
paradigms that enable robots to - Evolutionary Algorithms
perform tasks autonomously. - Transfer Learning
- Categories: - Self-Supervised Learning
. Model-Free vs. Model-Based - Few-Shot and Zero-Shot Learning
Learning - Multi-Agent Learning
- Supervised vs. Unsupervised - Curriculum Learning
Learning - LLM
- Passive vs. Active Learning - Foundation Models
- Reinforcement Learning (RL) - Other types of “learning”

- Imitation Learning
- End-to-End Deep Learning

Next few slides
With help from ChatGPT :D
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Model-Based vs Model-Free Learning

Model-Based Learning: Model-Free Learning:

- Involves learning a model of the - Directly learns a mapping from
environment or dynamics (e.g., states to actions or rewards without
using physics or system dynamics). modeling the environment.

- Robot can plan and predict actions
based on this model. - Example: Q-learning or policy

gradient methods in Reinforcement

- Example: Planning with a learned Learning.
dynamics model in robotic control
tasks.
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Supervised vs. Unsupervised Learning

Supervised Learning:

- Learning from labeled data (input-
output pairs).

- Requires large datasets and human
supervision.

- Example: Image classification for
object detection in robotics, such as
recognizing "graspable” objects in a
scene.

Unsupervised Learning:

- Learning from unlabeled data to

find hidden patterns (e.g., clustering
or representation learning).

- Example: A robot exploring its

environment autonomously to
cluster sensory data (e.g., LIDAR or
visual data) into distinct regions like
walls, furniture, or open spaces.
This clustering can later help the
robot map its environment for
navigation.
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Passive vs Active Learning

Passive Learning:

- The robot learns from a fixed
dataset (either labeled or
unlabeled).

- Example: Supervised learning with
a fixed dataset.

Active Learning:

- The robot queries the environment

for more informative data based on
its current knowledge or uncertainty.

- Example: A robot selects which

objects to interact with in order to
maximize learning.
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End-to-End Deep Learning in Robotics

- Definition: Learning a direct mapping from raw input (e.g., images, sensory
data) to the output (e.g., control commands).

- Example: A robot controlling a gripper using only camera images.
- Advantages: Simplifies the pipeline by learning a direct mapping.

- Challenges: Requires large amounts of labeled data.
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Reinforcement Learning (RL)

- Definition: An agent learns to take actions in an environment to maximize
cumulative reward over time.

- Key Components: States, actions, rewards, policy.

- Example: Training a robot to navigate using trial-and-error.

- Types:
- Model-Free: Methods like Q-learning, policy gradients.
- Model-Based: Use of learned models to simulate and plan actions.
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Imitation Learning

- Definition: Robots learn by observing and imitating human demonstrations or
expert behaviors.

- Approaches:
- Behavior Cloning: Supervised learning from demonstrations.

- Inverse Reinforcement Learning (IRL): Learning the underlying reward
function from expert demonstrations.

- Example: Teaching a robot to grasp objects by mimicking human actions.
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Actor-Critic Learning

- Definition: A type of Reinforcement Learning where two models (actor and
critic) are trained simultaneously.

- Actor: Decides which action to take based on the current state.

- Critic: Evaluates the chosen action based on the reward.
- Advantages: More stable training by using both policy and value functions.

- Example: Robotic manipulation tasks requiring fine-grained control.
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Evolutionary Algorithms in Robotics

- Definition: Optimization methods inspired by natural selection, such as
genetic algorithms or neuroevolution.

- Example: Optimizing robot locomotion for uneven terrains or designing neural
network architectures for control.

- Advantages: Effective for tasks where gradient-based optimization struggles
or is infeasible.

- Challenges: Computationally expensive and may require many iterations.
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Transfer Learning in Robotics

- Definition: Leveraging knowledge from one domain/task to accelerate
learning in another.

- Example: Transferring knowledge from simulation-trained robots to real-world
environments.

- Advantages: Reduces training time and reliance on large datasets.

- Challenges: Ensuring the transfer is effective despite domain differences.



Mobile Manipulation ShanghaiTech University - SIST - Nov 28 2024

Self-Supervised Learning in Robotics

- Definition: Robots generate their own training signals from raw, unlabeled
data.

- Example: Learning to predict the next sensory input (e.g., next video frame)
for tasks like navigation or manipulation.

- Advantages: Removes dependence on human-labeled data, making learning
scalable.

- Challenges: Designing effective self-supervised objectives.
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Mobile Manipulation

Few-Shot and Zero-Shot Learning in Robotics

- Definition: Learning to generalize with few or no examples of the target task.

- Example: Teaching a robot to recognize and manipulate a novel object with
only one image or no prior direct training.

- Advantages: Crucial for real-world scalability.

- Challenges: Relies heavily on robust pre-trained models.
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Multi-Agent Learning in Robotics

- Definition: Learning strategies for robots that interact and collaborate or
compete in shared environments.

- Example: Swarms of drones coordinating for mapping or delivery tasks.
- Advantages: Enables cooperative behaviors in teams of robots.

- Challenges: Complex interactions and scalability.
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Curriculum Learning in Robotics

- Definition: Gradually increasing the complexity of tasks during training.

- Example: Training a robot arm to first stack one block, then multiple blocks,
before solving general stacking problems.

- Advantages: Stabilizes and accelerates learning.

- Challenges: Designing a proper curriculum and transitions between tasks.
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LLM for Robotics

- Definition: LLMs are Al systems trained on massive text corpora to process,
understand, and generate human-like text.

- Key Capabilities in Robotics:
- Natural Language Understanding: Interpreting commands and queries.

- Knowledge Integration: Retrieving and applying knowledge to tasks (e.g., assembly
instructions).

- Reasoning and Task Decomposition: Breaking down complex instructions into actionable
steps.

- Advantages:
- Provides high-level reasoning and task planning.
- Reduces the need for detailed programming in language-based tasks.
- Can handle diverse instructions using pre-trained knowledge
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How LLMs Are Used In Robotics

- Applications:

- Human-Robot Interaction: Robots can interpret and execute natural
language instructions (e.g., “Bring me a cup of water”).

- Task Planning: Combining linguistic reasoning with real-world task
execution.

- Multi-Modal Integration: Enhancing decision-making by linking text, vision,
and sensory inputs.

- Challenges:

- Ensuring grounding in physical environments (e.g., interpreting "left" in a
spatial context).

- Real-time response constraints due to the size of models.
- Domain-specific fine-tuning for robotics applications.
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Robotics Foundation Models

- Definition: Large-scale Al models pre-trained on diverse, multi-modal
datasets (e.g., text, images, videos).

- Core Characteristics:
- Versatile Pre-training: Serve as a base for fine-tuning on specific tasks.

- Multi-Modal Understanding: Integrate text, vision, and other sensory
inputs for broader applicability.

- Key Advantages for Robotics:
- Generalize across multiple tasks with minimal retraining.
- Simplify the training pipeline by leveraging shared representations.
- Adaptable to new tasks without extensive data collection.
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How Foundation Models Empower Robotics

- Applications:
- Perception: Models like CLIP interpret visual data for scene understanding.

- Control: Leveraging shared representations for motion planning and
actuation.

- Task Generalization: Performing varied tasks without task-specific training.

- Simulation-to-Real Transfer: Reducing the gap between simulated and
real-world performance.

- Challenges:
- High computational costs for pre-training and fine-tuning.
- Limited grounding in physical dynamics without additional modeling.
- Potential biases from pre-training on non-robotic data.
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Other types of learning

- Term “learning” also used in different contexts in robotics, e.g.

- SLAM: the robot “learns” the map (by SLAM algorithm)
- Adaptive Control Learning

- Motion Planning
- Meta-learning: learn to learn
- Lifelong Learning (Continuous Learning)
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End-to-End Deep Learning
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Global Map
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End-to-End Deep Reinforcement Learning

- From sensors to actuation: one layered or recurrent neural network! =>
- NOT classical general control scheme (Perception, SLAM, Cognition & Planning, Navigation)

- Needs reward signal: sparse, noisy, delayed!
- Take time into account: input frames are related!

- Gained interest 2013 again with:
- Deep Mind (google) playing ATARI 2600 games
- Video: Breakout
- Learned 7 games
- Surpasses human expert in 3

https://www.cs.toronto.edu/~vmnih/docs/dgn.pdf



https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
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What is Reinforcement Learning?

- Learning from interaction with an environment to achieve some long-term goal
that is related to the state of the environment

- The goal is defined by reward signal, which must be maximized

- Agent must be able to partially/fully sense the environment state and take
actions to influence the environment state

- The state is typically described with a feature-vector

Material adapted from

Karan Kathpalia
https://www.cs.princeton.edu/courses/archive
[spring17/cos598F/lectures/RL.pptx



https://www.cs.princeton.edu/courses/archive/spring17/cos598F/lectures/RL.pptx
https://www.cs.princeton.edu/courses/archive/spring17/cos598F/lectures/RL.pptx
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Exploration versus Exploitation

- We want a reinforcement learning agent to earn lots of reward

- The agent must prefer past actions that have been found to be effective at

producing reward
- The agent must exploit what it already knows to obtain reward
- The agent must select untested actions to discover reward-producing actions
- The agent must explore actions to make better action selections in the future

- Trade-off between exploration and exploitation
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Reinforcement Learning Systems

- Reinforcement learning systems have 4 main elements:
- Policy
- Reward signal

- Value function

- Optional model of the environment
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Policy

- A policy is a mapping from the perceived states of the environment to actions
to be taken when in those states

- A reinforcement learning agent uses a policy to select actions given the
current environment state
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Reward Signal

- The reward signal defines the goal

- On each time step, the environment sends a single number called the reward
to the reinforcement learning agent

- The agent’s objective is to maximize the total reward that it receives over the
long run

- The reward signal is used to alter the policy
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Value Function (1)

- The reward signal indicates what is good in the short run while the value
function indicates what is good in the long run

- The value of a state is the total amount of reward an agent can expect to
accumulate over the future, starting in that state

- Compute the value using the states that are likely to follow the current state
and the rewards available in those states

- Future rewards may be time-discounted with a factor in the interval [0, 1]
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Value Function (2)

- Use the values to make and evaluate decisions
- Action choices are made based on value judgements

- Prefer actions that bring about states of highest value instead of highest
reward

- Rewards are given directly by the environment

- Values must continually be re-estimated from the sequence of observations
that an agent makes over its lifetime



Mobile Manipulation ShanghaiTech University - SIST - Nov 28 2024

Model-free versus Model-based

- A model of the environment allows inferences to be made about how the
environment will behave

- Example: Given a state and an action to be taken while in that state, the
model could predict the next state and the next reward

- Models are used for planning, which means deciding on a course of action by
considering possible future situations before they are experienced

- Model-based methods use models and planning. Think of this as modelling
the dynamics

- Model-free methods learn exclusively from trial-and-error (i.e. no modelling of
the environment)

- Followoing: model-free methods
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On-policy versus Off-policy

- An on-policy agent learns only about the policy that it is executing

- An off-policy agent learns about a policy or policies different from the one that
it is executing



Mobile Manipulation ShanghaiTech University - SIST - Nov 28 2024

Credit Assignment Problem

- Given a sequence of states and actions, and the final sum of time-discounted
future rewards, how do we infer which actions were effective at producing lots
of reward and which actions were not effective?

- How do we assign credit for the observed rewards given a sequence of
actions over time?

- Every reinforcement learning algorithm must address this problem
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Reward Design

- We need rewards to guide the agent to achieve its goal
- Option 1: Hand-designed reward functions

- This is a black art

- Option 2: Learn rewards from demonstrations

- Instead of having a human expert tune a system to achieve the desired
behavior, the expert can demonstrate desired behavior and the robot can tune
itself to match the demonstration
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What is Deep Reinforcement Learning?

- Deep reinforcement learning is standard reinforcement learning where a deep
neural network is used to approximate either a policy or a value function

- Deep neural networks require lots of real/simulated interaction with the
environment to learn

- Lots of trials/interactions is possible in simulated environments
- We can easily parallelize the trials/interaction in simulated environments

- We cannot do this with robotics (no simulations) because action execution
takes time, accidents/failures are expensive and there are safety concerns
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Google Door Opening Project

- Learn to open doors using Reinforcement learning
- Learning reward: opening the door
- Much harder than purely digital learning: very slow iterations!

- Simulation only helps a bit:
real world much more complex

- Google and
UC Berkeley Sergey Levine

- Google very secretive ...

https://www.wired.com/2017/01/googles-qo-
playing-machine-opens-door-robots-learn/



https://www.wired.com/2017/01/googles-go-playing-machine-opens-door-robots-learn/
https://www.wired.com/2017/01/googles-go-playing-machine-opens-door-robots-learn/
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RL Algorithms

- Finite Markov Decision Processes MDP

- Temporal-Difference Learning TD Learning
- State-Action-Reward-State-Action SARSA TD Learning

- Q-learning: Off-policy TD Control
- Deep Q-Networks DQN

- Policy Gradient Methods
- Actor-Critic Methods

- Asynchronous Reinforcement Learning
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« Multi-modal transfer learning for grasping transparent and specular
objects

 Learning Frine-Grained Bimanual Manipulation with Low-Cost
Hardware (ACT / ALOHA)

. I\/llimicPIay: Long-Horizon Imitation Learning by Watching Human

D ay

- RoboCook: Long-Horizon Elasto-Plastic Object Manipulation with

Diverse Tools

« VoxPoser: Composable 3D Value Maps for Robotic Manipulation
with Language Models

« VINT: A Large-Scale, Multi-Task Visual Navigation Backbone with
v Cross-Robot Generalization
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Command by t ) Bk

ShanghaiTech University

https://say—can.github.io
https://nlmap-saycan.github.io



https://say-can.github.io
https://nlmap-saycan.github.io
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Customers want a
robot that handles

all household tasks
and is

commanded by
natural language

Do As | Can, Not As | Say:
Grounding Language in Robotic Affordances
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Learning Household Manipulation from Human

ideos with Simulated Twin Environments

1. Not all researchers
have the robot to
evaluate

2. Dataset should avoid
missing scenarios

Data Collection Human Videos

Dataset alone is not enough

58
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Learning Household Manipulation from
Human Videos with Simulated Twin

Environments

Learning from
RoboTube Videos

1. Pair real-world
video with
simulation video

| 2. Large dataset to

| Testing in RT-sim 5000+ videos and

50 different objects

Data Collection Human Videos

Lama b | ol

Simulated Twin

build simulation environments paired with video dataset
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Multi-modal transfer learning for grasping
transparent and specular objects

Depth sensors suffer from transparent objects
and specular objects

Oblique view Reference image of opaque objects
Depth is "'a1 or has holes
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Multi-modal transfer learning for grasping
transparent and specular objects

Previous works cost a lot. :P

Theirs Ours
[Oberlin et al. 2018] Multiple viewpoints at test time Single RGB-D image at test time
[Levine et al. 2018] ~800k real grasp attempts No real grasp attempts
[Saxena et al. 2006] Labeling by hand No human labeling
[Zhou et al. 2019] Specialized hardware on known Commodity depth sensor, generalizes
objects to unseen objects
[Sajjan et al. 2019] High fidelity RGB-D sim No simulation required*

61
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Multi-modal transfer learning for grasping
transparent and specular objects

," Trained depth-based
grasping model

__..E_J:.ﬁ_r_ - T"' - _*_ < .

Trained RGB-based

/ grasping model p
- i | (o e o ] e
At test time

RGB Image
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Simanual Mar

pulatior

MithJl oy -Cost Hardware (ACT / ALOHA)

Bl top camera

wrist camera wrist camera

\

front camera

L

grip tape

<4— 50cm ——P]

red: bimanual workspace

see-through grippel

#Dofs

Reach

Span
Repeatability

Accuracy
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Learning Fine-Grained 'Bimanual'Manipulation

y-Cost Hardware (ACT / ALOHA)

action sequence

[]z style variable ; hy (B-H- -0 H B
4 /\
\ 4 B 4 )
2
transformer - /\ transformer transformer
encoder S~ encoder decoder
3
L J /\ | ) L )
‘__L| |J__’ A A A A A \ A A A A I_—Ll I—_I_| a ‘ a ﬁ I%I
[g TN B g] 4 /\\[r_-,...r_-,]...[[,... ]
o A
[CLS] joints action sequence + PosEmb 480X640X3 +g)';lE'r\lnb cam 1 cam4 joints Z position embeddings (fixed)

Action Chunking with Transformers (ACT)
train a conditional VAE (C-VAE)

b left: the encoder part, where z is the style variable
Ad right: the decoder part, where z is connected during training but set to
v the mean of the prior (i.e. 0) during testing.
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Learning Fine-Grained 'Bimanual'Manipulation

Action Chunking

Action Chunkin

Inspired by action chunking, a neuroscience 6 19 2 B 4 B B 9
concept where individual actions are =0 [
grouped together and executed as one unit, .
making them more efficient to store and t=4 L]
execute. : :
Action Chunking + Temporal Ensemble
Temporal Ensemble )X [05,03,02,0.1] =
. . . t=0 ||
weighted sum of action from different
action sequence predictions t=1 L]
w; = exp(—mXi) where wy is for the t=2 L]
A oldest action and m is the hyperparameter.
: : : t=3
¥  The smaller mis, the faster incorporation. 5
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Learning Fine-Grained 'Bimanual'Manipulation

ow-Cost Hardware (ACT / ALOHA)

Data collection Training setting
8 tasks (6 real-world, 2 simulated) « 80M parameters model
« 50 demonstrations for each task * 5 hours on one 11G RTX 2080 Ti GPU
 50Hz, 8~14s on each task « 0.01 inference time on the machine
Cube Transfer (sim) Bimanual Insertion (sim) Slide Ziploc (real) Slot Battery (real)
Touched Lifted Transfer Grasp Contact Insert Grasp Pinch Open Grasp Place Insert
BC-ConvMLP 3413 1711 110 510 110 110 0 0 0 0 0 0
BeT 60| 16 ) o 27 1 21 |0 410 310 8 0 0 4 0 0
RT-1 441 4 3 |2 Z10 2.0 010 110 4 0 0 - 0 0
VINN 13117 9134 30 610 110 110 28 0 0 20 0 0
‘A‘ ACT (Ours) 97 | 82 90 | 60 86 150 93176 90 | 66 32120 92 96 88 100 100 96
A TABLE I: Success rate (%) for 2 simulated and 2 real-world tasks, comparing our method with 4 baselines. For the two simulated tasks, we
‘A‘ report [training with scripted data | training with human data], with 3 seeds and 50 policy evaluations each. For the real-world tasks, we
A4 report training with human data, with 1 seed and 25 evaluations. Overall, ACT significantly outperforms previous methods.
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MimicPlay:liong-Horizon Imitation Learning by
Watching Human Play
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MimicPlay:liong-Horizon Imitation Learning by

Watching Human Play

Small amount.ﬁ
robot data

Human play ‘

1 I
I I
I 1
(multi-view) g I 1
! Goal I
Latent v : : image | :
atent plan r |
planner Dy 1 9t Latent Latent plan | Sl Latent plan
1 planner | planner
rp— : Current :
L .‘/- ;. g I imarge I
e 1 |
I i
GMM | |
. . Robot :
— | decoder ; “ ‘) Robotn policyl  setion’ Robotn polua g
3D hand location [, 3D T ! ag 1
and trajectory : Wrist imgw; Proprio. €; : Wrist img Wy Proprio. €, Robot action a4
(a) Training stage 1 - Learning latent plans (b) Training stage 2 - Plan-guided imitation learning (c) Testing stage
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MimicPlay:liong-Horizon Imitation Learning by

Watching Human Play

How to bridge the gap  human video 0" € V"

petween . . T
human appearance robot video 0" €V

and robot appearance? calculate feature embedding across
entire dataset

Q" =E(W™, Q" =E(V")

minimize the KL divergence across
entire dataset

L=Dgr(Q"1Q"

70
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MimicPlay:liong-Horizon Imitation Learning by

Watching Human Play

A simple KL regularization seems to mitigate the domain gap

e 0 Human data 100 1 ) Human data
[ Robot data [ Robot data
20 Dist. overlap 50 1 Dist. overlap
o o
a 0 g 0
£ £
S S
-50 =50
-100 s . —100 A By .
Distribution Distribution
overlap: 35% overlap: 58%
-150 4, v T v : T v -150 < T T T T T T
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150
comp-1 comp-1
(a) Distribution overlap of Ours (w/o KL) (b) Distribution overlap of Ours

KL Regularization refers to using the Kullback-Leibler (KL) divergence as a
regularization term in an optimization problem, typically in the context of machine learning. It
encourages one probability distribution (often a learned model) to stay close to another

reference distribution, serving as a constraint or guidance duringtraining.
= KMy ZABA YR WAL

et | NN N




ay:ilong-Horizon Imitation Learning by
Watching Human Play

“Do what I just did”: Prompting robot manipulation with human motion |

———

~

A | 1 :
Ad A
A \V 4
[V Py, b
‘A‘ Step 1: Recording human motion - N

72




MimicPlay:liong-Horizon Imitation Learning by
Watching Human Play

73
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RoboCook:lllonc -':JJII'_/.:)JJ _.l-.J:::,JwJLJJ..L JJ

.l."P“”
e

8x speed

initial dough | Knife | Gripper | Press | Roller | Circle cutter | Pusher | Skin spatula | Filling spatula | Hook | Dumpling

A 74
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RoboCook:lLong-Horizon Elasto-Plastic Object

ulation with Diverse Tools

Why difficult?

1. deformable
representation

2. fine grand
manipulation

3. predict
dynamics

4. supervision

v 5. perception

¥ (pointcloud?)
AA

VW ==— 2ag
AE==—%"

B. Dynamics

Gripping

Pressing

Initial State %o
“ ol

a a,

a; 3
i 4
5G]~ 5,—~{GNR}- 5,—~[GNR}- s

"y |i|“p
[y
:

...aQi 3,

¥

3 K
. i ‘
% g g’:::i‘ i
- I" .. 7 iJ
- """.O ".f.'."!
ol o0
N

3
» 40‘.0.. s,

b
F/
3(
.
o
S

%&
hxl"
W
i
E I g:.‘aq o3, :}%
’ '..p“-’fxg ety kX
L

1 Pers. Side
1

T
. D

Si

Sy
GT _ PRED
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RoboCook:lLong-Horizon Elasto-Plastic Object

ipulation with Diverse Tools

Perception

e pointcloud merged from
4 RGBD cameras

« for dough, sample 300
points uniformly on the
surface

e (Poisson disk
sampling)

e for tools, uniformly
sample the contact
surface




RoboCook:lLong-Horizon Elasto-Plastic Object

ulation with Diverse Tools

Dynamics model Tool Selection Mode

e a set of parameterized actions : :
 Supervised Learning

. given St, a; and tool class, predict
t+1  Labeled by human

. given S¢, Sy, predict a, demonstrated process
e PointNet++, MLP, SoftMax

B. Self-supervised policy learning Gripping Pressing

Y

o > y +
* g a=(xYy270)

Rolling

1 Tool Randomly i
i _l l_ sampled action a

So— GNN |—S,
|

‘A‘ I.\ GNN |
(. (=" R —
‘A‘ »| Network '_g =L a)s 51 6
gradient Action space Action space

77

ZA RA 1R R




RoboCook:lLong-Horizon Elasto-Plastic Object

ulation with Diverse Tools

Close-loop Control policy

« select top 3 tool selection, predict 3 possible outcome,
« execute the action with the closest result to the target.

A. Closed-Loop Control
Current Target

Circle press g
| =5 | Circle punch ‘“‘
| &' ;‘ Classifer Policy [
A" 7 X » Network : Network

Large roller

Actions Updated

AAA Circle cutter
AAA Hook Press and roll

Visual feedback loop
78
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RoboCook:lLong-Horizon Elasto-Plastic Object

ulation with Diverse Tools

» ¢
Material Initial state Final State (K)
s @
9 L —
o 55
B 429
=
s :
o Flour + water + salt
o
o
a
>
o
[a '
>
o
()
P
a
<
£
m E
o |
(N
O
@)
o
=




VoxPoser: Com 1:):)53).’9]:—) 5D Value Viaps for Robotic
Manipulation with Language Models

‘

Open the top drawer, and
watch out for that vase!

@

Large Vision

Language Language

Model Model “Take out bread from toaster” “Take out a napkin”
Code

</>

. e
“Measure weight of apple” “Close top drawer” “Sweep trash into dustpan” “Unplug charger for phone”

4 : \J,{‘ v ) l‘j"{
A ﬁ > 1
- .( ;" 3
) 44 @ - { .
G ) e+ (it o - .
e + B 3 0 p 1 4 . ]
3D Value Map g - : g "

N —  "'" e S——
cost reward “Hang towel on rack” “Press down moisturizer pump”  “Set table for pasta” “Turn on lamp”

Figure 1: VOXPOSER extracts language-conditioned affordances and constraints from LL.Ms and grounds
them to the perceptual space using VLMs, using a code interface and without additional training to either com-
ponent. The composed map is referred to as a 3D value map, which enables zero-shot synthesis of trajectories
for large varieties of everyday manipulation tasks with an open-set of instructions and an open-set of objects.

80
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VoxPoser: Composable SD Value Mapstor Robotic
sulation with Language Models

81
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VoxPoser: Composable 5D Vaiue IViaps for Robotic
Vianipulation with Language VModels

import numpy as np
from perception utils import parse query obj
from plan utils import get empty affordance map, set voxel by radius, cm2index

| | Prompt
# Query: a point 10cm in front of [10, 15, 60]. . .
affordance map = get empty affordance map() Englneerlng

# 10cm in front of so we add to x-ax
X 10 + cm2index (10, 'x')
v '=-15

Z 60

affordance map([x, y, z]
ret val = affordance map

import numpy as np
from perception utils import parse query obj
from plan utils import get empty avoidance map, set voxel by radius, cm2index

# Query: 10cm from the bowl.

avoidance map = get empty avoidance map()

bowl = parse query obj('bowl")

set voxel by radius(avoidance map, bowl.position, radius cm=10, value=1)
ret val = avoidance map




VoxPoser: Combosable 3D Value Viabs ftor Roboti

Vianipulation with Language Models

LLM and Prompting VLMs and Perception
. GPT-4 « OWL-VIT to obtain a
bounding box
* Include 5-20 example . Segment Anything to
ggrergggc?r?dding obtain a mask
responses as part of y XMEILVI to track the
the prompt. mas
* RGB-D camera to
) obtain object/part
v point cloud
AAA
A A

A




VINT: A Large =Scale, Multi-Task Visual'Navigation

-..-l-j

D
Q

N e

\IIII

General Navigation Models Deploy Zero-Shot Adapt to Downstream Tasks

84
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VINT: A Large=Scale, Multi-Task Visual Navigation

Observations //

Past 5 timesteps / Positional Encoding
85x64x3 RGB 4 X PR Y = P — =
e i = i s| |s| |H
‘ ' ‘ L] £ = ]
. . w »-] s .
] < < :
e o .
(Y] O
v N ]
. | =
Transformer . .
7 Tok 4 Lavers. 4 Heads Actions Normalized Actions
i yers, 4 heaas i 2 & Corfininge
Goal + Observation X;l’;gs 21M Porameters 3x5-D, Continuous

Early Fusion

Figure 2: VINT Model Architecture. VINT uses two EfficientNet encoders ), ¢ to generate input tokens to a
Transformer decoder. The resulting sequence is concatenated and passed through a fully-connected network to

predict (temporal) distance to the goal as well as a sequence of H = 5 future actions.

Uses action abstraction across embodiments: short—-term waypoints in a sequence.

85
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VINT: A Large =Scale, Multi-Task Visual Navigation

Nith Cross-Robot Generalization

Train the Model

» Use a wide variety of navigation demonstrations. (Across Stanford, Berkeley, Seattle...)
e Sample a trajectory from the dataset, select P frames as observation, a frame d

timestep away from now.
e Train model based on imitation objective:

Lying($ . ) = EEeEq [logp(alf (P(0)ci—p $(0r, 05)) + Aogp(dlf (0 cie—p, b (0t 05)]

©

Temporal Distance

Observations //

Z =
5M Parameters \
> X6
i EfficientNet-BO |:| [I D E -

5120/

Positional Encodling
QO

/ 5M Parameters

EfficientNet-BO HHD E m — )

]

.-.....-..-

Self-Attention
Self-Attention

1

Transformer

Normallzed Actlons

\ ‘v" 512. D) 7 Tokens 4 Layers, 4 Heads Actions

97 2 1M Parameters
17 < I >
Eart “L usion x512-D - 86

%; fM RGN




VINT: A Large =Scale, Multi-Task Visual Navigation

Nith Cross-Robot Generalization
Run the Model

* Build a topological graph M using subgoal image as node, VINT distance
prediction as edge.

e Use physical search with a topological graph—-based planner.

» Use an image—to-image diffusion model to propose exploration targets (subgoal).

» Use VIiNT to (ground) determine which are possible subgoals.

Current Observation Ungrounded Subgoals Grounded Subgoals ¢ “_

|

Goal

Topological Planner

Heuristic-Based J

Diffusion

&

}.:Z./fw A ﬂ&‘a A




VINT: A Large =Scale, Multi-Task Visual Navigation

Nith Cross-Robot Generalization

For Downstream Tasks

e Add a new branch of tokenizer to the network
SUSUER —  But incredibly small amount of data (1 hour
(M New compared to 80 hours )

\vj Token

Pre-Trained @

Figure 4: Adapting VINT
to different goals using a

new tunable goal token. -
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* FlingBot: The Unreasonable Effectiveness of Dynamic
Manipulations for Cloth Unfolding

 TossingBot: Learning to Throw Arbitrary Objects with
Residual Physics

« Dynamic Handover: Throw and Catch with Bimanual Hands

 Legged Locomotion in Challenging Terrains using
Egocentric Vision

« Robot Parkour Learning
v« Learn Humanoid Locomotion with Transformers
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FlingBot: The Unreasonable Effectiveness of
Dynamic Manipulations for Cloth Unfolding




FlingBot: The Unreasonable Effectiveness of
Dynamic Manipulations for Cloth Unfolding

a) Workspace b) Rotated & Scaled Images ¢) Predicted Value Maps d) Highest Value f) Fling Action
9()0 6()0 300 ( o 9()0 600 300 00 ( 300, 1.5x )

l | o ~ 7 ()K .--.
| 2
1.5x ' S |

12 rot'mom ] s e) Reachability

Residual Blocks

Value Network | | !}‘ ] )‘ ,\?uo i

L5x| gt 4N L)

Conv Blocks_] 1.0x4 i AL A

Defines a grid of discrete action space; predict the position of the
highest value.

Train with a predefined fling action.
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TossingBot:liearning to Throw Arbitrary Objects
with Residual Physics

Target Box

5 o P
pe -~ /*
o

e > )

~
o
~
—~




-

learning to I'hrow Arbitrary J.JJ
with Residual Hny~

(.-1.
V)

I

|

\
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TossingBot:liearning to Throw Arbitrary Objects

with Residual Physics

Grasping
Module
(FCN ResNet-7)
) A
Perception |
Module [% Grasping Scores
(FCN ResNet-7) \ (pixel-wise horizontal grasps)
. X
Throwing o ¥
Module
(FCN ResNet-7) ¢
t
Physics-based
Controller : : —-— Throwing Release Velocity
Sim. throwing velocity v (per pixel-wise sampled grasp)

System Overview

n

e RGB-D camera + target location —> throwing release velocity v and throw release point

94
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TossingBot:liearning to Throw Arbitrary Objects

with Residual Physics

x16 orientations
/ ) (per grasping angle)

‘ Grasping
ol | Module
a (FCN ResNet-7)
) A
Perception |
Module [% Grasping Scores
(FCN ResNet-7) \ (pixel-wise horizontal grasps)
i 2 aenle. Throwing R ¥
-l Module
, d (FCN ResNet-7) 0]
RGB-D Heightmap I £
Physics-based
Controller : : —-— Throwing Release Velocity
Sim. throwing velocity v (per pixel-wise sampled grasp)

The work outputs throwing command ¢, = (1, v),1 = (1, 13, 12), V = (Vy, Uy, ;)

95
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TossingBot:liearning to Throw Arbitrary Objects

with Residual Physics

/)Xégr(g)g;ﬁ;agggs : Our entire network f (including the perception, grasping,
Grasping and residual throwing modules) is trained end-to-end using the
(Fg\[l%gsﬁiﬂ following loss function: £ = L,+y;L;, where L is the binary
cross-entropy error from predictions of grasping success:
Perception | #
Module B el Ly = —(y:log i + (1 — yi) log(1 — )
(FCN ResNet-7) (pixel-wise horizontal grasps)

and L; is the Huber loss from its regression of 9; for throwing:

: x16
Throwing ¥ : 8 _
Module »Ct . { 5(51 - 51) ,1fOI‘ |6z — 5z| A
- (FCN ResNet-7) - SRR i P 3 1
RGB-D Heightmap I P, |0i = 0i| — 3, otherwise.

where y; is the binary ground truth grasp success label and

_| Physics-based . _ 0; is the ground truth residual label. We use an Huber loss
Controller Sim. throwing velocity Th(;gxilggwliil;?nﬁeygggg)lty [9] instead of an MSE loss for regression since we find that it
is less sensitive to inaccurate outlier labels. We pass gradients
AAA * binary cross—entropy loss for success grasping prediction Jsing actual landing location p and
A Hub yI p | th dual i tQ PIng P executed release velocity v to
® . . . 4
‘A‘ upoer I0SS Tor veloClity residual prediction supervise residual predlctlon
A A
A 96
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hamic Handover: I'hrow and Catch with
Bimanual Hands

Test in Real Robot System

98




Dynamic Handover: Throw and Catch with

Bimanual Hands

Action

(dim=22)

Multi-agent system!

Joint Posutlon1

A

Ad m=22

AA‘ Catcher Predlcted Goal
(dim=3)

A Object’s Position

(dim=3)

R f
= 10 Vg e o O | BN

. Policy(MAPPO)

Actlon
0o Jomt Position® ' ‘
Target Goal Thrower

dim=3)
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Dynamic Handover: Throw and Catch with

Bimanual Hands

A set of pre-defined
goal positions

p
x]y[z]

Throw Goal: ¢, Throwfoal: Gt
Thrower
. Proprioception

e 2

[Ty Tz]

, Catch Goal: G,
Predicted +

Catch Goal: G, | [gees])

) Catcher
Proprioception
+ Catcher

Uses past 20 frames Object IsaacGym

. Position

[[ITrained in Stage 1 and 3
__ITrained in Stage 2 and 3

Goal Estimator
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Dynamic Handover: Throw and Catch with

Bimanual Hands

Stage 1: Multi-Agent Reinforcement Stage 3: Jointly training two agent and goal

Learning estimator

Multi-Agent RL: “This joint training helps reduce

* no parameter / info sharing between compounding errors when integrating the
agents goal estimator with the policy.”

e same input / output definition

Stage 2: Goal Estimator Learning raned n Sge 2 na 5 (IR Trow st

Due to sim-to-real issue, thrower in real _ o @ i

world does not always throw the object 4 —

in the given goal. poaes c[;ga ot @ i
E—

“<
o
Catcher

=) Catcher

e Using past k frames as input ; Braciceariion
* Predict the goal position o

Position

IsaacGym
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Handover: 'hrow and Catch with
Bimanual Hands

1100116

Settings | Known Obj. | Novel Obj. | @)
w/o Multi-Agent 0.89 £0.07 | 0.24 £0.05
w/o Goal Estimation | 0.88 +0.04 | 0.22 £ 0.04
w/o Both 0.93+0.07 | 0.12 £ 0.06

of throwing and catching task on different objects in
simulation. We use 11 trained objects and 14 novel
objects. The results are averaged on 5 seeds, each seed
has 100 trails.

Ours 0.95+0.07 | 0.37 +0.04 -
Table 1: Ablation Study in Simulation: Success Rate

(b

~

1.0 HT— Ours
w.0. Both

w.0. GE P L
08— wo. MA 7

0.6 1

0.4 1

o
il
M
= B
w
?
|

0.2 1

Average Episode Success Rate

P
A 0.0{ —#
Ad | | | | |
A 0 200M  400M  600M 800 M

A A Environment Steps

A Figure 5: Objects Sets. (a) Training objects. (b)
A A Figure 4: Training Curves. The plot shows multi- Additional objects in evaluation. (c) Real-world
A object training curves of our method and 3 baselines. objects.

2] G
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ShanghaiTech University

Athletic Intelligence (quadruped robot)

(a) Walking Gait
Walking. trotting and bouncing (galio Ananye Aga[‘wal"l ASh|Sh

2020: RL is able to work on quadruped locomotion
2021: RL is simple enough to train quadruped robot

2022: quadruped robot can utilize vision to guide the gait
2023: quadruped robot outperforms all other mobile robots
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ShanghaiTech University

m=wrm | Learning Humanoid Locomotion with Transformers
Robust and Versat

Ilija Radosavovic*  Tete Xiao* Bike Zhang*  Trevor Darrelll  Jitendra Malik!  Koushil Sreenath’

through Re University of California, Berkeley

Zhongyu Li', Xue Bin Peng?, Pieter Abl
'University of California, Berkeley, -
Email: zhongyu_li@berkeley.edu, xbpeng =
glen.berseth €

Athletic Intelligen

Connections between perceptio

control allow Atlas to adapt—q

literally—on the fly.




